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Among existing subgrid scale models for large-eddy simulation (LES) some are time-reversible in
the sense that the dynamics evolve backwards in time after a transformation u → −u at every point
in space. In practice, reversible subgrid models reduce the numerical stability of the simulations
since the effect of the subgrid scales is no longer strictly dissipative. This lack of stability constitutes
often a criterion to reject this kind of models. The aim of this paper is to examine whether time-
reversibility can constitute a criterion that a subgrid model has to fulfill, or has not to. Thereto we
investigate by direct numerical simulation the time-dependence of the kinetic energy of the resolved
scales when the velocity is reversed in all or part of the lengthscales of the turbulent flow. These
results are compared with results from existing LES subgrid models. It is argued that the criterion
of time-reversibility to assess subgrid models is incompatible with the main underlying assumption
of LES.

PACS numbers:

I. INTRODUCTION

The complexity of turbulence is due to a wide range
of nonlinearly interacting scales. The numerical simula-
tion of a turbulent flow, in most practical applications,
cannot take into account the full range of scales, due
to limitations in computational resources. The principle
of Large Eddy Simulation (LES) is that only the large
scales are computed directly. The influence of the scales
smaller than a given scale, associated to the grid-mesh of
the simulation, are modeled as a function of the resolved
scales. To develop consistent subgrid scale (SGS) models,
criteria are needed, based on physical or mathemathical
principles and sometimes on the numerical stability of
the closed set of equations. It is important that these
criteria are well defined and generally accepted. The last
two decades have seen the emergence of a large number
of new subgrid models, and it is the authors’ opinion
that the turbulence community must devote more efforts
in developing consensual criteria than in increasing the
number of models. The purpose of the present work is
to investigate one possible criterion, which is the time-
reversibility of a subgrid model, when the orientation of
the velocity is inversed, i.e., under the transformation
u → −u. We report the results of Direct Numerical
Simulations (DNS) in which the velocity is reversed in
all, or part, of the scales of the flow. These results are
then compared to results from LES in which the velocity
is reversed, to assess the quality of the predictions of the
models and to check whether time-reversibility is a valid
criterion to assess subgrid models.

II. THEORETICAL AND PRACTICAL

CONSIDERATIONS

In the absence of viscosity, the dynamics of the Navier-
Stokes equations (which reduce to the Euler equations),

are invariant under the simultaneous transformationu →
−u, t → −t. This means that if at an instant t the veloc-
ity is reversed, the flow will evolve backwards in time un-
til the initial condition is reached. On the level of energy
transfer between scales, this property implies that in the
inviscid case the direction of the energy transfer reverses
when the velocity is reversed (or when time is reversed).
This can be understood since the nonlinear interactions,
which govern the cascade of energy between scales, are
associated with triple velocity correlations. The sign of
these triple products is changed when the velocity is re-
versed, so that the nonlinear energy transfer proceeds in
the opposite direction. This symmetry is broken as soon
as viscous dissipation is introduced since the viscous term
of the Navier-Stokes equations does not share this sym-
metry. Indeed, the conversion of kinetic energy to heat
through the action of viscous stresses is an irreversible
process within the macroscopic (continuum) description
of turbulence. Pinning down to what extent this symme-
try property of the Euler equations is retained in Navier-
Stokes turbulence is an interesting academic question in
its own right.

There is, however, also a practical reason to investigate
this property. Even though the probability of a complete
velocity reversal in a real-life flow is small, it will occur lo-
cally in time and space in various applications. Indeed in
the presence of external forces which generate large-scale
structures, quasi-two dimensionalisation can be observed
in which the backscatter can exceed the forward flux of
energy. Typical examples are thermal convection1, tur-
bulence in the wake of a cylinder2, the turbulent bound-
ary layer3,4 and quasi-two-dimensional flows5. In these
cases, the large scales can be regarded as partly reversed
non-equilibrium states, which constitutes a challenge for
SGS models6. Some mixed models are considered good
choices in numerical tests7 for these particular flows, but
the reasons are not entirely clear. In particular in these
complex flow geometries it is hard to disentangle the in-
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fluence of the backscatter from the influence of other flow-
properties. For this reason it seems helpful to carefully
assess the influence of the time-reversibility of Navier-
Stokes turbulence in the academically most simple set-
ting, isotropic turbulence. We hope that this study will
thereby contribute to the understanding and evaluation
of subgrid scale models for large eddy simulation.
If we consider LES and we reverse the resolved velocity,

it is not known what the subgrid model is supposed to do.
For convenience we will limit our discussion to the most
widely used class of models, based on the concept of eddy-
viscosity8. The (scalar) eddy-viscosity model expresses
the subgrid stress,

τ<ij = (uiuj)
< − u<

i u
<
j (1)

as a function of the resolved scales (a< denoting a fil-
tered quantity), by assuming that τ<ij is aligned with the
resolved strain-rate tensor,

S<
ij =

1

2

(

∂u<
i

∂xj

+
∂u<

j

∂xi

)

. (2)

The eddy-viscosity assumption is then given by

τ<ij −
1

3
τ<mmδij = −2νtS

<
ij , (3)

with νt the eddy-viscosity. Note that here we only con-
sider the effect of a filter but not the discretization error.
Although it may not be the only choice (see for exam-
ple Carati et al.9 who introduced a “subgrid scale stress”
which includes the error of discretization), it is the choice
made in most investigations of subgrid scale models.
For some models, the reversal of the velocity leads to a

reversal of the subgrid stress tensor, for others it does not.
Indeed, the dynamic procedure10 leads to subgrid models
that are time-reversible in the sense that the dynamics
evolve backwards in time after a transformation u →
−u (see also reference9). Another reversible model is
the CZZS model11 by Cui et al. as well as its recently
proposed extension12. In the present work the simplified
formulation of the CZZS model is used as an example of
a time-reversible model. In this model the eddy-viscosity
is given by

νt = −
1

8

D<
lll

D<
ll

∆, (4)

where D<
ll = 〈(u<

1 (x1 + ∆) − u<
1 (x1))

2〉 is the second-
order longitudinal structure function of the filtered veloc-
ity, D<

lll is the third-order longitudinal structure function,
∆ is the filter size and 〈 〉 indicates an ensemble average
which is in practice often treated as an average in the ho-
mogeneous directions. This model is time-reversible since
the third-order structure function changes sign when
u< → −u<. For the Smagorinsky8 model this is not
the case. For this model, the eddy-viscosity is given by

νt = (Cs∆)2
√

S<
ijS

<
ij . (5)
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FIG. 1: Energy spectrum at the time of reversal. The vertical
line is the location of filter. In the case of LES, The large
scales are resolved and the small scales as well as the spectral
fluxes have to be modeled.

The eddy-viscosity in Eq. (5) can not become negative,
so that the net flux of energy to the subgrid scales is
always positive. This flux is defined as

Π = ǫf − ǫb = −
〈

S<
ijτ

<
ij

〉

(6)

(see Fig. 1 for a graphic representation of the fluxes ǫf
and ǫb). In the Smagorinsky model the flux of energy ǫf
from the large to the small scales is thus always larger or
equal to the backscatter ǫb.

The time-reversibility property of models, such as for
example the dynamic model, is sometimes seen as a weak-
ness. One reason for that is that subgrid-scale models are
generally supposed to dissipate the energy flux towards
the small scales (see e.g. reference13 for a theoretical
discussion on this subject). Another reason is that these
models become more easily (numerically) unstable. How-
ever it is well known that the backscatter of energy ǫb, to
the resolved scales is a physical property, which should
be taken into account in a correct model of the subgrid
dynamics (see e.g. reference14,15). Indeed the backward
energy flux ǫb is not necessarily constrained to be inferior
to the forward flux ǫf , and a negative energy flux should
therefore not a priori be excluded by a model.
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III. RESULTS FOR REVERSED TURBULENCE

FROM DIRECT NUMERICAL SIMULATIONS

A. How respond the large scales when the velocity

vector is reversed?

In the present section we consider by direct numerical
simulation the dynamics of subgrid and resolved scale
energy after transformation u → −u. We will define a
resolved velocity field, u< and a subgrid velocity u> (see
Fig. 1). In the DNS both velocities are computed and
distinction between the two velocities is made by intro-
ducing a cut-off wavenumber kc, corresponding to the use
of a sharp spherical low-pass filter in Fourier space. Other
filters could also be considered, such as Gaussian filters.
We expect that the remainder of the present analysis will
still hold qualitatively, but a separate investigation of
the influence of the filter-type is outside the scope of the
present article. Extensive investigations on the influence
of the filter-type on energy transfer in isotropic turbu-
lence can be found in references16–18. In these studies
it is shown that the qualitative features (and in particu-
lar the locality) of the subgrid-scale flux are not changed
when considering smooth or sharp filters, as long as the
smoothing is not too gentle. In the following we will fo-
cus on sharp spectral filters only. The main focus of the
present work is on the case in which all scales of a freely
decaying turbulent flow are reversed at a given time τR.
This case will be denoted by RR, and will be compared
to a freely decaying unmodified flow, denoted by NN.
Simulations are carried out using a standard pseudo-

spectral solver and a fourth order Runge-Kutta time-
integration scheme, with a semi-implicit treatment of the
viscous term. The computational domain has 2563 grid-
points. All cases simulate a freely decaying isotropic tur-
bulence, starting from the same random initial field19,
with a spectral energy distribution similar to the mea-
sured spectrum in the experimental work of Comte-Bellot
and Corrsin20. The location of the filter is illustrated in
Fig. 1, in which the energy spectrum at the time of re-
versal is also shown.
The evolution of the grid-scale and subgrid-scale ener-

gies, E< and E> respectively, is given by

dE<

dt
= −ǫ< −Π (7)

dE>

dt
= −ǫ> +Π (8)

In these equations ǫ< and ǫ> are the grid-scale and
subgrid-scale dissipation rates. At high Reynolds num-
bers ǫ< is small compared to the energy-flux Π, if kc is
chosen in the energy containing or inertial range. The
evolution of grid-scale energy is shown in Fig. 2. The
time t is normalized as t → (t− τR)/T , with τR the time
of reversal and T the turnover-time at the time of rever-
sal, defined as

√

3/2(E/ǫ), with E the kinetic energy and
ǫ the viscous dissipation rate. The energy is normalized
by E<(τR), the resolved energy at the time of reversal.
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FIG. 2: Evolution of grid-scale energy for freely evolving tur-
bulence compared to the evolution when the velocity vector
is reversed in every point in space. In the inset we show a
zoom of the behavior around the time of reversal.

In the following ǫ<, Π, ǫ> and ǫ are all normalized by
ǫ<(τR).

The evolution of the energy of the reversed case
changes radically with respect to the unmodified flow.
A closer look at small times, as displayed in the inset in
Fig. 2, shows that the energy of the grid scales in the
reversed case increases, following approximately the re-
lation E<(τR + t) = E<(τR − t), as would be expected
from reversible Euler dynamics, until, at later times, it
starts to decay again. The increase of energy corresponds
to the energy which flows back from the small scales to
the large scales since the energy-cascade is reversed. The
main reason that the energy level does not reach its ini-
tial value is that some of the energy of the flow has been
dissipated and this process is irreversible. However, for
the large scales, at which the direct influence of the vis-
cosity is weak, the flow behaves as if it were governed by
the Euler equations. A quantification of the energy flux
Π and dissipation rates ǫ< and ǫ> in equation (7) and
(8) will be given in the following section.

This time-reversibility property of the large scales of a
turbulent flow is the most important observation of this
investigation: the increase of energy in the grid scales is
a genuine physical effect described by the Navier-Stokes
equations. The fact that a model does allow an increase
of energy, such as the dynamic model, is therefore not
a criterion to reject it. The opposite question: should a
model possess the property of reversibility to be a sound

subgrid scale model? is a different question and we will
now focus on that.
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TABLE I: Overview of the DNS cases. The letter N denotes
normal, R reversed and Z zero.

DNS cases velocity
NN +u

< + u
>

RR −u
<
− u

>

RN −u
< + u

>

RZ −u
< + 0

NR +u
<
− u

>

NZ +u
< + 0

B. The influence of the subgrid scales

Evidently in a Large Eddy Simulation we do not know
the small scales. The relative insensitivity of the resolved
scales on a change of the subgrid scales is the basic as-
sumption of Large Eddy Simulation. In the context of the
time-reversibility property of turbulence, we test in this
section several cases in which the resolved scales and the
subgrid scales are modified independently. In addition to
the normal and reversed cases discussed in the previous
section, we investigate here 4 different cases. In two of
them the large scales are reversed but the small scales
are either left unmodified or set to zero. In the other
two cases the large scales are not reversed, but the small
scales are again either left unmodified or set to zero. The
6 different cases which are considered are summarized in
Table I. Note that the RN and RZ (and NR and NZ)
cases are straightforwardly defined using a sharp cut-off
filter in Fourier-space. The extension to smooth filters
would probably raise further questions, since smooth fil-
ters can be inverted. This extension is considered as out-
side the scope of the present investigation in which a
sharp filter is used.

In Figure 3 (a) the behavior of the large scale energy is
shown for the different cases. In contrast to the previous
results in which all scales were reversed (the RR case),
here none of the different cases displays a significant in-
crease of the energy. However, in the cases RN, RZ in
which the large scales are reversed, the energy decay is
slowed down compared to the unmodified case. The RZ
case decays more slowly than the RN case. Indeed, small
scales can act as a non-local eddy-viscosity on the larger
scales, an effect which is absent when these scales are set
to zero. For the NR and NZ cases, in which the large
scales are unmodified, the decay is not significantly al-
tered by a reversal of the small scales. This last test can
be considered a validation of one of the main assump-
tions of LES, i.e., the fact that the resolved scales (in
a normal, non-reversed flow) are relatively insensitive to
the subgrid scale dynamics. We will not focus more on
these two cases in the following.

The evolution of subgrid scale energy for the cases NN,
RR, RN and RZ are shown in Fig. 3(b). The differences
exist mainly in the range 0 < t < 0.5. The energy of
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FIG. 3: (a) Evolution of grid-scale energy for freely evolving
turbulence compared to the evolution when the velocity vector
of the large scales is reversed, but the velocity of the small
scales is either unmodified (RN) or set to zero (RZ). In the
inset we show the behavior where the large scales are left
unchanged, but the small scales are modified. (b) Evolution
of subgrid-scale energy.

the RR and RN cases decrease very fast after reversal,
since in addition to the viscous dissipation, which acts in
all cases, the reversal of the grid-scale velocity leads to a
reduction of the energy-input to the subgrid scale part.
After some time, when the triple correlations around the
cut-off are restored to transfer in the normal direction,
this energy flows back into the subgrid scales, leading to
a temporary energy increase for the RR and RZ cases.

The energy flux Π from the resolved scales to the sub-
grid scales is shown in Figure 4. As expected, the energy
flux at the time of reversal reverses for the RR case. For
the RN and RZ cases the energy flux is strongly reduced
by the reversal, but rapidly the flux is reestablished. The
dissipation rates ǫ< and ǫ> are shown in Figure 5. In
this figure it is observed that at the time of reversal the
subgrid-scale dissipation is dominant, as is expected for
moderate and high Reynolds numbers.

For completeness, we show in Figure 6(a) the total en-
ergy. Due to the normalization by the grid-scale energy
(which allowed a better comparison for the grid-scale dy-
namics in Figure 3) only the RZ case has unity energy at
the time of reversal, since the subgrid energy is zero in
this case, whereas the other cases have a higher energy.
The total dissipation [Fig. 6(b)] behaves qualitatively
similar to both the subgrid dissipation and the subgrid
energy.
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FIG. 4: Evolution of the energy flux Π from large to small
scales for the different runs. See table 1 for definitions.
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FIG. 5: Evolution of (a) grid-scale dissipation and (b) subgrid
dissipation for the different runs. See table 1 for definitions.

C. The influence of the Reynolds number on the

time-reversibility

In the present simulations the Reynolds number is
moderate and from Figure 5 it can be concluded that the
contribution of the grid-scale dissipation is non-negligible
and of the order of 12% of the total dissipation at the time
of reversal. To evaluate the dependence of the Reynolds
number, we would like to diminish the direct effect of the
viscous dissipation on the resolved scales. We therefore
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FIG. 6: Evolution of the total energy and dissipation. See
table 1 for definitions.
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FIG. 7: Evolution of the grid-scale energy for the four cases
(NN,RR,RN,RZ) replacing the viscous term of the Navier-
Stokes equation by a 4th order hyperviscous term.

calculated another set of flows replacing the viscous term
by a fourth order hyperviscous draining term21,22. Such
a hyperviscous term concentrates the influence of the vis-
cosity to a small range of wavenumbers so that its direct
influence on the large scales is reduced. In equation (7)
this means that ǫ< becomes very small compared to the
other terms in the equations. In the present case ǫ< is
0.15% of the total dissipation at the time of reversal.

The results of the simulations are shown in Figure 7
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for short time after the reversal. It is observed that the
evolution of the resolved kinetic energy at small times
is qualitatively similar. The RR case shows a complete
reversal at small times. The RZ case shows a slow-down
of the energy decay as was observed in the normal vis-
cous case. The only qualitative difference is observed for
the RN case which now shows a slight increase of the en-
ergy, an effect which is apparently sensitive to the small
amount of dissipation which was present in the viscous
run. Let us digress a little and give the physical expla-
nation for this increase. The energy transfer, analyzed
in the Fourier-domain, is governed by triple products of
velocity modes of the form 〈û(k)û(p)û(q)〉 with k,p, q
wavevectors that can form triangles. The triple moments
that are responsible for the transfer across the cut-off can
be divided into two classes. One class consists of trian-
gles with two legs of the triad shorter then kc and one
longer, the other class consists of triangles with two legs
of the triad longer then kc and one shorter (see also Fig-
ure 1 in reference23). In the RN case the first class of
triple products will remain unchanged, since two of the
three velocity modes change sign so that the triple prod-
uct does not change sign. The other class will change sign
since only one of the three velocity modes changes sign.
The balance between the two classes and their relative
contributions to the forward and backward energy fluxes
will now determine whether the resulting flux is positive
or negative. In the present case, apparently, the result-
ing flux is slightly negative, but already a small amount
of viscosity is enough to prevent this reversed flux from
being visible. At a later time the RN case decays faster
then the RZ case, as in the viscous runs, due to the eddy-
viscous effect of the small scales on the large scales which
was already mentioned in the previous section.
Without focusing on the details, we only want to stress

here that the precise form and location of the viscous
dissipation do not qualitatively influence the behavior of
the RR, and RZ cases. The RN case changes and a small
increase of energy is observed.

D. Assessment of the time-reversibility criterion

The different behavior observed for the resolved scales
when reversing the velocity in a part of the scales can be
interpreted in two different ways. The first would be to
point out the weakness of Large Eddy Simulation, since
apparently the large scales are not independent on the
details of the small scales. However this interpretation
would be disingenuous, since the concept of Large Eddy
Simulation in three-dimensional turbulence is intimately
linked to the concept of a forward energy cascade. We
would therefore prefer to point out the weakness of
the criterion of time-reversibility to assess subgrid scale
models. Indeed, a model should not be rejected because
it is time-reversible, since at short times the dynamics
of the large scales of Navier-Stokes turbulence can be
reversible. However, a model which does not display

FIG. 8: Evolution of grid-scale energy in the LES cases using
different subgrid models. (a) without molecular viscosity (b)
with molecular viscosity. N denotes normally decaying, R
means reversal of the velocity.

this property should not be rejected either, since even in
cases in which the large scales are reversed, the energy
of the large scales might not increase if the energy in
the subgrid scales is not reversed as is observed here in
the RZ and (the viscous) RN case. With this in mind
we will evaluate in section IV how different subgrid
scale models behave when the velocity is reversed, but
without judging on the validity of the models, which
should be scrutinized using additional, less equivocal
criteria.

IV. RESULTS FOR REVERSED TURBULENCE

FROM LARGE EDDY SIMULATIONS

We perform in the present section the same test, revers-
ing the large scales using different subgrid models, first
the simplified CZZS model (4), second the Smagorinsky
model, Eq. (5) with Cs fixed at 0.14. The first model is,
as mentioned before, time-reversible, the second is not.
The computational mesh has 483 grid-points. As was
shown by Kraichnan24, a constant (non-scale dependent)
value for the eddy-viscosity is only a good approximation
in the inertial range, far from the cut-off frequency. Close
to the cut-off, where the role of the model is most impor-
tant, the value of the eddy-viscosity strongly increases.
This effect can be corrected for by adding a scale de-
pendent cusp to the model, as was applied by Chollet
and Lesieur25. This should be done in principle for all
eddy-viscosity models. In the present work this cusp is



7

introduced by modifying the eddy-viscosity to

ν∗t (k) = νt(1 + 34.6 exp(−3kc/k)). (9)

Two different Reynolds number cases are considered. In
the first one, the viscosity is set to zero, yielding, in the
absence of νt, the time-reversible Euler equation. The
comparison of grid-scale energy is shown in Fig. 8(a).
We can observe that after reversal, the simplified CZZS
model yields an increase of energy, which is similar to
what was observed in the RR case in the last part, be-
fore the irreversible influence of viscosity set in. The
Smagorinsky model remains decaying at the same rate
as the normally decaying case for some time-steps after
reversal. This phenomenon is not similar to any DNS
case in the last part, and stems from the fact that rever-
sal leaves the value of the eddy-viscosity unchanged since
S<
ijS

<
ij is unchanged after reversal. For longer times, the

decay rate decreases, since the direction of the resolved
energy cascade changed sign. However the energy cannot
increase, since νt can not change sign.
In order to determine the influence of the Reynolds

number on the dynamics, we considered a second decay-
case, in which the molecular viscosity was not set to zero.
In this case the ratio ν/νt ≈ 1 at the time of reversal, and
the results are shown in Fig. 8(b). In this case the be-
havior of the reversible model is very close to the DNS
result of the RR case, for both small and long times. The
presence of a non-negligible amount of non-reversibility
by the viscous stress, prevents the flow from developing
an unlimited amount of energy. We want to stress how-
ever that the apparent success of the reversible model
in the presence of non-zero viscosity in reproducing the
DNS results of the last section is fortituous and depends
on the Reynolds number. In other words, it might not
always be easy to foresee which amount of viscosity is
needed to avoid non-physical effects. At high Reynolds
numbers the behavior might ressemble more the inviscid
behavior shown in Fig. 8(a). The underlying issue here
is that a subgrid model needs to reproduce two distinct
features of the subgrid scales. The first is to drain the en-
ergy from the large scales. The second is to dissipate this
energy. The dynamic model only forefills the first task,
which corresponds to the reversible interaction between
the small and the large scales, but does not dissipate the
energy.
For the sake of completeness, we also test two other

models, which might be of practical use if one does not
want to worry about the amount of viscosity needed to
avoid a reversible model to reinject unphysical amounts
of energy in the system. For the first one (model R0 in
the following) we use the simplified CZZS model in which
we reverse the velocity, but fix all negative viscosity as
zero, i.e.

νt = max(−
1

8

D<
lll

D<
ll

∆, 0). (10)

In real practice, this clipping procedure was widely used
in the time-reversible models to obtain numerical stabil-

FIG. 9: Evolution of grid-scale energy in the LES cases us-
ing different subgrid models. (a) without molecular viscosity
(b) with molecular viscosity. N denotes normally decaying,
R means reversal of the velocity, and R0 means fixing the
negative viscosity as zero.

ity. For the second one (that we denote MIX in the fol-
lowing) we follow the strategy of defining a mixed model
as suggested by Vreman et al.7 and

νt =
1

2

(

−
1

8

D<
lll

D<
ll

∆+ (Cs∆)
2
√

S<
ijS

<
ij

)

, (11)

where the additional coefficient 1/2 is used to guar-
antee the consistency with non-reversed turbulence.
These mixed models often lead to good results in real
applications7, but their formulation is not supported by
theoretical or physical arguments.
Shown in figure 9 is the behavior of the models defined

in expressions (10) and (11). We observe that their be-
havior closely resembles the RN and RZ cases in Fig. 2,
where grid-scale energy decay is reduced during a short
time, and then decays normally. We can therefore con-
clude that the models (10) and (11) represent a physical
behavior, corresponding to a certain class of flows.
As we argued in the previous section, we cannot use

the present results to assess the models. The backflow of
energy is not unphysical but it is a phenomenon which
is not observed in all possible flows in which the resolved
scales are reversed. If in a particular application one
aims at the prediction of a time-reversed flow without
risking an unlimited amount of backscatter, one can use
one of the models given by (10) and (11). A more so-
phisticated, but also more physical, procedure was pro-
posed by Ghosal et al.26 by basing the flux of energy to
the small scales on the subgrid scale energy, which was
computed using a transport equation for the Reynolds
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averaged subgrid scales. This procedure implicitly as-
sumes that the net energy flux from the resolved scales
to the subgrid scales is determined by the subgrid en-
ergy. Another solution would be to introduce a cascade
time, based on the energy around the cut-off, which limits
the time during which the model remains time-reversible.
However, all these fixes are only needed if one wants to
be able to take into account the time-reversibility of the
resolved scale turbulence.

V. CONCLUSION

The gedanken-experiment in which the velocity at each
point in a turbulent flow is reversed can be carried out
in numerical simulations, and this is what we performed
in the study presented in this work. The goal of this
work was not to judge particular subgrid scale models
or even the whole concept of LES using the criterion of
time-reversibility, but rather to judge the criterion itself.
Our conclusion is then the following: the property of
time-reversibility alone is not an unequivocal criterion to
reject or qualify subgrid models.
We base this judgment on two observations. The first

one is that at short times the energy of the resolved scales
increases in a reversed flow, as would be the case for a flow
governed by the (truncated) Euler equations. This obser-
vation alone could be used to argue that subgrid models
should be, at least partly, reversible, and to reject sub-
grid models which do not possess this property. However,
a second observation in the present work showed that if
we reverse the large-scales but do not modify the subgrid
scales or set them to zero, the large-scale energy does
not necessarily increase. This second observation shows
that, even if a model cannot increase the energy of the
resolved scales, it still corresponds to a certain class of
flows, and the model cannot be rejected. However, it can
not be excluded that the invariance of a model with re-

spect to the reversal of the velocity will not have other
consequences when regarding other diagnostics.
For some practical purposes, in which the user is only

interested in a model that drains a sufficient amount of
energy without compromising the stability of the simu-
lation, time-reversibility will probably continue to be re-
garded as a possible criterion to reject a subgrid model.
We claim here, on the basis of the present results, that
considering the detailed flow physics, this criterion is un-
suitable. This unsuitability to use the criterion of time-
reversibility to assess subgrid scale models for LES is in-
herent to the basic assumption of Large Eddy Simulation.
If LES is to be usable at all, some a priori assumption
by the user should be made about the property of the
cascade of energy. This cascade is in general towards the
small scales in three-dimensional turbulence, and in this
case the user of LES should accept that some physics
are not captured by his simulations or he should give
some input about the unknown scales to the model. If
this is not satisfactory in some applications, LES, in its
present form, might simply not be the adequate tool to
study these particular applications. More sophisticated
approaches might then be needed, in which the direction
of the energy flux between scales can be determined as a
function of resolved flow parameters or models in which
the scales are not arbitrarily divided into large and small
scales.
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