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Global asymptotic stabilization for a class of
bilinear systems by hybrid output feedback
(long version)

Vincent Andrieu and Sophie Tarbouriech

Abstract

This paper deals with the global asymptotic stabilizatioolyem for a class of bilinear systems. A
state feedback controller solving this problem is obtaineiting a local controller, having an interesting
behavior in a neighborhood of the origin, and a constantrotiat valid outside this neighborhood. The
approach developed is based on the use of a hybrid loop, anel pnecisely a hybrid state feedback.
This result is extended to the case where the state of the fdamot fully available and only the
measured output can be used for control purposes. In thés @eadynamical controller constituted by
an observer and a state feedback is built by means of hybtmlibteedback framework. In both cases,
the conditions are expressed by a set of linear matrix inépsa

Keywords. Bilinear systems, global stabilization, hybrid state amtpat feedback.

I. INTRODUCTION

The global asymptotic stabilization of an equilibrium poioy means of state or output
feedback for nonlinear systems has been the topic of madyestin the control community. Over
the last three decades, different tools have been devetopachieve state feedback stabilization
for some specific class of nonlinear systems (see [18] arateetes therein). By adding some
observability assumptions, in some particular case, itossible to extend these approaches to
the output feedback context [2]. Note moreover that sonergits have been made to construct
some hybrid output feedback controller in [29] and in [27pvi€ver no general theory have been
developed allowing the design of a controller without sfy@eg a class of nonlinear systems.
In this paper, we focus on global asymptotic stabilizatibra equilibrium point by means of
state or output feedback for bilinear control systems.nBdir systems are a special class of
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nonlinear systems, which may represent a wide variety osijechy phenomena. Indeed, bilinear
models are used to represent electrical systems, chenmoedss, biological model... (see for
example [21], [1], [16] and [24] and the references thereildreover, a nonlinear system may
be approximated by a bilinear model (see [22]).

The stabilization of bilinear systems by means of statelfaeki has been addressed in [13]
(see also [33]) based on some Lyapunov-like Assumptiongs fidsult has been extended in
the output feedback context by restricting the class ohedr systems in [15]. Moreover, it
is important to point out that in [13], the practical stataliion problem is considered. Hence,
the origin of the closed-loop system is not globally asyrtipatly stable but a neighborhood
containing the origin is made globally asymptotically $¢éatsuch a neighborhood can be made
arbitrarily small (but different from the origin) by chamgj the controller.

In the current paper, we consider the global asymptoticilszation problem for a class of
bilinear systems for which there exists a constant feedlifaek Assumption 1) making the
trajectories of the closed-loop system bounded and coimgetg an equilibrium point (which is
not the origin). From the knowledge of this constant fee&b#te problem under investigation is
to modify this controller in order to make the origin a gldgasymptotically stable equilibrium.
More precisely, the idea of the design is to rely on two ddfdrcontrollers: A global one (the
constant feedback) and a linear one (synthesized via an Ladedb approach inspired from
[31]). With these two controllers in hand, the problem beesnan uniting controller problem
as introduced in [32] and in [26] (see also [3]). Employindhg state feedback framework, it
is possible to give sufficient conditions allowing us to dessuch a suitable uniting controller.
Due to the fact that the constant feedback does not depenkeostdte of the system, this one
can be also used in the output feedback context. Hence, Heevdaere the state of the plant is
not fully available for feedback is tackled. In this contetkte hybrid state feedback framework
is employed with a hybrid observer in order to obtain a hylmitout feedback which stabilizes
globally asymptotically the origin of the hybrid closedmsystem. The approach developed in
the paper can be viewed as an alternative technique to thddesiped in the literature as, for
example, in [13], [9], [15], [17], [7].

The paper is organized as follows. In Section Il the classystesns considered in this paper
and the stabilization problem we intend to solve are defiBede discussion on the existence of
the constant feedback are also given. Based on a switchiaiggy, the design of a hybrid state
feedback making the origin a globally asymptotically seabtjuilibrium is also presented. The
output feedback stabilization is considered in SectionAlhumerical example is also presented
to illustrate the effectiveness of the technique. FindltySection 1V, concluding remarks are
given.
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II. PROBLEM STATEMENT
A. Class of systems

The class of bilinear systems under interest in this papaessribed by the following ordinary

differential equation: ,
ab:Ax+Bu+Zuijx,y:C'x, (2)
j=1

where the state is in R", the control inputu is in R?, the measured outpytis in R™ and A4,
B, C, N;, j =1,...,p, are matrices iR™*", R™*?, R*™*™ andR™*". v;, j = 1, ...,p, are the
components of the vectar.

The first problem under consideration in this note can be samzed as follows.

Problem 1: Design a state feedback control lax) ensuring global stabilization of the origin
for the system (1).

Due to the structure of system (1) under strong assumptiehseen the matrices/; and
A, a controller can be given which ensures global boundedoédke closed-loop trajec-
tories. Actually, we restrict our analysis to the pa;tictudmse in which there exists,, =

/
[ Usod - Usop } in R” such that the matrixd + > “u.,;N; is Hurwitz!. In other words,
j=1
we make the following Assumption.

Assumption 1:There exists a symmetric positive definite matfx, in R"*" and a vector

/
Uso = [ Usol -+ Usoyp ] in R? such that the following inequality is satisfied:
P p !
Poo A—l_ZuOO’ij + A+Zuw7ij POO<O (2)
j=1 j=1

Note that with Assumption 1, the constant control law- u., does not ensure convergence
to the origin of trajectories of the system. Actually, it da@ checked that with this control law,
the origin is not anymore an equilibrium. However, it can heven that the trajectories converge
toward a new equilibrium point given as

p
Bus + |A+ ZUOOJNJ'] e =0 .
j=1

1See, for example, [20] to check whether or not Assumption datisfied. .

%It has to be noticed that using this constant control law fabiéization may have some drawbacks especially when the
model is uncertain due to lack of robustness properties antta on the stability margin.
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p
The matrix A + Zuoovj]\fj being Hurwitz it is invertible. Hence, we get that the foliogy

j=1
equilibrium point is a global asymptotic equilibrium paint
-1

Te = —

Bus . (3

p
j=1

Note that if we consider the functiorl P,.x, we get along the trajectories of the system (1)
with the control lawu = u..:

‘/. N /
2 Pyx =2'Qx + 22’ PBu, ,

/
with Q = P |[A+ >0, Uoo,ij} + [A +20 Uoo,ij] P <.
Hence, we get,

TPz <0, Vo € {z,2' Pr >ry}
with
| PBuo|
Amin {Q}
Hence the function’ Pz is a global set-CLF in the sens of [3].

Hence with Assumption 1, designing a controller which easuroundedness of the trajectory
is easy. However, in this note, we investigate how we can fydbis controller to ensure that
the origin becomes a globally and asymptotically stableldgium.

To asymptotically stabilize by means of output feedbackahgin of the system we consider
an observer controller switching strategy. As we will seeSiction 1I-C and with Theorem
1, we can provide sufficient conditions under which a hybtates feedback can be designed.
In Section Ill, we combine this state feedback with an obsete obtain a stabilizing output
feedback. Before giving these results we first discuss thesobf systems considered and more
precisely that one satisfying Assumption 1.

Too = 2

B. About Assumption 1

Assumption 1 is a strong assumption. However, in the liteeasome examples can be found
which satisfy this requirement. Indeed, consider the foihg example which was given in [34].
Example 1:As in [34], consider System (1) with the matricds B and N defined as:

1
a—| O B |0 NV O @)
-2 1 1 0 —0.5
We are looking foru., such that the eigenvalues of the matrix
0 1
A ooN — )
Tu [—2 1—0.5uoo]
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has all its eigenvalues with negative real part. This is @dthe case provided that, > 2.

More generally, for small dimensional systems (he= 1, 2, 3) employing the Routh-Hurwitz
sufficient conditions, given the matricesand theN;’s it may be possible to give explicitly the
set of controlu,, in R? guaranteeing the existence of the matiy such that Assumption 1
holds (see also [9] for a complete study in the planar casepl&ying this criterion, it is indeed
possible to show that for the system given in Example 1 of @43umption 1 is not satisfied.

However for systems of larger dimension it may be difficultcteck whether or not As-
sumption 1 is satisfied. It has for instance been studied Of if2 the particular case in which
no matrix B is given and wherp = 1. In [20] the approach is based on the use of change
of coordinates in which the matrice$ and N are triangular. In that case, the solvability of
Assumption 1 can simply be addressed ensuring the solyabflisome linear inequalities on
the diagonal terms.

Note that inspired by these approaches, when there areatewatricesN some sufficient
conditions can be given.

Based on a discrete time Euler approximation of the systenalgorithm is given in [14] to
obtain a constant controller. Note however, that this onkaised on non convex optimization
algorithm and may then fail.

Employing the S-Procedure, a simple sufficient condition can be given torantae the
existence of this contrak.,, as stated below. /

Proposition 1 (Sufficient condition for Assumption There existv = [ (U ] in
R? and a symmetric positive definite matricsg, in R"*" such that

P
1) we haved v; (NjPx + PoNj) > 0;

j=1
p

2) forallz # 0 such that’ <Zvj (NP + POONJ»)'> z = 0we haver’ (AP, + Py A)z <

J=1

then there existg > 0 such that with the control law., = —kv, Assumption 1 is satisfied.
Proof: This is a direct consequence of tlseProcedure. Employing th&-Procedure, we
get the existence of a positive real numlesufficiently large such that we have

p

! p
POOA+A/POO—k[<ZUij> Poo—l_PooZUij] <0.
j=1

7=1
[ |
Note that in the case where there is only one input fi.e. 1), item 1 of Proposition 1 means
that all the real parts of the eigenvalues of the maktfixave all the same sign. Moreover, when
p = 1, item 2 is exactly the sufficient condition we would obtaidldwing [13] in order to
stabilize the origin of the system withou? matrix. However, note that in [13], item 1 is not
required and the controller obtained is not a constant otetr
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A particular case of Proposition 1 is when there exista R” such that item 1 holds with a
strict inequality. In other words, when there exists a pesitefinite matrixP,, in R™*"™ such
that

p
> 0 (NjPs + PoN;) >0 .
j=1
In that case, item 2 is trivially satisfied and the conclusadriProposition 1 holds.
Example 2:Consider Example 2 in [31] in which a system in the form (1) &dimed as:

1 1 —4 2 2 4
/6 ) B = ) le > ) N2: °
0 1/6 -2 =2 2 1 5 4

Note that for this system, the matriM} is positive definite. Consequently items 1 and 2 of
Proposition 1 hold withw = | —1 0 | and P, = I,, and there exists,, in R? such that
for the system in closed-loop with = u.,, the vectorz, defined in (3) is a globally and
asymptotically stable equilibrium.

Example 3:Consider Example 3.5 in [13] in which a system in the form glpefined as:

1/6 0 -3 -2 5 2 45

/ , B= , Ny = , Ny = . (6)

0 1/6 2 =2 2 1 5 4

Note that for this system, the matriM/l is positive definite. Consequently items 1 and 2 of
Proposition 1 hold withv = [ -1 0 ] and there exists, in R? such that the closed-loop

system is bounded.
Example 4:Consider Example 4.2 in [13] in which a system in the form ELylefined with:

A= (5)

A:

S
Ny = Yll ‘il > (7)
Ve Ve

Note that this matrix has all its eigenvalugs with strictlysitive real part. Hence, items 1 and
2 of Proposition 1 hold witv = | —1 0 | and there exists., in R? such that the closed-
loop system is bounded. In that cage, can be simply defined as a solution of the Lyapunov
inequality (which is known to exist)

N{POO+POON1>O.

C. A sufficient condition for state feedback stabilization

With Assumption 1, and the existence wf,, the problem is now to design a controller
depending on the state ensuring global asymptotic stabilization of the origin.idflcan be
performed provided that we are able to design a state fekdbyesuring asymptotic stabilization
of the origin and with a sufficiently large basin of attraatidf x., the attractor of the constant
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controller, is included inside the basin of attraction ob#er controller which asymptotically
stabilizes the origin, a switching strategy should sole phoblem. Based on the tools given in
[12], this switching control can be formulated in terms obhyg systems and provides a (natural)
robustness with respect to small enough measurement rs@edi2, Theorem 15 p.58] or [26]).

From this framework, by considering the new state;) in R™ x {0, 1}, the closed-loop system
under study is a hybrid system, that is a system with bothigoous and discrete dynamics
defined as.

p
. — Azt Bo(o) 4 N
T T ('Dq(l') jzl (qu(l‘))J R when = c Cq -— Rn \ Dq (8)

q =0

xt = =z

gt = 1—¢

} whenz € D, 9)
where v (z) = ue, po(r) = Fyz, Fy is a matrix to be designed ar}, and D, are two
closed subsets oR™. Equation (8) defines the continuous dynamics part of theecldoop
system and (9) the discrete dynamics one. In this paper, wsider the notion of solutions of
hybrid dynamical system defined on thaybrid time domairas described in [12]. Hence, in our
framework, the hybrid time domaif C R x N, is the union of finitely or infinitely many time
intervals[t;, t;11] x {j}, where the sequendg,},-o is nondecreasing, with the last interval, if
it exists, possibly of the forn, 7') with 7" finite or 7' = co. Given an initial conditionz, ¢) in
R™ x {0, 1} a solution of system (8) and (9) consists of,

« A hybrid time domainS # (;

« A function z : S — R", wheret — x(t,7) is absolutely continuous, for a fixefl and

constant inj for a fixedt over (¢, j) € S;

« Afunctionq: S — {0, 1} such that(t, j) is constant irt, for a fixedj over (¢,5) € S;
meeting the conditions

1) l‘(O, 0) € Cq(O,O) U Dq(O,O);

2) Vj € N andVt such that(t, j) € S,

p

§(t,) =0, @(t,j) = Av+ Boy(x) + ) (p(2)); N, 2(t,5) € Cyr;

Jj=1

3) V(t,j) € S such that(t,j +1) € S

l‘(t,j + 1) = l‘(t,j) ) Q(taj + 1) = gq(t,j)(x>j)) ) :L‘(t,j) € DQ(tvj) :

Note that since the set§ andD, for all ¢ in {0,1} are closed and with the local Lipschitz
property ofy,, it yields the existence of non trivial solutions of systeh &nd (9) for all initial
points(z, ¢) in C,UD, x {0,1} (see [12, Prop S2, p.44]). Moreover, the fact thaty D, = R"

October 25, 2012 DRAFT



for all ¢ in {0,1} guarantees that for every initial conditidm, ¢) in R™ x {0,1} all maximal
solutions of (8) and (9) are either complete or blow up (s&e Theo S3, p.44]).

Problem 1 under consideration can thus be reformulated|svi

Problem 2: Find a state feedback described througft,1},C,,D,, ¢,} such that the set
{0} x {0,1} c R™ x {0, 1} is globally and asymptotically staléor system (8)-(9).

Note that when continuous controllers are considered, dtabilization problem has been
addressed for instance in [13]. It has also been addresg&d, if20], [9] when there are n®
matrix. Recently, it has been studied in [31] or in [1] whe®e fbcal stability is studied. See
also the recent works [23], [16] in a power-electronics @ters context.

In Section Il, it was shown that with Assumption 1, a globahtroller can be designed to
guarantee that the trajectories of the system converge twrd which is not the origin of the
system (1). To solve our problem of designing a global asptigally stable equilibrium we
have now to find a way to move this global attractor toward thgim In order to develop
our switching strategy, we consider the problem of desigr@nocal controller ensuring local
asymptotic stabilization of the origin and such thatis included in the basin of attraction of
the origin (associated to the local controller). For ins&rthe first order approximation of the
system (1) is simply given as:

&= Ax+ Bu . (20)

Hence, we get that provided the couplé, B) is controllable a matrix; in R"*? can be found
such thatA + BFy is Hurwitz and ensures that the state feedback F,» makes the origin of
the system (1) a locally asymptotically stable equilibrium

In other words, there exists a positive definite matrix&t" denotedF, such that:

Consequently, with this state feedback the origin of theéesys(1l) is a local asymptotic stable
equilibrium. In other words, there exists a positive reahier R, such that along the trajectories
of the system (1) with, = Fyz, we have:

D '
PP <0,Va € {x#£0,2Pyx < Ry} .

Note that in this approach the bilinear terms have not beleentanto account. Moreover, in
the design nothing is said about and there is no reason to think that is inside the basin
of attraction of the local controller. Consequently, instlase, no switching strategy between
the two controllersu = u,, andu = Fyx may be considered. However, as shown in [1], [31]
it is possible to extend slightly this procedure employingne convex upper approximations of
the bilinear terms and by forcing,. to be inside the basin of attraction of the local controller.

3Since{0, 1} is bounded, the s€i0} x {0, 1} is compact which implies that we rely on the definition of dtabas in [11].
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Before introducing our approach, let us define the followmgation. Given a matrix\ =
(/\jvi)jem]’ie[w with A;; > 0 in RP*", we define the sely = {Si}1</<o Of (N0 More then)
2P matrices inR?*™ such that for alll < ¢ < 2"?, we havé: (Se); = Aji OF (Se); = —Aji -
Moreover, we rewrite the matrices;, j in {1,...,p}, of system (1), asV; = [N;1,..., N;.]"
With these definitions and notation in hand, we can now gieefdilowing result®, which is
inspired from the result obtained in [31] to solve the statedback stabilization.

Theorem 1 (State feedback stabilizatiossume Assumption 1 holds. Let = (};;) in
RP*™ pe given. If there exist a symmetric positive definite matfiy in R"*", and a matrixH,
in RP*™ such that the following inequalities hold,

A2 Wo WoN!.
It 25t >0,\V//\z O,V .,' € 1; X 17 ’ 12
[NNWO ; A0 Y (i) € [Lp] % [L,7] (12)
AWo + WoA' + [B + S Hy + Hy[ B+ S))' <0, S, € Ny , (13)
1 !
Te ] >0. (14)
Te W()

then by taking
Do={z,aWy'z>1} , Dy ={z,2W;'v <1—¢},e= %,FO = HW;'  (15)

it follows that the equilibrium{0} x {0} c R™ x {0, 1} is globally asymptotically stabfefor
the system (8)-(9).

This result is based on the following Lemma which relies aguarents borrowed from [31]
(see also [34]).

D. Proof of Theorem 1

Before proving Theorem 1, we need to state and prove the tlowmog lemmas. First of
all, let us denote?) = W, ! and Fy = HoW; .

Lemma 1 (Local asymptotic stability with the local cono)l For the system (1) in closed
loop with v = Fyx, the origin is locally asymptotically stable and the follog statement are
satisfied.

1) R™\ D, andD; are forward invariant and included in the basin of attract the origin.

2) z. is included inD;.

With Lemma 1, the proof of Theorem 1 follows from [12, Examl¢.51].

“The \;,i’s are parameters allowing us to estimate fig;z.
*The small difference comes from the fact théfz is estimated instead af as seen in inequality (17).

5The definition of global asymptotic stability can be found[12].
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Proof: Pre- and post-multiplying inequality (12) Wi ag{Fo, 1}, it yields that,

Nl Nl g
N 1

Jyt

With Schur complement it is equivalent to the following inedjty,
A Po—NJN;;i >0. (16)
Hence, it implies that for ali: in R™\ {0} and for all (j,7) in [1,p] x [1,n]:
|N;z)? = &' Nj,;Njwv < )\ &' Por . a7)
Consequently, it yields that for aflj, i) in [1,p] x [1, n]
—Ni <Nz <\, Vo e R"\ Dy .
This implies that with the definition of the set of matii, that
[le pr] € Co{N,} , Vo €R"\ D, .
Consequently, for alk in R™ \ D, and allu in R? we have:
&€ Co{Ar+ [B+ SiJu, S, € Npa} .
In other words, there exist*? functionsyu, : R — R, such that for allz in R™ \ D, and for

all v in Rr:

2mp 2mp

(=1

Hence, for allz in R™ \ D,, it yields that anng the trajectories of the system (1) with Fox
we have:

2np

ZL‘—Z,[M A—l— B+Sg]F0] )

Moreover, the time-derivative of the functiori Pyx along the trajectories of the system (1)
satisfies for allz in R™ \ Dy :

2np

T Pox = Z pe()x’ (Po (A + [B+ S Fy) + (A+ [B+ S| ) Po) @ (18)

On another hand, pre- and post-multiplying inequality (b§) F, yields that the following
inequality holds:

Po(A+[B+ S| Fo) + (A+[B+ S Fy) Py<0, VS €N, , (19)

Consequently, this implies that along the trajectorieshef $ystem (1) with the, = Fyz, we
have .

D n

PP <0,Vax € R*"\Dy .
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This implies that the seR” \ D, is forward invariant for the system (1) in closed-loop with
u = Fyx and is included in the basin of attraction of the origin.
Moreover, note that with the Schur complement inequalig) (& equivalent to the following
inequality:
vl Por. < 1. (20)

Hence,e defined in (15) is positiveD; C (R™\ D) and is also forward invariant for the system
(1) in closed-loop withu = Fyx and is included in the basin of attraction of the origin.
Finally, note that with (20), it yields:

"Pyre — 1
x'ePOxe—1+e:%<O.
Consequently:, is in D; and the last item of Lemma 1 holds. [ |

Lemma 2 (Global attractivity with the hybrid controllerfzor all initial condition (x,q) in
R" x {0, 1}, there exists a hybrid tim&, j) in dom(x, q) such thatz(¢, 7) is in D;.

Proof: Consider an initial pointz, ¢) in R\ D; x {0, 1} and assume that there does not
exist (£, ) in dom(z, ¢) such thatz(t, j) is included inD;. We can distinguish the following
three cases.

1) If ¢ =0 andx ¢ D,, then there exists > 0 such that for allt in (0,6), the couple(t, 0)
is included indom(z, ¢q) and (x(¢,0),¢(t,0)) is insideCy x {0} and outsideD, x {0}.
Consequently, we hawe(t) = HyF, *x(t,0) for all ¢ in (0, ). With Lemma 1, this implies
that (¢, 0) for all positive timet is included indom(z, ¢) and we get a contradiction with
the asymptotic stability of the origin and the fact tiRit \ D, is included in its basin of
attraction.

2) if ¢ = 1 andxz ¢ Dy, then by assumption, allt,j) in dom(z,q) is such thatj = 0.
Consequently, on the time of existence of the solution, we hdt) = u... Hence, along
the trajectories

(2 — ) Poo(z — ) <0 .

This implies that the solution is bounded and thus definedlior and consequently. is
an attractor of the solution. However, being inD; by Lemma 1 we get a contradiction.
3) if ¢ =0 andz € Dy, then(0,1) is insidedom(z, ¢) andz(0,1) is in C; and¢(0,1) =1
which implies that we rely on the previous case.
[ |

E. Discussion and example

Note that once the parametarin RP*" is selected the sufficient condition of Theorem 1 is
given in terms of solutions to linear matrix inequalities Wehich some powerful LMI solvers (see
[30] for instance) may be used as illustrated by the numieeicample given in the following.
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In order to apply Theorem 1, the first step is to select the imatrin R?*". It can be
shown that a necessary condition for inequalities (12)) €l (14) to have a solution is that
|N;ize|* < \j;. Consequently, the;,;’s have to be selected at least larger than,z.|.

In the case in which, is such thatV;,;z. = 0, this necessary condition is trivially satisfied
with any ), ; positive (see the following example).

On another hand, from inequality (13), we see thatlifs not Hurwitz the);; have to be
selected sufficiently small such th7at)pxn ¢ Cog,en, {B + S¢} whereCo denotes the convex
hull. Note however that no general strategy exists to s¢laxte parameters.

Example 5:As in [34], consider system (1) with the matricds B and N defined as:

0 1 0]7N:[0 0]' 21)
1 0 —05

-2 1
First of all, it can be shown that this system doesn’t sattby assumption of [13, Theorem
3.1]. Consequently, this shows that no state feedback apprieading to a quadratic Lyapunov
function can be performed and consequently the approaci3jfdannot be applied. Indeed,
consider the matrix’ given as
a b
b ¢

Assume thatP is a Lyapunov matrix associated to the system for a givenlgialy continuous
controlleru = (). More precisely, assume that the following inequality igsfied along the
solution of the system for alt # 0:

A= ., B=

P =

~—
T Px <0.

u=¢p(z)

Since P is positive definite it implies that
a>0,¢c>0, ac—b>0.
Moreover, we know that Artstein condition is satisfied. M@recisely, we know thét
(AP + PA)x <0, Va <1 - %l’g) B'Px=0.
Note thatB’'Px = bx; + cx, hence the previous condition can be rewritten
P (AP+ PA)x <0, Ve e {x=(x1,29), T2 =20rxy = —gxl}
Note that whenr, = 2 it yields,

1
ax'(A'P + PA)z = —2bx? + [2(a + b) — 4cJzy +4(b+ )

"Otherwise, one will obtaiiV, A’ + AW, < 0, which contradicts the assumption on the fact tAais not Hurwitz.

8This is in fact exactly Gutman's condition in [13, Theorem]3.
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Hence to have’(A'P + PA)x < 0 whenx, = 2, it implies thatb + ¢ < 0 (to see this, it suffices
to takex; = 0 in the previous equality). Since we hawve- 0, this implies thath < 0.
On another hand, we have whep = —2a,

1 b
ax'(A’P + PA)x = —af—(ac — b°)
c

Hence to have’(A'P + PA)z < 0 whenz, = —2xy, it implies that% (ac — b?) > 0. Since we
haveac — b* > 0, this implies that) > 0. Thus, one arrives to a contradiction. Consequently for
the system studied in the paper, there does not exist a sedédck ensuring global asymptotic
stabilization with a quadratic Lyapunov function. Conseuafly, the approach of [13] fails to be
satisfied. The considered system satisfies Assumption 1uayith- 3. The first step is to select
the \; ;’s. We select\; ; = 0.1 and A, » = 0.5. In this case, the set of matricé$, is given as,

0.1 0.1 ~0.1 ~0.1
S, = S, = Sy = S, = .
! [0.5] 2 [—0.5] 5 [ 05 ] ! [—0.5]
25091 —0.4861

Hence, we get the following solutiofil’, = , Hy = [ 5.6732 —6.8629
—0.4861 1.0000

Consequently, the controller obtained from Theorem 1 m#kesrigin of the system (1) globally
asymptotically stable with the data= 0.005, Fy = [ 1.0283 —6.3633 ]

[1l. OUTPUT FEEDBACK DESIGN

We suppose now that only the measuremgrt C'x is available for a feedback in order to
ensure global asymptotic stabilization of the origin. Thepot feedback stabilization of bilinear
systems has already been addressed in [15] where a deadissater is used. However, in
[15] there is noB matrices and similar approach cannot be employed in theptresntext. The
idea of our design will be to follow an observer controllepegach. More precisely we assume
Assumptions of Theorem 1 hold and we will solve this outpetiteack problem by designing a
hybrid observer that asymptotically estimates the stath@fsystem. This strategy differs from
the one in [27] where a hybrid output feedback is obtainecdthas a norm observer (see also
[29] for a result on hybrid output feedback).

With this hybrid output feedback framework, by considerihg new statézx, z, 7, ¢) in R™ x
R™ x [0,2] x {0, 1}, the closed-loop system under study is a hybrid system itbescby
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p
T = AiU—i‘B(Pq(i’)—i_Z(‘Pq(a}))ijx
j=1
p
B o= AZ+ Bpy(2)+ Y (pq(#)); Nj + ¢g(C, ) 3 if (2, (&,7),9) € R x €, x {0,1},
j=1
7 = h(1)
g =0 J
(22)
o=
it = 7 . A
. . when (z, (z,7),q) € R" x D, x {0,1} , (23)
T =
gt = 1—¢

whereC, = R x [0,2] \ D, where, ands); are the correction terms associated to the observer.
Note that to integrate this closed-loop system, only theltedge of(z, 7, ¢) is required to decide
between jump and flow along the trajectories of the closeg-lsystem. Hence, to implement
this feedback, only the knowledge gfis required.

With the constant contral.,, we consider the following observabili}toy assumption.

Assumption 2:The vectoru., in Assumption 1 is such thatC, A + Z“OOJNJ is observ-

j=1
able.
Given W, obtained from Theorem 1, we can defiie= {71, ..., T} a finite set of real vectors
in R? such that
HoWy'tz € Co{Ty, 0 =1...,2°} Vo € {z,a2W;'z <1} (24)

We have the following theorem.

Theorem 2 (Output feedbackissume Assumptions 1 and 2 hold. Assume there exist a
matrix A in RP*™, a symmetric positive definite matrid/y in R™*", and a matrixH, in RP*"
such that inequalities (12), (13), (14) are satisfielssume there exist a symmetric positive
definite matrix(), in R"*"™ and a matrixD, in R™*"™ such that

A+ T N(TD);| Qo+ Qo

Jj=1

+C'Dy+DyC <0 NI, €T . (25)

p
A+ N(TY);
j=1

Then there exisf, in R™*", a functionh and a positive real numbes, such that the output
feedback controller defined with the data

A ~ 1— /Wfl .
Dy = {(8,7), Wy > Lr > 1}, Dy = {3, #Wg ' <1—e7 21} o= —c0 00

®In that case, Theorem 1 applies and there exists a stabilitiate feedback.
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900(‘%) = sat UO(HOWO_I‘%> ) 901(‘%) = Uoo (26)

1/}0(‘%7y> = Q61D0<C‘% - y) ) w1<£‘7y) = Koo(Ci. - y) ) (27)

wheresat ,,, is the saturation function of positive leve}'®, makes the sef0} x {0} x [0, 2] x
{0} CR" x R™ x [0,2] x {0,1} a globally asymptotically stable set for system (22)-(23).
Proof: Let h» be a locally Lipschitz function such that:

vy T1<1
h(r)=¢q >0 1<7<2
0 T=2

wherewv, is any positive real number. Also, the positive real numiagers defined as

Uy = max (HoW; '), (28)

{2 Wy a<1},1<5<p

First of all, note that the contrak = ¢,(z) is bounded for all(z,z,7,q) in R” x R" x
[0,2] x {0,1}. The system under consideration being bilinear, this iegpthat the continuous
part of closed-loop system is globally Lipschitz. Consetlye for all initial conditions, the
corresponding trajectories do not blow up at infinity in ntime. This implies that for all
solutions initiated from(z, , 7, ¢) in R™ x R" x [0, 2] x {0, 1}, their time domairdom(z, z, 7, q)
is an unbounded set.

The rest of the proof of Theorem 2 is decomposed in three Lesnwaich proofs are given at
the end of this proof. The first one establishes asymptotwegence of the estimatetoward
the state of the system.

Lemma 3 (Observer convergencdjhere existd(, such that for all initial conditioniz, z, 7, q)
in R™ x R™ x [0,2] x {0, 1}, we have thatz (¢, ¢) — z(t, ¢)| is bounded and

t+}grioo |z(t, 0) — x(t,€)] =0 .

With the previous Lemma, we can now establish the followiegutt concerning boundedness
of solutions.

Lemma 4 (Boundedness of solutionBpr all initial condition(z, Z, 7, ¢) in R™ x R™ x [0, 2] x
{0,1}, we have that:(t,¢) andx(t,¢) are bounded.

With the boundedness of solution, with [28, Lemma 3.3], wetlge existence of a non empty
w-limit set denoted?(z, 2, 7, ¢) which is weakly invariant. In other words, for dlt, z, 7, ¢) in
Q(x, z, 7, q) there exists a complete solution to the closed-loop systexn that for all(z, j) in its
time domain(z(t, 7), z(t,j), 7(t, 7),q(t, 7)) isin Q(z, z, 7, q). Also as stated in [28, Lemma 3.3],
the distance fronz(t, j), z(t, 7), 7(t, ), q(t, 7)) to Q(z, &, T, ¢) decreases to zero &$;j — +oc.

®Fori =1, ...,p, each component afat ., (v) is defined bysat ., (v;) = sign(v;) min(uo, |vs|).
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Moreover, as stated in [28, Lemma 3.3], this set is the sistailosed set with this property.
Hence, with Lemma 3, we get that for dlt, z, 7, q) in Q(z, z,7,¢q) we havez = x. Hence all
solutions starting if2(x, z, 7, q) satisfy the hybrid system with continuous dynamics defired a

T = Aﬂﬁ—i‘B(Pq(x)—i_Z(‘Pq(x))j Njx

it ((z,7),q) €C,x{0,1}, (29)
7 = h(1)
g = 0
and discrete dynamics with, defined in (26),
xt = =z
™ =0 when ((z,7),q) € D, x {0,1} . (30)
- = 1—¢

Note that this system (29)-(30) is similar to the one giver{@p(9) with the data obtained
from Theorem 1 but with two differences:

1) There is an extra variable corresponding to the timer

2) The functiony(z) = sat ,,(HoW; 'z) instead ofpy(z) = HoW; 'a.

The next step in the proof, is to show that these differenceaat modify the behavior of the
trajectories and that the origin of the system (29)-(30)labaglly asymptotically stable.

Lemma 5 (Asymptotic stability of the system (29)-(30he set{0} x [0,2] x {0} in R™ x
[0,2] x {0,1} is a globally asymptotically stable set for the system ((39))-

With Lemma 5, we get that the-limit is simply {0} x [0,2] x {0} in R™ x [0,2] x {0,1}.
Since all the trajectories converge towarddtdimit set (see [28, Lemma 3.3]) we obtain that
the set{(0,0)} x [0,2] x {0} in R™ x R"™ x [0,2] x {0,1} is a global attractor for the system
(22)-(23). To finish the proof, we need to show that local gstgtic stability of this set is also
obtained. With inequality (13), there exists a positive real number such that

AWy + WoA' + [B + SeJHo + H)[B + Si)' < —poWo ,VSe € Ny (31)
Pre- and post-multiplying this inequality by, = W, ' yields
Po(A + [B + Sg]H()P()) + (A + [B + Sg]H()P())/PO < —p()P() ,VS[ € NA .

Consider now an initial conditioifw, Z, 7, ¢) in R™ x R"™ x [0,2] x {0,1} with || and |z — Z|
sufficiently small andy = 0. This implies that there exisfg such that for all0 < s < p, (s,0)
is in dom(z, z, 7,q). For all s < p, and following equation (18) in the proof of Lemma 1, we

have

d
E:f:(s, 0) Poi(s,0) < —poi(s,0) Poi(s,0) 4 22(s,0) PyQy ' DoCli(s,0) — 2(s,0)] .

"This one can simply be computed employing LMI tools.
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Note that from this inequality, we can introduce two positireal numberg; andc, such that

d
d—i(s, 0) Pyz(s,0) < —c12(s,0) Pya(s, 0) + c|@(s,0) — (s, 0)|? .
s

On another hand, there exists > 0 such that (this will be formally proven later in (37))

d . , . . / .
g(x(s, 0) —2(s,0))'Qo(z(s,0) — 2(s,0)) < —Xa(z(s,0) — 2(s,0))' Qo(x(s,0) — 2(s,0)) .
Hence, there exists a positive real numbkesuch that

d

gi(s, 0) Po(s,0) + k(x(s,0) — 2(s,0)) Qo(x(s,0) — 2(s,0)) <0 .
This function being proper and positive definitedirandz we get the local asymptotic stability
of the set{(0,0)} x [0,2] x {0}. This concludes the proof of Theorem 2. u

In the remaining part of this Section we give the proofs of bems 3, 4 and 5.
Proof of Lemma 3. Consider a positive real numbei sufficiently large such that:

p p
(A+ ) Njuj + Q' DoC)' Qo + Qo(A+ > Njuj + Q' DoC) < Qo (32)
j=1 j=1
for all |u;| < u,. Note that we have the following Lemma, which constructivegh based on
high-gain techniques (see [10]) is given in Section A.
Lemma 6 (Observer with prescribed convergence spe€dgre exist a matri¥(,, in R"*",
a symmetric positive definite matri.., in R"*" and a positive scalax., such that the following
matrix inequality is satisfied:

P ! P
(A + Zuoo,ij + KooC> Qoo + Qoo (A + Zuoo,ij + KooC> < _)\ooQoo ) (33)

J=1 J=1

and such that,

A= Ao\ Amax(@oo) Amax(Qo)

o () ey < ¢y
The first inequality of Lemma 6 is a classical Lyapunov maittequality for observer design. The
second one imposes a specific convergence rate to the obgéote that by writinge = = — z,
the closed-loop system (22)-(23) can be rewritten, withtiomous dynamics

p )
T = Ax+Bcpq(x+e)+Z(4pq(x+e))ijx

j=1

A+ (pglz+e€)); N;

j=1

e+ (Cx,x+e) » when(z,z4e,7,q) € R"xC,x{0,1}

7 = h(r)
— 0

(35)
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and discrete dynamics,

xt = =z
et = e 0 A
0 when(z,z +e,7,q) € R" x D, x {0,1} (36)

gt = gyz,z+e)
To analyze the behavior of the trajectories of this modebkater an initial conditioriz, z, 7, q)
in R"xR"x[0,2]x{0,1} and(t,0) indom(x, z, T, ¢) with ¢ > 0. Two cases can be distinguished.
1) Assume the initial condition is such thét, (&,7),¢) is in R" x Cy x {0}. Since no jump
occurs, it follows that(z(s,0), ((s,0),7(s,0)),q(s,0)) is in R* x Cy x {0} for all s in [0, 1].
Note that for alls in [0, ), we have,

d p
I e(s,0) = (A + Z Njsat ,,(HW; '2(s,0)) + Q01D00> e(s,0) .
j=1
From the definition of\; in (32) we get,

d
£Z(s,0) < \iZ(s,0), Vsel0,t),

where Z (s, () is the function defined on the hybrid time domaina&s, () = e(s, £)'Qoe(s, ¢).
Hence, this implies that:

Z(s,0) < exp(A15)Z(0,0), Vsel0,t).

Moreover, ift > i with the definition of 7 in (29), it implies(s,0) > 1 for all s in
[i,t]. Since there was no jumg(s,0) is in the subset oR™ defined as{z,»'W, 'z < 1}.
Consequently, with (24) and with the definition @f in (28), it follows that

1
@0(@(8,0)) ECO{T(,EZ 17217} ,\V/SE |:U_’t:| .

2P

This gives the existence @ positive functionsu, : R* — R, with ZW(.&:) =1 forall zin
/=1

R™ and such thaioo(i( 0)) = Zz 1 1e(Z(s,0))T,. Consequently

—e s,0) Z,ug (A—FZN]-(Tg)j +Q01DOC> e(s,0),Vs e L}i,t} .

j=1 T
Hence with (25) it yields
d 1
%Z(&O) S _/\ZZ(Suo) ,\V/SE |:_7t:| ’ (37)

where )\, is a positive real number such that

p p !
@ (A 2 Nj(T)j) i (A * ZNJ(T@)J) Qo+ DoC+ C'Dy < —MQu £ =1,...,2"
P =1
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Consequently, it implies:

Z(t,0) <exp <ﬁ — A2 max {t - i, O}) Z(0,0) . (38)

T T

2) Assume the initial condition is such that, (i, 7),q) is in R x C; x {1}. Since there is no
jump, it yields that(z(s, 0), (i(s,0),7(s,0)), q(s,0)) is in R x C; x {1} for all s in [0, #]. With
(33), it yields that we have for al <t

% e(5,0)Que(s,0) < —=Ase(s,0)Que(s,0) .

Consequently, for alk such that(s,0) is in dom(z, (z,7), ¢), it yields,

(5,0 < exp(—Ancs) 32252 (0,0}

. . n E/QOC 2 C/Qoe . . .
Since, for alle in R™, we havekmax D) <le* < W s T this implies that,

< )\max (QO)AmaX (Qoo)
7 Amin (Q0) Amin (Qoo)

For the asymptotic behavior of the trajectories, note thedd possibilities have to be consid-
ered: a) after finitely many switching, stays inC,; b) after finitely many switchingi stays in
C,; c) there are infinitely many switching.

For the a) and b) cases, because the system does not blowitgly fimany transitions may
be ignored, and without loss of generality, one may assumtertis always inéq (¢ =0or1).
Then, by (38) or (39)lim;, ., Z(t,0) = 0.

For c) case, by omitting the first transition if necessarythoit loss of generality, one may
assume that starts fromC,. For all0 < k there exists, such that(t,, k) and (;, k + 1) are in
domx,z,7,q), 7(tx, k) > 1 and (¢, k + 1) = 0. Moreover, sinceg—sr(s, k) <w, for all (s, k)
in the time domain, this implies that —¢,_; > i ,Vk > 1, which shows that there is a strictly
positive dwell time between two successive jumps. Sincevéen 7 (¢, k) and Z(t;. 0, k + 2)
two jumps occur this implies that both the previous casee b@be considered. Employing the
two first items of this analysis, we get for &I< k < ¢ that,

)\1 - )\oo) )\max (QO))\maX (Qoo)
Ur )\min (QO)/\min (Qoo)

Z(t,0)

exp(—Ast)Z(0,0) . (39)

At k) < exp ( Zltak—2)
Consequently,

Z(t0,0) .

A — /\oo )\maX /\max 00 ;
Z<t2k’ 2k> = |:eXp ( 1 Ur ) Amnin Egz;)\min <(§°o>)

Note that with the definition of., in equation (34), we get that

exp </\1 - /\oo) /\maX (QO))‘maX (QOO)
Vr /\min (QO))\min (Qoo)

<1.
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Consequently, this implies that we haliey.,, ... Z(t,¢) = 0. This function being proper in
e, it follows thate is bounded and goes to zero along the solution. O
Proof of Lemma 4. Consider now an initial conditiofiz, z, 7, ¢) in R” x R" x [0, 2] x {0, 1}.
Assume there exists a trajectory initialized from this poimhich is unbounded. Since from
Lemma 3, we have that — x| is bounded this implies that| is unbounded. Two cases may be
distinguished: a) after finitely many switchings, remain inC;; b) there is a infinite number
of switching. In case a), this implies that possibly afterratéi number of switchingsy = u..
Hence, this implies that the function defined by(¢, () = & (¢, ¢)' P-(t, ¢) satisfies

%Vl(t,ﬁ) < —poVi(t, 0) + 22 (¢, 0) P Koo C(2(t, 0) — (2, 0))

wherep,, is solution of the following linear matrix inequality (a smion exists since equation
(2) is satisfied in Assumption 1):

/

p p
Poo [A+ D oo iNj| 4+ | A+ oo iNj| Poo < —pooPoo
j=1 i=1
Hence we can introduce two positive real numbgrand ¢, such that
0
Evl(t’ 0) < —esVi(t, 0) + cal2(t, 0) — z(t, 0))? . (40)

From Lemma 3, this implies that; is bounded. The functior; being proper inz, this
contradicts the fact that:| is unbounded.

In case b), for allj there exists; such thatt;, j) and(¢;, j+1) is indomz, z, 7, ¢). Consider
the functionVy(s, () = @(s,¢) Pyz(s,¢). The control input being bounded anadeing bounded
and going to zero, we get for allin dom(z, z, 7, ¢) the existence of two positive real numbers
cs and¢g such that

Vo

E(te) < 05%(t7€) + G

Without loss of generality, we may assume thdt,, 0) is in Cy. Let t}, < t be two positive
real numbers infto, ¢1] such thatVy(t;,0) = 1 and V(s,0) > 1 for all s in (¢, t;). Note that
we havet{ — t; < ;-. Hence, it yields,

S5

cs exp (VT) —1
Vo(s,0) < exp (—) 4+ ——— Vs e [tg,t()’] )

Vr Cs
The functionl;, being proper inz, this implies thatz is bounded betweety and¢;. Note that
for all ¢ is [t1,t5] V; satisfies equality (40) and consequenilys bounded. O
Proof of Lemma 5. Note that with this definition ofi, in equation (28) for all: in the subset of
R defined as{x, /W, 'z < 1} we havey(r) = HyW, 'x. Consequently, we recover the data
of Theorem 1. The fact that the s@d} x [0,2] x {0} is locally asymptotically stable follows
the same line as in the proof of Theorem 1. To show globalaiwty, consider an initial point
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(x,7,q) In R™ x [0,2] x {0,1}. Note that, the solutions being complete and due to thetsireic

of the timer, there existsty, ¢y) in dom(z, 7, q) such thatr(tq,¢;,) > 1. Due to the fact that

no more than one jump happens in the proof of Theorem 1, weantpe same arguments to
obtain global attractivity. O

A. Discussion and example

The state component introduced in the system is a timer which enables us to engure
sufficiently large dwell time between two switches. This @renonly used when dealing with
switching controller (for instance this can be found in [BH28]). It allows to ensure observer
convergence.

The use of saturated control for output feedback design wstsritroduced in [25]. As in [25],
it allows to estimate the evolution speed of the estimatagtbe trajectories of the closed-loop
system. This is for instance used to tune the observer cpemee (see the proof of Lemma 3).

If Assumption 1 is a strong assumption this is not the casé\gsumption 2. Indeed, as it is
well known, giving a generic constant contral,, this assumption should be satisfied.

Note that as in Theorem 1, the sufficient condition given bydrem 2 is a linear matrix
inequality. Consequently some powerful LMI solvers (se@] [fbr instance) may be used as
illustrated by the numerical examples given at the end &f 8action.

To compute the set of matricds= {7}, ..., T} the following approach can be employed.

Proposition 2: Let v;, i = 1,...,p, be defined, for ali as the smallest positive real number
such that
Wi "H
[ o 620]>0, (41)
Hoel- U;

wheree; is thei* vector of the canonical base &. Then the set of? vectorsT, defined as

(T); = /vj or (Ti); = —\/v5

satisfies inequality (24).
Proof: Employing Schur complement, inequality (41) implies tha following inequality
holds,
Hjee;Hy — v;Wy <0 . (42)

It can be checked that by pre and post multiplyingby * inequality (42), it yields for alk
in R”
(HoWy'2)|* = |efHoWy ta|® = 2/ Wy " Hesel HOWy tr < v Wy o
/
Consequently, foraltt = | =, ... z, ] such that'W; 'z < 1, it yields that|(HyW, 'x);| <

V/0i. Hence,
HoWy 'z € Co{Ty, 0 =1...,2"} Vo € {x, 2" W'z < 1}.
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[ |

Inequality (41) being linear i/, and¥,, this implies that this inequality and the minimization
of the costv; can be included in the design of, and H, in Theorem 1.

Example 6:As seen in Section Il, Theorem 1 applies and we can constrigtalalizing
state feedback. Assume now that the measurement availabfeddback is given ag = Cz
whereC' = | 1 0 |. On this example, we can take= 49.5048. Hence, from Assumption 2,

' = {6.9137,—6.9137}. Moreoveru,, = 3 satisfies Assumption 2 (in this particular case any
U, Satisfies Assumption 2). Now, employing the solver Sedundi damip (see [19]), we get
that the sufficient condition (25) is satisfied with,

4.0484 —0.2247 —2.3251
QO - s Do = .
—0.2247 0.0219 —3.5102

We select the datay, = 10; With these data we obtain, = 7.0360. Following the design

. . —115 , .
described in the proof of Theorem 2, we gét,, = — With Matlab and employing
an Euler discretization with discretization stepsize éqo&.001 Figures 1 and 2 are obtained

- 0 10 .
for the initial data:z(0) = et 2(0,0) = 0 | 7(0,0) = 0, ¢(0,0) = 0. The evolution

of a solution to the closed-loop system with this initialaléd given on Figures 1, 2-a and 2-b.
Consequently, the hybrid output feedback controller olg@difrom Theorem 2 makes the origin
a globally asymptotically stable equilibrium for the syat€l).

8t _ %i
6
4
2
OO 1 2 3 4 5 6 7 8
20
0 —
-20
-40
-60

Fig. 1. Evolution of the state and the observer state
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15 T T T T T T 8

0.5 9 or

_0_50 L L L L L L -8

Fig. 2. a - Evolution of variablg. b - Evolution of the controk..

IV. CONCLUSION

We considered a particular class of bilinear systems fockvthere exists a constant feedback
(see Assumption 1) making the trajectories of the closeg-kystem bounded and converging to
an equilibrium point (which is not the origin). From the knedge of this constant feedback, a
modification of this controller in order to make the origin lalgally asymptotically equilibrium
point has been proposed by relying on two different corgre|lnamely a global one (the constant
feedback) and a linear one (synthesis via an LMI-based appjo Employing hybrid state
feedback framework, it was possible to give some sufficienddions in terms of LMI allowing
us to design an uniting controller. Two cases were carrigd astate feedback controller and
an output feedback controller when only the measured owguitbe used for control purposes.
In this last context, the hybrid state feedback framework haen augmented with a hybrid
observer to obtain an output feedback globally stabilizimg origin of the hybrid closed-loop
system.

This work leaves some questions open. In particular the dieste of the two controllers we
want to unite. A criterion for the selection of the state femck and the hybrid loop could be
used to achieve robustness or performance requirementfiefuore, another interesting way
should consist to study the bilinear systems with multgdilee control inputs only (i.e. system
(1) with B = 0) as studied, for example, in [8], [17], [7], [4].
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APPENDIX

A. Proof of Lemma 6

To design the vectok,, and the matrix)., in order to get inequalities (33) and (34) we
follow a high-gain approach (see [10]).

We introduce the matriced, in R"*" and (4, ..., C,, in R" defined as,
p &
A=A+ ue;N; , C =
j=1 '
By Assumption 2, the coupléA,,, C) is observable. Hence there existéntegersiy, ..., 1,

in {1,...,m} andr integers(n,...,n,) such thaty_’_ n; = n, and such that the Kalman
matrix C in R™*",

Cq Ci,
C: 7Cj6an><nucj: 7j:17"'7,r'
C. Ci At
is invertible. Hence we can introduce the two matriges and C' in R™™ and R™*",
o4
Ao =CAC , C=Ccc™', C=| : . (43)
!
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Note thatC*j wheree,,  is the s'th vector of the canonical base R". Also,

= en,lJrE‘Z,;ll ng

/

em,il

C=HC, HeR*  H=

€m ir
Moreover, note that the couple of matricés,.., C) is in observability canonical form (in the
multi output context). AlsoA., can be decomposed ad,, = N + R with N and R in R™*"

defined as,

Ry
N=Diag{Ny,....,N,} ,R= ,
R,
with N; and R; respectively inR™>" and inR"*" ,
01 0 0 o ... 0
0 0 0
Nj = ,Rj — )
0 1 0 ... 0
0 0 Qi1 ... Qjg

wherea; is in R™. Note that the coupléN, C) is also observable. Hence there exists a matrix
K in R™" and a symmetric positive definite matrix in R"*™ such that we have,

(N+KC)YQ+Q(N+ KC) < —1I, . (44)
Now consider the matrip¢ in R™*"™ defined as,
Diag{&,...,%}, & =Dag{L,...,L"}

where L is a positive real number larger thén
Note that we have,
£;1NJ = LNJ,Q;l , ,QilN = LNgil ,

and,
LR =L™R;, £ 'R; = R;&",

where = Di ag{%, ..., &}, £ = L",,. Hence, this implies the equality,
Y AL+ LEKC)=L(IN + KC)& '+ RE™" .
Consequently, with (44) it yields
(A + LEKCY £7'Qe 7+ £7'QL (A + LEKC) < —LL 2+ L7'QRE + £7IRQL! .
By completing the square, this gives,

(A+LLKC)YL'Qe ' +27'QL (Au+LLKC) < - ' [LI, — Q* — L& 'R'RE'g] 7.
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Note that since\,..{£ '€} = 1 when L > 1, it yields for all L > 1,
(A + LEKC)YL7'QL™ + £7'QL 7 (A + LEKC) € — [L — Mpax{Q*} — Mnax {R'R}] £7°

Pre- and post-multiplying the previous inequality @yandC and employing equalities (43),
it yields for all L > 1

(Aset Koo (L)C) Quo(L)+ Qoo (L) (At Koo(L)C) < = [L = Anax{ @*} — A { R' R} C'£77C,

with,
Ko(L)=C'LEKH , Q(L)=C'¢7'Qe 'C .

Also, since we have,

- Qoo (L)
c'e i >
T Amax{@Q}
we finally get for all L > A\ax{@%} + M\uax{R'R} inequality (33) with\,, = M\, (L) and
Qs = Q= (L). In other words, we have,

(Ao + Koo (L)C) Quo(L) + Qoo (L) (Ao + Koo(L)C) € =Ao(L)Quo(L)
with
L — Muax{Q?} — Muax {R'R}

Aol L) = Ao (O}

Note moreover, that we have,

Amax{QOO(L)} S )\maX{Q}AmaX{C/C}Liz )

and,
)\mm{Qoo<L>} 2 )\min{Q})‘min{C,C}L_2man:l’m’r{nj} .

Hence, takingl sufficiently large such that
L
e . LQ max;j—1,.. r{n;}—2 45
P ( Vt)‘max{Q}) (45)
< )\2 AInaX{CQQ} + )\max{R/R}) )\min{QO}/\min{Q})\min{CIC}
<exp|——+ )
Vg Vt)\max{Q} /\maX{QO})\maX{Q}/\maX{C,C}

we get that inequality (34) is satisfied.
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