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Abstract: The mirrorless backward optical parametric oscillator (BOPO), where the signal and idler
waves are propagating in opposite directions, will establish a distributed feedback mechanism and
thus optical parametric oscillation without the need to apply mirrors or external feedback to the cav-
ity. It has been recently demonstrated experimentally by exploiting the periodic poling technique
in second-order nonlinear crystals, that the sub-micrometer structured medium achieves an efficient
quasi-phase-matching of the three wave interaction in the backward configuration. A remarkable
property of such BOPO is the high degree of coherence of the backward wave component, whose
spectrum may be several order of magnitudes narrower than that of the pump, due to the convection-
induced phase-locking mechanism. Experimentally and numerically proved the transfer of coherent
phase modulations from the pump wave to the parametrically down-converted waves, we show here
that this is also possible for a broad bandwidth spectrally incoherent pump. In order to accurately
describe the nonlinear counter-propagation dynamics of the three dispersive waves, we have devel-
oped for the first time to our knowledge a new numerical schemewhich combines the method of the
trajectories usually employed to solve the three-wave interaction and the intraband group velocity
dispersion effect is performed in the spectral domain with the help of the Fast Fourier Transform
(FFT) technique. The model accurately conserves the numberof photons and the Manley-Rowe
invariants. This allowed us to predict various configurations of MOPOs in which, thanks to the
convection-induced phase-locking mechanism, a highly coherent backward wave is spontaneously
generated from a highly incoherent pump wave.

Keywords: nonlinear coherence transfer, backward mirrorless OPO, counterpropagating three wave
interactions
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1 Introduction

It has been theoretically predicted [1] that counter-propagating parametric interactions, where the signal and idlerwaves
are propagating in opposite directions, will establish a distributed feedback mechanism and thus optical parametric oscil-
lation without the need to apply mirrors or external feedback to the cavity. Such a device, the mirrorless optical parametric
oscillator (MOPO), has been recently realized by employingengineered second-order nonlinear crystals, namely, period-
ically poled KTiOPO4 (PPKTP) with the periodicity of the structure of 800 nm [2]. One of the remarkable properties of
the MOPO was a strong asymmetry in the spectral bandwidth of the signal and idler pulses: the signal spectral bandwidth
was of the same order as the pump, whereas the counterpropagating idler wave was characterized by a spectral bandwidth
about two orders of magnitude narrower with respect to thoseof the signal and pump waves [3]-[5]. It has been recently
experimentally and numerically investigated that this effect occurs when the pump waves exhibits coherent phase mod-
ulations: the phase modulations of the pump are coherently tranferred to the co-propagating parametric wave, while the
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counter-propagating wave retains a narrow bandwidth and high coherence [6]. Our aim in this work is to prove that this
effect also works when the pump is strongly incoherent characterized by a broad bandwidth stochastic spectrum.

The mechanism underlying such a coherence transfer processis based on a convection-induced phase-locking mecha-
nism [7]-[10]. In substance, the random phase modulations of the pump are transferred to the co-propagating wave, which
"absorbs" the incoherence of the pump wave and thus allows the counter-propagating wave to evolve toward a highly co-
herent state. For this purpose we have developed a new numerical scheme for the integration of the counter-propagating
three-wave interaction in the presence of group velocity dispersion. The numerical scheme combines the method of the tra-
jectories usually employed to solve the nonlinear three-wave interaction and the intraband group velocity dispersioneffect
is performed in the spectral domain with the help of the Fast Fourier Transform (FFT) technique. To our knowledge this
combined numerical method has been rendered stable for the first time. We use it to provide accurate numerical simulations
of the referred experimental results on the dynamics of broad bandwidth pumped MOPOs.

The mirrorless optical parametric oscillator (MOPO) relies on counter-propagating three wave mixing (TWM) for
establishing a distributed positive feedback for sustained oscillation above threshold [11]. It is a general propertyof TWM
that the total interaction phase is fixed. In the case of a down-conversion process, the phasesφ j (where j = p,s, i) satisfy
the relation:

φp −φs−φi = π/2. (1)

Here we demonstrate that the maximized convective wave separation of the counter-propagating TWM is responsible for
the unusual spectral and coherence properties of the generated signal and idler waves. The physical mechanism ensures
that, for a broadband incoherent pump, the frequency bandwidth of the backward-propagating wave, either the idler for the
already realized experience or the signal for the here proposed experience, will be substantially narrower and given bythe
backward wave coherence time. As a consequence of the phase relation in Eq.(1), the phase modulation of the pump is
then effectively transferred to the co-propagating parametric wave. The major difficulty in achieving mirrorless parametric
oscillation is associated with satisfying the momentum conservation condition, which in scalar form readskp = ks − ki

for the backward idler orkp = ki − ks for the backward signal. In homogeneous dielectrics, the phase matching condition
can possibly be satisfied only for large signal-idler detunings. However, due to the very different diffraction properties
of the near-infrared signal and the far-infrared idler, achieving oscillation in homogeneous dielectrics is problematic. By
employing ferroelectric nonlinear crystals structured with sub-micrometer periodicity,ΛQPM = 2π/(kp−ks +ki)≃ 800 nm,
quasi-phase matching (QPM) [12] has been utilized to achieve MOPO with counter-propagating idlerki in the mid-infrared
spectral range [2] [6]. We show in Fig.1 the different OPO resonant wave vector configurations: three copropagating waves,
backward idler wave, backward signal wave, and backward signal and idler waves. The quasi-phase matching periodicity
ΛQPM = 2π/KG runs from several microns for the first to a fourth of micron for the last.

Fig. 1: Resonant wave vector configurations for OPOs
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2 Nonlinear model: Coherence transfer

The three-wave interaction is known to model the evolution of the slowly-varying envelopes,Aj(j = p,s, i), of the three
coupled pump, signal and idler waves

(∂t +vp∂x + γp + iβp∂tt )Ap = −σpAsAi

(∂t +vs∂x + γs + iβs∂tt)As = σsApA∗
i (2)

(∂t −vi∂x + γp + iβi∂tt )Ai = σiApA∗
s

whereσ j = 2πdeffvj/λ jn j are the nonlinear coupling coefficients, deff the efficient quadratic susceptibility, andγ j and
β j the damping and dispersion coefficients. The idlerAi wave is counter-propagating with respect to the pump. The
quasi-phase-matching conditions in the backward configuration read

ωp = ωs + ωi and kp − ks + ki = KG = 2πm/ΛQPM, (3)

whereKG is the quasi phase-matching (QPM) grating pitch vector,m is the order of the interaction andΛQPM = [np/λp −
ns/λs + ni/λi]

−1 is the modulation period of the quadratic nonlinear coefficient.
The plane wave monochromatic model [11] satisfactorily estimates the order of magnitude of the MOPO threshold for

the counter-propagating interaction, namelyIpth = cε0npnsniλsλi/2L2d2
eff. Therefore, considering as in the experimental

studies [2] [6] a crystal length of L= 0.65cm, one obtainsIpth = 1.12 GW/cm2. Note that such a MOPOs threshold may
increase substantially in the presence of an incoherent pump.

We have investigated theoretically the process of phase modulation transfer in MOPO by numerically solving the
coupled wave equations and employing different models for the pump pulse, including chirped pulses and pulses containing
random phase modulations. The numerical results support very well the experimental results. Note that we have already
considered the convection-induced phase-locking mechanism, and the associated process of coherent wave generation
from incoherent excitation, in the usual forward configuration of singly resonant (integrated) optical parametric oscillators
(SIOPO) [8] - [10]. In particular, it was numerically provedthat the waveguide geometry considerably increases the
conversion efficiency of the nonlinear device, which thus permits to make use of a low-power cw-pumping [13] - [17].
However, the conventional forward resonant OPOs impose severe constraints on the resonant phase-matching conditions:
one needs to match the group velocity of the pump wave with oneof the daughter waves, while still preserving a large
group velocity difference (i.e. large convection) with theother daughter wave [9] [10]. We underline that this last condition
is automatically satisfied in the backward MOPO, since the counter-propagating waves ensure a maximum convection, so
that we just need to match the group velocity of the pump with the other wave.

2.1 Convection-induced phase-locking mechanism

The coherence properties of the parametric three-wave interaction driven from an incoherent pump has been the subject of
an analytical study where the autocorrelation functions are mathematically evaluated in the presence of dispersion [7] [8]
[18], and the convection-induced phase-locking mechanismhas been proposed for the forward OPOs configurations [9]
[10]. Let us present here some simple analytical arguments enlighting this mechanism from equations (2) for the backward
idler configuration.
Let us consider the dispersionless case (β j = 0), σs = σi = σp/2 = σ , and the linear undepleted pump limit withγp = 0.
The incoherent pump may be modeled as a stationary single-variable stochastic functionAp(z) with the following autocor-
relation function

〈Ap(z−z′)
Ap

∗(z′)
|Ap(0)|2

〉 = exp(−
|z|
λc

), (4)

λc = vpτc being the correlation length of the pump in its own travelingframe,

z = x−vpt.

The correlation time isτc ≃ 1/π∆νp, where∆νp is the (broad)-bandwidth of the incoherent pump spectrum. The role of
convection in the coherence of the daughter wavesAs andAi may be analyzed by integrating the second equation (2) along
the characteristic of the signal wave. Then, the third equation (2) yields

DAi = σ2
∫ t

0
e−γs(t−t′)Ap(z)Ap

∗(z′)Ai(x
′, t′)dt′ (5)
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where
D = ∂/∂ t−vi∂/∂x+ γi

z′ = z− (vs−vp)(t− t′) ; x′ = x−vs(t− t′)

If v s = vp we have z′ = z and we can extract the pump amplitude from the integral, i.e. Ap(z)Ap
∗(z′) = |Ap(z)|2, which

reveals that the idler evolution is independent of the pump phase fluctuationsΦp(z). This means that the rapid random
phase fluctuations of the pump do not affect the idler, which undergoes slow phase variations and thus evolves towards a
highly coherent state during its parametric amplification.
Let us now consider the evolution of the signal wave from the second equation (2):

As(x, t) = σ
∫ t

0
e−γs(t−t′)Ap(z′)Ai

∗(x′, t′)dt′. (6)

When vs = vp we have z′ = z andAp(z′) becomes independent of t′, which leads to a signal amplitudeAs that is simply
proportional to the pump amplitudeAp i.e., the signal field absorbs the noise of the co-moving pump field. Note that this
pump-signal phase-locking mechanism does not require an exact matching of the group velocities vs = vp. It is indeed
sufficient that

|vs−vp| ≪ λcγs = vpτcγs, (7)

to remove the pump field from the integral so that the idler field follows the rapid pump phase fluctuations.

2.2 Highly incoherent pump pulse

In order to test the new numerical model governing the dispersive three-wave interaction, we have studied the backward
MOPO pumped by a highly incoherent pump pulse. The numericalscheme combines the method of the trajectories that
proved efficient in solving the large convections involved in the counterpropagating configuration of the three wave inter-
action through a Runge-Kutta algorithm of 4th order [19, 20], together with the spectral method of fast Fourier transform
(FFT) that integrates the second-order temporal derivatives of Eqs.(2) in the Fourier frequency domain. To our knowledge,
this is the first time that these two fundamentally differentnumerical schemes are combined to integrate the counterpropa-
gating dispersive TWI. The scheme of the model is shown in figure 2. The highly incoherent pump pulse is injected at the
entry of the MOPO box (of lenght L) where the nonlinear three wave interaction takes place starting from signal and idler
spontaneous noises. For solving the nonlinear time evolution in Eqs.(2) we use the well known numerical model which
follows the trajectories and where the integration is done through the Runge-Kutta algorithm. A larger box (M = L+2d)
including the first one, discretized in 2N (N = 16 to 18) points, is used to perform the FFT for evaluatingthe dispersion
terms in Eqs.(2). Smoothed decreasing curves to zero join the input and output wave amplitudes to the ends of this box for
correctly performing the FFT.

Let us briefly comment some interesting experiments where the process of incoherent parametric excitation has been
investigated. In Refs.[21]-[23] the authors experimentally demonstrate that a coherent amplification may be achievedfor
a single signal wave through its coupling with two distinct pump beams that are not correlated with each other. In other
terms, for specific phase-matching conditions, a single signal wave may be phase matched to a couple of pump waves and
to the corresponding set of idler waves, so that the signal mode may be efficiently amplified by taking advantage of the
two distinct uncorrelated pump beams simultaneously. Moreover, this process of cumulative pump action has also been
observed in the spatial domain owing to conical optical beams by exploiting their specific phase-matching conditions [24]
[25]. Although these experiments corroborate the results of the convection-induced phase-locking mechanism, it would be
of great interest to observe in a straightforward way the predicted phenomenon of incoherent excitation of a coherent signal
in a MOPO. Let us also mention that the convection-induced phase-locking mechanism has been also recently predicted to
occur in an optical fiber system by exploiting the peculiar dispersion properties of photonic crystal fibers [26].
In the numerical simulations we consider an incoherent pumppulse of spectral bandwidth∆νp = 15 THz, for the exper-
imentally accessible wavelengths:λp = 861.67 nm, λs = 1217.94 nm, andλi = 2945.73 nm. This point of operation is
plotted on the group velocity dispersion curves reported infigure 3. The crystal length of L= 0.65 cm in the MOPO pro-
vides a photon flight time in the cavitytr = L/vp = 41 ps and a FSR= vp/(2L) = 12 GHz. This configuration corresponds
to L = 14Λ0, whereΛ0 = vpτ0 = 0.46 mm is the nonlinear characteristic length.
The correspondingKTP refractive index, group velocity anddispersion coefficient for the pump are np = 1.84044, vp/c = 0.526359,
βp/vp = 0.254223ps2/m; respectively for the signal are ns = 1.824484, vs/c = 0.537107, βs/vs = 0.142531ps2/m; and
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Fig. 2: Scheme for the Runge-Kutta-FFT numerical model in the backward mirrorless OPO.

respectively for the idler are ni = 1.784471, vi/c = 0.537301,βi/vi = −0.328753ps2/m. The group velocity difference
between the pump and the co-propagating signal is|vp−vs|/vs≃ 0.02.

Fig. 3: Group velocity dispersion for KTiOPO4 at 20oC (MOPO-1 of type I).

The incoherent pump pulse is characterized by an exponential-shaped correlation function
< Ap(x = 0,t ′ + t)Ap

∗(x = 0,t) > = Ap
2exp(−|t|/τc), whereτc = 1/π∆νp is the correlation time and∆νp the bandwidth

of the pump spectrum. The results are shown in Figs.4(a)-(c)and Figs.5(a)-(c) for a FWHM pump pulse duration of 100
ps and a pump intensity ofIp = 4 GW/cm2.

In Fig.4(a)-(c) we see that the MOPO starts oscillating after an initial delay of 120 ps and then the parametric waves
increase up to a relative mean amplitude of< |As(L)| > / < |Ap(L)| > = 0.1308 for the signal and< |Ai(0)| > / <
|Ap(L)| >= 0.07964 for the idler. Let us stress the remarkable gain of coherence of the counter-propagating idler wave
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with respect to the pump, which exceeds two orders of magnitude,∆νi/∆νp ≃1/245, as illustrated in Figs.5(a)-(c). We have
always obtained an excellent transfer of incoherence from the pump to the signal, thus allowing the counter-propagating
idler wave to evolve toward a highly coherent state (∆νi/∆νp ≃ 10−2− 10−3). This shows that the convection-induced
phase-locking mechanism is efficient for both deterministic phase modulations and random phase fluctuations.

Fig. 4: Temporal amplitude evolution in the MOPO for (a) the forward pump pulse, (b) the forward signal, and (c) the backward
idler (c).

Fig. 5: (a) Incoherent pump spectrum of broad-bandwidth∆νp = 15 Thz, (b) signal spectrum of∆νs = 5.7 Thz absorbing the
pump stochasticity, and (c) backward idler spectrum with∆νi = 57 Ghz showing a coherence transfer of more than 2 orders of
magnitude. [FSR = 12 GHz;Λ0 = L/14 = 0.46 mm;τ0 = vp/Λ0 = 2.95 ps]

2.3 Invariants conservation

Let us make a brief comment concerning the conservation of the number of photons in the three-wave mixing process.
Neglecting the dissipation (γ j = 0, j = p,s, i), the total number of photons contained in the initial pump pulse namely,

Nph =

∫ ∞

−∞
|Ap(x, t = 0)|2 dx,

must be conserved through the interaction in the crystal. More precisely, the balance equation for the output of the forward
pump and signal waves at x= L and of the idler at x= 0, should be written in the following form

∫ t=∞

t=0
|Ap(x = 0, t)|2 dt =

∫ t=∞

t=0
|Ap(x = L, t)|2 dt+

∫ t=∞

t=0

|As(x = L, t)|2

(2σs/σp)
dt+

∫ t=∞

t=0

|Ai(x = 0, t)|2

(2σi/σp)
dt. (8)

The numerical simulations conserve the total number of photons better than 10−5 for more than 6×106 time steps and high
pump incoherence.

The dispersion relations of the backward three-wave interaction (TWI) process read

ω j(k) = vj +
1
2

β̃ jk
2 ( j = p,s) ; ωi(k) = −vi +

1
2

β̃ik
2 (9)
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whereβ̃ j = 2β jvj
2 and retaining only the first terms for the perturbative dispersion terms in Eqs.(2) they read

(∂t +vp∂x + γp + i
1
2

β̃p∂xx)Ap = −σpAsAi

(∂t +vs∂x + γs + i
1
2

β̃s∂xx)As = σsApA∗
i (10)

(∂t −vi∂x + γp + i
1
2

β̃i∂xx)Ai = σiApA∗
s

These equations conserve the Manley-Rowe invariants

I1 =
Np

σp
+

Ns

σs
; I1 =

Np

σp
+

Ni

σi
(11)

where Nj =
∫
|A j(x, t)|2dx (j=p,s,i). These invariants are also conserved in our simulations better than 10−5.

3 3rd order MOPO-3

According to the velocity-locking mechanism, the process of coherence transfer becomes more efficient when the group
velocity of the co-propagating waves are matched [8], but this requires another choice of resonant frequencies for the
backward MOPO [27]. In order to take advantage of a type I configuration in PPKTP, it is more convenient to chose the
signal wave as the backward field, so that the group velocities of the co-propagating pump and idler waves may be matched
exactly, vp = vi . Indeed, such a group velocity matching may be obtained for the following choice of the three wavelengths:
λp = 1060 nm;λs = 1534 nm; andλi = 3429 nm. The corresponding refractive indexes, group velocities and dispersion
coefficients are: np = 1.8300, vp/c= 0.5338, βp/vp = 0.1826ps2/m; ns = 1.8163, vs/c = 0.5401, βs/vs = 0.0761ps2/m;
ni = 1.7709, vi/c = 0.5338, βi/vi = −0.5792ps2/m. This point of operation is plotted on the group velocity dispersion
curves reported in figure 6.

Fig. 6: Group velocity dispersion for KTiOPO4 at 20oC (MOPO-3 of type I).

Let us note however that this configuration has a major drawback. The modulation period of the nonlinear coefficient for
the first order resonant grating should be as short as 417 nm. In the following, we thus propose to consider the next odd or-
derm = 3 [11], which thus makes the polarization poled grating ofΛQPM = 1251 nm experimentally accessible. For a 1 cm
PPKTP crystal lenght, the oscillation threshold would be now Ipth(m = 3) = 9Ipth(m = 1) = 4.95GW/cm2, which would be
lower than the damage threshold for a 100 ps pump pulse. We performed numerical simulations of this configuration by con-
sidering an input pump intensity ofIp = 5 GW/cm2. In Eqs.(2) we must change the sign of the signal and the idlergroup ve-
locities, because the counter-propagating wave now refersto the signal component, andΛQPM = [np/λp +ns/λs−ni/λi]

−1

is the new modulation period of the quadratic nonlinear coefficient. Now, this configuration, perfectly satisfies the phase-
locking condition (7) where the idler takes the place of the signal, namely|vi −vp| ≪ λcγi = vpτcγi .
The results of the numerical simulations are reported in figures 7 and 8. We consider here a highly incoherent pump pulse
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of 35 THz bandwidth and 100 ps duration. As expected from the convection-induced phase-locking mechanism, almost
all the incoherence of the pump wave is transferred to the co-propagating idler wave, which thus leads to the generation of
a highly coherent backward signal pulse. As remarkably shown in the figure 8(a)-(c), the gain of coherence of the signal
with respect to the pump now exceeds three orders of magnitude.

Fig. 7: Temporal amplitude evolution in the MOPO3 for (a) theforward pump pulse, (b) the backward signal, and (c) the
forward idler (c).

Fig. 8: (a) Incoherent pump spectrum of broad-bandwidth∆νp = 35 Thz, (b) backward coherent signal spectrum of∆νs = 28
Ghz showing a coherence transfer of more than 3 orders of magnitude, and (c) forward idler spectrum with∆νi = 17 Thz
absorbing the pump stochasticity. [FSR = 12 GHz;Λ0 = L/14 = 0.46 mm;τ0 = vp/Λ0 = 2.95 ps]

4 Conclusion

In summary, we have shown that singly backward MOPOs pumped by an incoherent field are characterized, as a general
rule, by the generation of a highly coherent backward wave. This remarkable property finds its origin in the convection-
induced phase-locking mechanism, in which the incoherenceof the pump is absorbed by the co-propagating wave, thus
allowing the backward wave to evolve toward a highly coherent state [7]-[10]. On the basis of the recent experiments [2]
[6], we propose other realistic experimental conditions that may be implemented with currently available technology and in
which backward coherent wave generation from incoherent excitation may be observed and studied. We note that it would
be interesting to analyze theoretically these phenomena bymaking use of the kinetic wave theory [28]-[30], in line with
the recent works on optical wave thermalization [31]-[37] and condensation [38]-[42]. Furthermore, a detailed analysis of
the dynamics of the MOPO may reveal some connection with a class of solitary wave solutions spontaneously generated
in the backward configuration of the three-wave interaction[19] [20].
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