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It is known that the very weak solution of -

being the distance of x ∈ Ω to the boundary. In this paper, we show that if f 0 is not in this weighted space L 1 Ω; δ(1 + | Ln δ|) , then its gradient blows up in L(log L) at least. Moreover, we show that there exist a domain Ω of class C ∞ and a function f ∈ L 1 + (Ω, δ) such that the associated very weak solution has its gradient being non integrable on Ω.

Introduction

In this paper, we state and prove two results related to the behaviour near the boundary of very weak solutions to Laplace's equation. In the first part of the paper, we prove that the very weak solution u ∈ L 1 (Ω) of the so-called Brezis weak formulation (see [START_REF] Brezis | Blow up for u t -∆u = g(u) revisited[END_REF][START_REF] Díaz | On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary[END_REF][START_REF] Díaz | On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary[END_REF])

- Ω u∆ϕ dx = Ω f ϕ dx, ∀ ϕ ∈ C 2 (Ω), ϕ = 0 on ∂Ω, (1) 
verifies

Ω
|∇u| | Ln δ| dx = +∞ whenever f 0, f is integrable with respect to the distance function δ(x) = dist (x, ∂Ω) but f / ∈ L 1 Ω; δ 1 + | Ln δ| . The result implies in particular, that |∇u| blows up in the Zygmund space L(Ln L):

Ω * |∇u| * * (t)dt = ∞ (2) 
where |∇u| * * (t) = 1 t t 0 |∇u| * (σ)dσ, |∇u| * is the decreasing rearrangement of |∇u| and Ω * = ]0, meas (Ω)[ (see Section 2 below).

In the second part, we construct an open bounded smooth set Ω of IR N , N 2, and a function

f ∈ L 1 (Ω, δ) , f / ∈ L 1 Ω, δ(1 + | Ln δ|)
, such that the associate very weak solution u verifies

Ω |∇u| dx = +∞. (3) 
2 Background and notations

The main properties of Lorentz spaces, see e.g. [START_REF] Bennett | Interpolation of Operators[END_REF][START_REF] Rakotoson | Réarrangement Relatif: un instrument d'estimation dans les problèmes aux limites[END_REF], are briefly recalled.

For a Lebesgue measurable set E of Ω, denote by |E| its measure.

The decreasing rearrangement of a measurable function u is the function u * defined by

u * : Ω * =]0, |Ω|[→ IR, u * (s) = inf{t ∈ IR : |u > t| s}.
In particular, there holds:

u * (0) = ess sup Ω u, u * (|Ω|) = ess inf Ω u.
Introducing

|v| * * (t) = 1 t t 0 |v| * (s)ds for t ∈ Ω * =]0, |Ω|[,
the Lorentz spaces can now be defined.

For 1 < p < +∞, 1 q +∞, L p,q (Ω) = v : Ω → IR measurable , |v| q L p,q ≡ |Ω| 0 [t 1 p |v| * * (t)] q dt t < +∞
and, for q = +∞,

L p,∞ (Ω) = v : Ω → IR measurable , |v| L p,∞ ≡ sup t |Ω| t 1 p |v| * * (t) < +∞ .
We recall

L exp (Ω) = v ∈ L 1 (Ω), |v| Lexp(Ω) = sup 0<t |Ω| |v| * * (t) 1 + Ln |Ω| t < +∞ and L(Ln L) = v ∈ L 1 (Ω), |v| L(Ln L) = Ω * |v| * * (t)dt < +∞ , the dual of L(Ln L)is L exp (Ω) and one has ∀ f ∈ L exp (Ω), ∀ g ∈ L(Ln L) Ω |f g|dx c|f | Lexp(Ω) • |g| L(Ln L)
, for some constant c > 0 (for more details see [START_REF] Bennett | Interpolation of Operators[END_REF]).

Finally, we define

W 1 (Ω, | • | p,q ) = v ∈ W 1,1 (Ω) : |∇v| ∈ L p,q (Ω)
and

C m c (Ω) = ϕ ∈ C m (Ω), ϕ has compact support in Ω . C 0,1 (Ω) = v : Ω → IR is a Lipschitz function , C m,1 (Ω) = v ∈ C m (Ω) : D α v ∈ C 0,1 (Ω) for |α| = m .
For the sake of completeness, we also recall some general results concerning Equation (1).

Proposition 1. (see [START_REF] Bidault-Veron | An elliptic semilinear equation with source term involving boundary measures : the subcritical case[END_REF][START_REF] Díaz | On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary[END_REF][START_REF] Rakotoson | A few natural extension of the regularity of a very weak solution[END_REF])

Let Ω be an open bounded set of class C 2,1 in IR N (see for a precise definition), f ∈ L 1 (Ω, δ), where δ(x) is the distance function of x ∈ Ω to be the boundary ∂Ω. Then, there exists a constant c > 0 such that for any solution u of (1), one has

1. |∇u| L 1+ 1 N ,∞ (Ω;δ) c|f | L 1 (Ω;δ) , |u| L N ,∞ (Ω) c|f | L 1 (Ω;δ) , N = N N -1 if N 2, N = +∞ otherwise, 2. If f 0, then u 0. 3. If f ∈ L 1 Ω; δ(1 + | Ln δ|) , then u ∈ W 1,1 0 (Ω) and |∇u| L 1 (Ω) c|f | L 1 Ω;δ(1+| Ln δ|) . 4.
If Ω is a ball and f is radial, then u ∈ W 1,1 0 (Ω) and

|∇u| L 1 (Ω) c|f | L 1 (Ω;δ) . 5. If Ω =]a, b[ then the above estimate holds for all f ∈ L 1 (]a, b[, δ). ♦ 3 Blow-up in Zygmund space for f / ∈ L 1 Ω; δ(1 + | Ln δ|)
The aim of this section is to prove the Theorem 1.

Under the same assumptions as for Proposition Let u be a very weak solution of (1) and assume that

Ω |∇u| dx < +∞. Then, u satisfies Ω ∇u • ∇ϕ dx = Ω f ϕ dx, ∀ ϕ ∈ W 1,∞ (Ω) ∩ H 1 0 (Ω). (4) 

Proof

By the density of

C 2 c (Ω) in C 1 c (Ω), one has Ω ∇u • ∇ϕ dx = Ω f ϕ dx, ∀ϕ ∈ C 1 c (Ω)
and the lemma follows.

Using standard truncation and convolution arguments (see [START_REF] Rakotoson | Analyse fonctionnelle appliquée aux dérivées partielles[END_REF][START_REF] Demengel | Demengel Espaces Fonctionnels, Utilisation dans la résolution des équations aux dérivées partielles[END_REF][START_REF] Brezis | Analyse fonctionnelle théorie et applications[END_REF]), one can also prove the following approximation result:

Proposition 2. Let ϕ ∈ W 1,∞ (Ω) ∩ H 1 0 (Ω). There exists a sequence ϕ n ∈ C 1 c (Ω) such that 1. ∃c > 0, |∇ϕ n | ∞ c |∇ϕ| ∞ + |ϕ| ∞ ∀ n; 2. ϕ n → ϕ in C(Ω) (i.e. Max x∈Ω |ϕ n (x) -ϕ(x)| ----→ n→+∞ 0 ); 3. ∇ϕ n ∇ϕ in L ∞ (Ω) N -weak star.
(proof omitted).

Proof of Theorem 1

Considering ϕ ∈ W 1,∞ (Ω) ∩ H 1 0 (Ω) and its approximating sequence as in Proposition 2, we have

Ω ∇u • ∇ϕ n dx = Ω f ϕ n dx. (5) 
By Statement 3. of Proposition 2, there holds

lim n→+∞ Ω ∇u • ∇ϕ n dx = Ω ∇u • ∇ϕ dx (6) 
and, using the mean value theorem and Statement 1.

|ϕ n (x) -ϕ(x)| |∇(ϕ n -ϕ)| ∞ • δ(x) c ϕ δ(x). (7) 
Since f ∈ L 1 (Ω; δ), the Lebesgue dominated convergence theorem yields

lim n Ω f ϕ n dx = Ω f ϕ dx. (8) 
Combining relations ( 5) to ( 8), we obtain relation (4) of Lemma 1.

♦

Next, we want to prove Lemma 2.

Under the same assumptions as for Proposition 1, if f 0 and u is the very weak solution (1) such that Ω |∇u| | Ln δ| dx < +∞, then there exists a constant c(Ω) > 0 (independent of u) such that

Ω f δ| Ln δ| dx c(Ω) Ω |∇u| 1 + | Ln δ| dx + Ω f δ dx . ( 9 
)
Proof Let us first note that, according to Proposition 1 Statement 1, we have

Ω |∇u|δ dx c Ω f δ dx < +∞.
Therefore, the fact that

Ω |∇u| | Ln δ| dx < +∞ is equivalent to Ω |∇u| 1 + | Ln δ| dx < +∞, since | Ln δ| β > 0 near the boundary. Fix 0 < ε < 1 2
and consider ϕ 1 > 0 the first eigenfunction of -∆ with Dirichlet boundary condition:

-∆ϕ 1 = λ 1 ϕ 1 in Ω, ϕ 1 = 0 on ∂Ω. Then, ϕ ≡ ϕ 1 | Ln (ϕ 1 + ε)| ∈ W 1,∞ (Ω) ∩ H 1 0 (Ω)
is a good test function, and there holds

Ω f ϕ 1 | Ln (ϕ 1 + ε)| dx = Ω ∇u • ∇ϕ 1 | Ln (ϕ 1 + ε)| dx + Ω ∇u • ∇ϕ 1 ϕ 1 sign Ln (ϕ 1 + ε) ϕ 1 + ε dx. (10) 
Since

|∇ϕ 1 | ∞ < +∞ and | Ln (ϕ 1 + ε)| | Ln ϕ 1 | + 1, we deduce Ω f ϕ 1 | Ln (ϕ 1 + ε)| dx c Ω |∇u|(1 + | Ln ϕ 1 |) dx. (11) 
Letting ε → 0 and using Fatou's lemma yields

Ω f ϕ 1 | Ln ϕ 1 | dx c Ω |∇u|(1 + | Ln ϕ 1 |). (12) 
Since there exist two constants c 0 > 0, c 1 > 0 such that c 0 δ ϕ 1 c 1 δ, Relation (9) follows from Relation (12).

End of the proof of Theorem 1 The main result of this section is Theorem 2.

Let f 0 be in L 1 (Ω; δ) and f / ∈ L 1 Ω; δ(1 + | Ln δ|) , so that Ω f ( 
There exist a domain Ω of IR N , N 2, of class C ∞ and a function f ∈ L 1 (Ω, δ) such that the weak solution u 0 of (1) satisfies

|∇u 0 | / ∈ L 1 (Ω)
(that is:

Ω |∇u 0 |(x) dx = +∞).
The key ingredient in the proof of Theorem 2 is the following Lemma 3.

There exist a domain

Ω of IR N , N 2, of class C ∞ and a nonnegative function g ∈ L N (Ω) such that the unique solution ψ > 0 of -∆ψ = g in Ω, ψ ∈ W 2,N (Ω) ∩ H 1 0 (Ω), satisfies sup x∈Ω ψ(x) δ(x) = +∞.
Let us admit temporarily this lemma ( which merely amounts to saying that |∇ψ(x)| is very large near a point of the boundary). Note that, according to Sobolev Embedding Theorem, W 2,N (Ω) is included in C 0,α (Ω) for all α < 1, but not in C 0,1 in general.

Proof of Theorem 2

Let us consider the domain Ω constructed in Lemma 3 and assume that, for any f ∈ L 1 (Ω, δ), the unique solution u of (1) satisfies |∇u| ∈ L 1 (Ω). Then, define

(-∆) -1 : L 1 (Ω, δ) → L 1 (Ω) f → u = (-∆) -1 f ,
u being the unique solution of (1), and set

T f = ∇(-∆) -1 f.
One has the Lemma 4.

If every very weak solution u satisfies

Ω |∇u| dx < +∞, then sup |f | L 1 (Ω,δ) =1 |T f | L 1 (Ω) N is finite. Proof Choose 0 < ε ε 0 (ε 0 small enough) and set Ω ε = x ∈ Ω : δ(x) > ε , T ε f = χ Ωε ∇(-∆) -1 f , with χ Ωε the characteristic function of Ω ε . If Ω |∇(-∆) -1 f | dx < +∞, then by the Lebesgue dominated convergence theorem lim ε→0 |T ε f -T f | L 1 (Ω) N = 0 and |T ε f | L 1 (Ω) N 1 ε Ω |∇u|δ dx c ε |f | L 1 (Ω,δ) ,
from Proposition 1., This last inequality shows that T ε is continuous linear operator from L 1 (Ω, δ)

into L 1 (Ω) N . One obtains by the Banach-Steinhaus boundedness principle sup ε>0 ||T ε || < +∞.

This implies that there exists a constant c(Ω) > 0 such that

Ω ∇(-∆) -1 f dx = |∇u| L 1 (Ω) c(Ω)|f | L 1 (Ω,δ) . (16) 

♦

Considering the sequence

u k ∈ W 2,p (Ω) ∩ H 1 0 (Ω) (with p > N ) solution of -∆u k = f k = min(|f |; k)sign (f ), f k → f in L 1 (Ω, δ).
By the estimate (16), we deduce

|∇(u k -u)| L 1 (Ω) c(Ω)|f -f k | L 1 (Ω,δ) → 0 and therefore u ∈ W 1,1 0 (Ω). Since sup ψ(x) δ(x) : x ∈ Ω = +∞, there exists a function f 0 ∈ L 1 (Ω, δ), f 0 0, such that Ω f 0 (x)ψ(x) dx = +∞.
Indeed, the Hopf Maximum Principle ensures the existence of a constant k 1 > 0 such that

ψ(x) k 1 δ(x) ∀ x ∈ Ω.
Hence

L 1 (Ω, ψ) ⊂ > L 1 (Ω, δ). ( 17 
) If L 1 (Ω, ψ) = L 1 (Ω, δ), there must exist a constant c 1 (Ω) > 0 such that |f | L 1 (Ω,ψ) c 1 (Ω)|f | L 1 (Ω,δ) ∀ f ∈ L 1 (Ω, δ). ( 18 
)
This is due to Banach principle. Equivalently, since the function spaces L 1 (Ω, ψ) and L 1 (Ω, δ) are Banach spaces, one can deduce this inequality from the properties of Banach spaces, see e.g. [START_REF] Bennett | Interpolation of Operators[END_REF],

Theorem 1.8.

Relation (18) would then imply that ψ(x) c 1 (Ω)δ(x) for all x ∈ Ω. This contradicts the fact that

sup x∈Ω ψ(x) δ(x) = +∞.
Therefore, there exists a function

f 0 ∈ L 1 (Ω, δ) such that f 0 / ∈ L 1 (Ω, ψ), i.e. such that Ω |f 0 (x)|ψ(x) dx = +∞.
We may obviously assume that f 0 0 (otherwise, simply consider |f 0 |).

Defining the sequence

f 0k = T k (f 0 ) = min(f 0 ; k) and u k the solution of -∆u k = f 0k , one has using relation (16) that 0 Ω f 0k ψ dx = - Ω ψ∆u k dx = - Ω u k ∆ψ dx = Ω u k g dx |u k | L N • |g| L N c|∇u k | L 1 • |g| L N c|f 0 | L 1 (Ω,δ) |g| L N . (19) 
Letting k → +∞ in relation (19), we derive from Beppo-Levi's theorem

+∞ = Ω f 0 ψ dx = lim k→+∞ Ω f 0k ψ dx c|f 0 | L 1 (Ω,δ) |g| L N < +∞,
which is absurd. Hence, there exists a function f 0 ∈ L 1 (Ω, δ) such that the associate weak solution

u 0 satisfies |∇u 0 | / ∈ L 1 (Ω). ♦ Proof of Lemma 3
For the sake of convenience, we shall start with the case N = 2 and generalize the construction in a second step.

Let us first consider the open set

Ω 1 = x = (x 1 , x 2 ) : x 2 1 < x 2 , x 2 1 + x 2 2 < 1 e
and define the preliminary function on Ω 1 by

w(x 1 , x 2 ) = (x 2 -x 2 1 ) Ln Ln 1 x 2 1 + x 2 2 .
Note that, in polar coordinates, w can be written as w = r(sin(θ) -r cos 2 (θ)) Ln (Ln ( 1 r 2 )).

w has the following properties:

1. w > 0 in Ω 1 , 2. w(x 1 , x 2 1 ) = 0 for -x 1c < x 1 < x 1c with x 4 1c + x 2 1c = 1 e , and w(x 1 , x 2 ) = 0 for x 2 1 + x 2 2 = 1 e , 3. w ∈ C ∞ (Ω 1 ) ∩ H 2 (Ω 1 ).
Indeed it is sufficient to compute ∂w ∂x i and ∂ 2 w ∂x 2 i and prove that ∆w ∈ L 2 (Ω).

w[x 1 , x 2 ] = (-x 1 2 + x 2 ) Ln Ln 1 x 1 2 +x 2 2 ∂w ∂x 1 = - 2x 1 (-x 1 2 + x 2 ) (x 1 2 + x 2 2 ) Ln 1 x 1 2 +x 2 2 -2x 1 Ln Ln 1 x 1 2 + x 2 2 ∂w ∂x 2 = - 2x 2 (-x 1 2 + x 2 ) (x 1 2 + x 2 2 ) Ln 1 x 1 2 +x 2 2 + Ln Ln 1 x 1 2 + x 2 2 ∂ 2 w ∂x 1 2 = - 4x 1 2 (-x 1 2 + x 2 ) (x 1 2 + x 2 2 ) 2 Ln 1 x 1 2 +x 2 2 2 + 4x 1 2 (-x 1 2 + x 2 ) (x 1 2 + x 2 2 ) 2 Ln 1 x 1 2 +x 2 2 + 2(5x 1 2 -x 2 ) (x 1 2 + x 2 2 ) Ln 1 x 1 2 +x 2 2 -2Ln Ln 1 x 1 2 + x 2 2 ∂ 2 w ∂x 2 2 = - 4x 2 2 (-x 1 2 + x 2 ) (x 1 2 + x 2 2 ) 2 Ln 1 x 1 2 +x 2 2 2 + 4x 2 2 (-x 1 2 + x 2 ) (x 1 2 + x 2 2 ) 2 Ln 1 x 1 2 +x 2 2 + 2 (x 1 2 -3x 2 ) (x 1 2 + x 2 2 ) Ln 1 x 1 2 +x 2 2 ∆w = 4 x 1 2 -x 2 + (2x 1 2 -x 2 ) Ln 1 x 1 2 +x 2 2 (x 1 2 + x 2 2 ) Ln 1 x 1 2 +x 2 2 2 -2Ln Ln 1 x 1 2 + x 2 2 .
Using polar coordinates, one can check that ∆w ∈ L 2 (Ω) and |∇w| ∈ L p (Ω) for all p < +∞.

Consider now x 1c > η > 0 and an open set Ω, of class C 2,1 at least, such that

Ω ⊂ [-x 1c + η; x 1c -η] × 0, 1 √ e . ∂Ω contains Γ 0 = (x 1 , x 2 ) : -x 1c + η < x 1 < x 1c -η, x 2 = x 2 1 ∩ (x 1 , x 2 ) : -x 1c + η < x 1 < x 1c -η, x 2 1 + x 2 2 = 1 e .
For a > 0 : 0 < 2a < x 1c -η, define a smooth function θ such that

θ ∈ C ∞ c (IR 2 ), θ 0 and              0 θ 1, θ(x 1 , x 2 ) = 1 if |x 1 | a, θ(x 1 , x 2 ) = 0 if |x 1 > 3a 2 .
In particular, the function θw vanishes on the boundary of Ω. Let us show that ψ 0 = θw satisfies the following properties:

1

. -∆ψ 0 = f 0 ∈ L 2 (Ω). 2. Max ψ 0 (x) δ(x) , x ∈ Ω = +∞. Property 1 is obvious, since      -∆ψ 0 = -(∆θw + 2∇w∇θ + ∆wθ) ∈ L 2 (Ω), ψ 0 ∈ H 1 0 (Ω).
To prove Property 2, consider x = (x 1 , αx 1 ), 0 < α < 1, x 1 small enough so that x ∈ Ω. Then there holds

ψ 0 (x) δ(x) = ψ 0 (x 1 , αx 1 ) δ(x) (α -x 1 ) Ln ((-Ln (1 + α 2 )x 2 1 )) √ 1 + α 2 ---→ x 1 →0
+∞ which shows that sup ψ 0 (x) δ(x) : x ∈ Ω = +∞.

Setting g = |f 1 | and considering ψ > 0 solution of -∆ψ = g, ψ ∈ H 1 0 (Ω) ∩ H 2 (Ω), one has by the maximum principle that ψ ψ 0 (so that sup ψ(x) δ(x) : x ∈ Ω = +∞). ♦

The construction above can be generalized to IR N , let us outline the main steps of the procedure.

For x = (x , x N ) = (x 1 , . . . , x N -1 , x N ) ∈ IR N , set |x | 2 = x 2 1 + . . . + x 2 N -1 , σ(x) = x 2 1 + . . . + x 2 N .
We first consider the open set w satisfies properties similar to those stated in Properties 1-3 above for the two-dimensional case.

Ω 1 = x = (x , x N ), |x | 2 < x N , σ (x) 
For a small a > 0, consider θ ∈ C ∞ c (IR N ) such that

             0 θ 1, θ(x , x N ) = 1 if |x | a, θ(x , x N ) = 0 if |x | > 3a 2 .
and an open set Ω of class C 2,1 with supp θ ∩ Ω 1 ⊂ Ω and θw = 0 on ∂Ω.

Then, the function ψ 0 (x) = θw(x) satisfies -∆ψ 0 ∈ L N (Ω), since ∆w ∈ L N (Ω) thanks to a straightforward computation. Setting 

  x)δ| Ln δ| dx = +∞. From Lemma 2, we deduce that Ω |∇u| | Ln δ| dx = +∞, (13) which proves Statement 1.As for Statement 2., we see that| Ln δ| ∈ L exp (Ω) since δ -ε ∈ L 1 (Ω) for 0 < ε < 1,there holds Ω |∇u|| Ln δ| c| Ln δ| Lexp(Ω) • |∇u| L(Ln L) . (14) Relation (14) and the fact that | Ln δ| Lexp(Ω) < +∞ imply that |∇u| L(Ln L) = Ω * |∇u| * * (t)dt = +∞ (15) and Statement 2. is proven. ♦ 4 Existence of a domain Ω and a very weak solution whose gradient blows up in L 1 (Ω)

< 1 e

 1 and define on Ω 1 the nonnegative functionw(x) = (x N -|x | 2 ) Ln Ln 1 σ(x) , x ∈ Ω 1 .

e N - 1 = 2

 12 (1, . . . , 1), x α = x N (α, . . . , α, 1) ∈ Ω, α > 0, for x N > 0, x N small enough, there holdsψ 0 (x α ) δ(x α ) (1 -α 2 |e N -1 | 2 x N ) 1 + α 2 |e N -1 | Ln ∆ψ = |∆ψ 0 | = g ∈ L N (Ω) ψ ∈ W 1,N (Ω) ∩ W 2,N (Ω), proof of Lemma 3.♦
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