Gradient blow up in Zygmund spaces for the very weak solution of a linear elliptic equation

Frédéric Abergel, Jean-Michel Rakotoson

To cite this version:

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow up in Zygmund spaces for the very weak solution of a linear elliptic equation. 2011. hal-00647503v3

HAL Id: hal-00647503
 https://hal.science/hal-00647503v3

Preprint submitted on 16 Dec 2011 (v3), last revised 20 Jan 2012 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation

Frédéric ABERGEL

Jean-Michel RAKOTOSON

Abstract

It is known that the very weak solution $u \in L^{1}(\Omega)$ of $-\int_{\Omega} u \Delta \varphi d x=\int_{\Omega} f \varphi d x$ for all test functions $\varphi \in C^{2}(\bar{\Omega}), \varphi=0$ on $\partial \Omega$, has its gradient in $\mathrm{E}^{1}(\Omega)$ whenever $f \in L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$, $\delta(x)$ being the distance of $x \in \Omega$ to the boundary. In this paper, we show that if $f \geqslant 0$ is not in this weighted space $L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$, then the gradient of u blows up in $L(\log L)$ at least. Moreover, we show that there exist a domain Ω of class C^{∞} and a function $f \in L_{+}^{1}(\Omega, \delta)$ such that the associated very weak solution has its gradient being non integrable on Ω.

Keywords Very weak solutions; Distance to the boundary; Regularity; Linear PDE; Monotone rearrangement; Gradient blow-up.

1 Introduction

In this paper, we state and prove two results related to the behaviour near the boundary of very weak solutions to Laplace's equation. In the first part of the paper, we prove that the very weak solution $u \in L^{1}(\Omega)$ of the so-called Brezis weak formulation (see $[4,5,6]$)

$$
\begin{equation*}
-\int_{\Omega} u \Delta \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in C^{2}(\bar{\Omega}), \quad \varphi=0 \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

verifies $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x=+\infty$ whenever $f \geqslant 0, f$ is integrable with respect to the distance function $\delta(x)=\operatorname{dist}(x, \partial \Omega)$ but $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|)$. This result implies in particular that $|\nabla u|$ blows up in the Zygmund space $L(\operatorname{Ln} L)$:

$$
\begin{equation*}
\int_{\Omega_{*}}|\nabla u|_{* *}(t) d t=\infty, \tag{2}
\end{equation*}
$$

where $|\nabla u|_{* *}(t)=\frac{1}{t} \int_{0}^{t}|\nabla u|_{*}(\sigma) d \sigma,|\nabla u|_{*}$ is the decreasing rearrangement of $|\nabla u|$ and $\Omega_{*}=$]0, meas (Ω) [(see Section 2 below for the precise definitions).

In the second part, we construct an open bounded smooth set Ω of $\mathbb{R}^{N}, N \geqslant 2$, and a function $f \in L^{1}(\Omega, \delta), f \notin L^{1}(\Omega, \delta(1+|\operatorname{Ln} \delta|))$, such that the associate very weak solution u verifies

$$
\begin{equation*}
\int_{\Omega}|\nabla u| d x=+\infty \tag{3}
\end{equation*}
$$

2 Background and notations

The main properties of Lorentz spaces, see e.g. [1, 9], are briefly recalled.
For a Lebesgue measurable set E of Ω, denote by $|E|$ its measure. The decreasing rearrangement of a measurable function u is the function u_{*} defined by

$$
\left.u_{*}: \Omega_{*}=\right] 0,|\Omega|\left[\rightarrow \mathbb{R}, \quad u_{*}(s)=\inf \{t \in \mathbb{R}:|u>t| \leqslant s\} .\right.
$$

In particular, there holds:

$$
u_{*}(0)=\underset{\Omega}{\operatorname{ess} \sup } u, \quad u_{*}(|\Omega|)=\underset{\Omega}{\operatorname{ess} \inf } u .
$$

Introducing

$$
\left.|v|_{* *}(t)=\frac{1}{t} \int_{0}^{t}|v|_{*}(s) d s \text { for } t \in \Omega_{*}=\right] 0,|\Omega|[
$$

the Lorentz spaces can now be defined.
For $1<p<+\infty, 1 \leqslant q \leqslant+\infty$,

$$
L^{p, q}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable },|v|_{L^{p, q}}^{q} \equiv \int_{0}^{|\Omega|}\left[t^{\frac{1}{p}}|v|_{* *}(t)\right]^{q} \frac{d t}{t}<+\infty\right\}
$$

and, for $q=+\infty$,

$$
L^{p, \infty}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable },|v|_{L^{p, \infty}} \equiv \sup _{t \leqslant|\Omega|} t^{\frac{1}{p}}|v|_{* *}(t)<+\infty\right\} .
$$

Finally, we define

$$
W^{1}\left(\Omega,|\cdot|_{p, q}\right)=\left\{v \in W^{1,1}(\Omega):|\nabla v| \in L^{p, q}(\Omega)\right\}
$$

and

$$
C_{c}^{m}(\Omega)=\left\{\varphi \in C^{m}(\Omega), \varphi \text { has compact support in } \Omega\right\} .
$$

For the sake of completeness, we also recall some general results concerning Equation (1).
Proposition 1. (see [2, 5, 8])
Let Ω be an open bounded set of class $C^{2,1}$ in $\mathbb{R}^{N}, f \in L^{1}(\Omega, \delta)$, where $\delta(x)$ is the distance function of $x \in \Omega$ to the boundary $\partial \Omega$. Then, there exists a constant $c>0$ such that for any solution u of (1), one has

1. $|\nabla u|_{L^{1+\frac{1}{N}, \infty(\Omega ; \delta)}} \leqslant c|f|_{L^{1}(\Omega ; \delta)}$, $|u|_{L^{N^{\prime}, \infty}(\Omega)} \leqslant c|f|_{L^{1}(\Omega ; \delta)}, N^{\prime}=\frac{N}{N-1}$ if $N \geqslant 2, N^{\prime}=+\infty$ otherwise.
2. If $f \geqslant 0$, then $u \geqslant 0$.
3. If $f \in L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$, then $u \in W_{0}^{1,1}(\Omega)$ and

$$
|\nabla u|_{L^{1}(\Omega)} \leqslant c|f|_{L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))}
$$

4. If Ω is a ball and f is radial, then $u \in W_{0}^{1,1}(\Omega)$ and

$$
|\nabla u|_{L^{1}(\Omega)} \leqslant c|f|_{L^{1}(\Omega ; \delta)} .
$$

5. If $\Omega=] a, b\left[\right.$ then the above estimate holds for all $f \in L^{1}(] a, b[, \delta)$.

3 Blow-up in Zygmund space for $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$

The aim of this section is to prove the

Theorem 1.

Under the assumptions of Proposition 1, if $f \geqslant 0$ and $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$, then any solution u of (1) satisfies

1. $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x=+\infty$;
2. $\int_{\Omega_{*}}|\nabla u|_{* *}(t) d t=+\infty$ (i.e. $\left.\int_{\Omega}|\nabla u| \max (\operatorname{Ln}|\nabla u| ; 0) d x=+\infty\right)$.

Before proving Theorem 1, we state and prove the

Lemma 1.

Let u be a very weak solution of (1) and assume that $\int_{\Omega}|\nabla u| d x<+\infty$. Then, u satisfies

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega) \tag{4}
\end{equation*}
$$

Proof

By the density of $C_{c}^{2}(\Omega)$ in $C_{c}^{1}(\Omega)$, one has

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in C_{c}^{1}(\Omega)
$$

and the lemma follows.

Using standard truncation and convolution arguments (see $[10,7,3]$), one can also prove the following approximation result:

Proposition 2.

Let $\varphi \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$. There exists a sequence $\varphi_{n} \in C_{c}^{1}(\Omega)$ such that

1. $\exists c>0,\left|\nabla \varphi_{n}\right|_{\infty} \leqslant c\left(|\nabla \varphi|_{\infty}+|\varphi|_{\infty}\right) \quad \forall n$,
2. $\varphi_{n} \rightarrow \varphi$ in $C(\bar{\Omega})$ (i.e. $\operatorname{Max}_{x \in \Omega}\left|\varphi_{n}(x)-\varphi(x)\right| \xrightarrow[n \rightarrow+\infty]{ } 0$),
3. $\nabla \varphi_{n} \rightharpoonup \nabla \varphi$ in $L^{\infty}(\Omega)^{N}$-weak star.
(proof omitted).

Proof of Theorem 1

Considering $\varphi \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ and its approximating sequence as in Proposition 2, there holds

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \varphi_{n} d x=\int_{\Omega} f \varphi_{n} d x \tag{5}
\end{equation*}
$$

By Statement 3. of Proposition 2, one also has that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega} \nabla u \cdot \nabla \varphi_{n} d x=\int_{\Omega} \nabla u \cdot \nabla \varphi d x \tag{6}
\end{equation*}
$$

and, using the mean value theorem and Statement 1.,

$$
\begin{equation*}
\left|\varphi_{n}(x)-\varphi(x)\right| \leqslant\left|\nabla\left(\varphi_{n}-\varphi\right)\right|_{\infty} \cdot \delta(x) \leqslant c_{\varphi} \delta(x) \tag{7}
\end{equation*}
$$

Since $f \in L^{1}(\Omega ; \delta)$, the Lebesgue dominated convergence theorem yields

$$
\begin{equation*}
\lim _{n} \int_{\Omega} f \varphi_{n} d x=\int_{\Omega} f \varphi d x \tag{8}
\end{equation*}
$$

Combining relations (5) to (8), we obtain the result.

Next, we want to prove

Lemma 2.

Under the assumptions of Proposition 1, if $f \geqslant 0$ and u is the very weak solution of (1) such that $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x<+\infty$, then there exists a constant $c(\Omega)>0$ (independent of u) such that

$$
\begin{equation*}
\int_{\Omega} f \delta|\operatorname{Ln} \delta| d x \leqslant c(\Omega)\left(\int_{\Omega}|\nabla u|(1+|\operatorname{Ln} \delta|) d x+\int_{\Omega} f \delta d x\right) . \tag{9}
\end{equation*}
$$

Proof Let us first note that, according to Proposition 1, Statement 1, we have

$$
\int_{\Omega}|\nabla u| \delta d x \leqslant c \int_{\Omega} f \delta d x<+\infty
$$

Therefore, the fact that $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x<+\infty$ is equivalent to $\int_{\Omega}|\nabla u|(1+|\operatorname{Ln} \delta|) d x<+\infty$, since $|\operatorname{Ln} \delta| \geqslant \beta>0$ near the boundary.
Fix $0<\varepsilon<\frac{1}{2}$ and consider $\varphi_{1}>0$ the first eigenfunction of $(-\Delta)$ with Dirichlet boundary condition: $-\Delta \varphi_{1}=\lambda_{1} \varphi_{1}$ in $\Omega, \varphi_{1}=0$ on $\partial \Omega$. Then, $\varphi \equiv \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ is a good test function, and there holds

$$
\begin{equation*}
\int_{\Omega} f \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| d x=\int_{\Omega} \nabla u \cdot \nabla \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| d x+\int_{\Omega} \nabla u \cdot \nabla \varphi_{1} \frac{\varphi_{1} \operatorname{sign}\left(\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right)}{\varphi_{1}+\varepsilon} d x \tag{10}
\end{equation*}
$$

Since $\left|\nabla \varphi_{1}\right|_{\infty}<+\infty$ and $\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| \leqslant\left|\operatorname{Ln} \varphi_{1}\right|+1$, we deduce

$$
\begin{equation*}
\int_{\Omega} f \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| d x \leqslant c \int_{\Omega}|\nabla u|\left(1+\left|\operatorname{Ln} \varphi_{1}\right|\right) d x . \tag{11}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$ and using Fatou's lemma yields

$$
\begin{equation*}
\int_{\Omega} f \varphi_{1}\left|\operatorname{Ln} \varphi_{1}\right| d x \leqslant c \int_{\Omega}|\nabla u|\left(1+\left|\operatorname{Ln} \varphi_{1}\right|\right) . \tag{12}
\end{equation*}
$$

Since there exist two constants $c_{0}>0, c_{1}>0$ such that $c_{0} \delta \leqslant \varphi_{1} \leqslant c_{1} \delta$, Relation (9) follows from Relation (12).

End of the proof of Theorem 1

Let $f \geqslant 0$ be in $L^{1}(\Omega ; \delta)$ and $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$, so that $\int_{\Omega} f(x) \delta|\operatorname{Ln} \delta| d x=+\infty$. From Lemma 2, we deduce that

$$
\begin{equation*}
\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x=+\infty \tag{13}
\end{equation*}
$$

which proves Statement 1.
As for Statement 2., we recall that

$$
L_{\text {exp }}(\Omega)=\left\{v \in L^{1}(\Omega), \quad \sup _{0<t \leqslant|\Omega|} \frac{|v|_{* *}(t)}{1+\operatorname{Ln} \frac{|\Omega|}{t}}<+\infty\right\}
$$

is the associate space of $L(\operatorname{Ln} L)=\left\{v \in L^{1}(\Omega), \quad \int_{\Omega}|v|_{* *}(t) d t<+\infty\right\}$ (see [1]). As $|\operatorname{Ln} \delta| \in L_{\text {exp }}$ since $\delta^{-\varepsilon} \in L^{1}(\Omega)$ for $0<\varepsilon<1$, there holds

$$
\begin{equation*}
\int_{\Omega}|\nabla u| \cdot|\operatorname{Ln} \delta| \leqslant|\operatorname{Ln} \delta|_{L_{e x p}(\Omega)} \cdot|\nabla u|_{L(\operatorname{Ln} L)} \tag{14}
\end{equation*}
$$

Relation (14) and the fact that $|\operatorname{Ln} \delta|_{L_{\text {exp }}(\Omega)}<+\infty$ imply that

$$
\begin{equation*}
|\nabla u|_{L(\operatorname{Ln} L)}=\int_{\Omega_{*}}|\nabla u|_{* *}(t) d t=+\infty \tag{15}
\end{equation*}
$$

and Statement 2. is proven.

4 Existence of a domain Ω and a very weak solution whose gradient blows up in $L^{1}(\Omega)$

The main result of this section is the

Theorem 2.

There exist a domain Ω of $\mathbb{R}^{N}, N \geqslant 2$, of class C^{∞} and a function $f \in L^{1}(\Omega, \delta)$ such that the weak solution u_{0} of (1) satisfies

$$
\left|\nabla u_{0}\right| \notin L^{1}(\Omega)
$$

(that is: $\left.\int_{\Omega}\left|\nabla u_{0}\right|(x) d x=+\infty\right)$.
The key ingredient in the proof of Theorem 2 is the

Lemma 3.

There exist a domain Ω of $\mathbb{R}^{N}, N \geqslant 2$, of class C^{∞} and a nonnegative function $g \in L^{N}(\Omega)$ such that the unique solution $\psi>0$ of $-\Delta \psi=g$ in $\Omega, \psi \in W^{2, N}(\Omega) \cap H_{0}^{1}(\Omega)$, satisfies

$$
\sup _{x \in \Omega}\left\{\frac{\psi(x)}{\delta(x)}\right\}=+\infty
$$

Let us admit temporarily this lemma (which amounts to saying that $|\nabla \psi(x)|$ is very large near a point of the boundary). Note that, according to Sobolev Embedding Theorem, $W^{2, N}(\Omega)$ is included in $C^{0, \alpha}(\bar{\Omega})$ for all $\alpha<1$, but not in $C^{0,1}$ in general.

Proof of Theorem 2

Let us consider the domain Ω constructed in Lemma 3 and assume that, for any $f \in L^{1}(\Omega, \delta)$, the unique solution u of (1) satisfies $|\nabla u| \in L^{1}(\Omega)$. Then, define

$$
(-\Delta)^{-1}: \begin{array}{lll}
L^{1}(\Omega, \delta) & \rightarrow & L^{1}(\Omega) \\
f & \mapsto & u=(-\Delta)^{-1} f
\end{array}
$$

u being the unique solution of (1), and set

$$
T f=\nabla(-\Delta)^{-1} f
$$

We start with the

Lemma 4.

If every very weak solution u satisfies $\int_{\Omega}|\nabla u| d x<+\infty$, then

$$
\sup _{|f|_{L^{1}(\Omega, \delta)}=1}|T f|_{L^{1}(\Omega)^{N}} \text { is finite. }
$$

Proof

Choose $0<\varepsilon \leqslant \varepsilon_{0}\left(\varepsilon_{0}\right.$ small enough) and set $\Omega_{\varepsilon}=\{x \in \Omega: \delta(x)>\varepsilon\}, T_{\varepsilon} f=\chi_{\Omega_{\varepsilon}} \nabla(-\Delta)^{-1} f$, with $\chi_{\Omega_{\varepsilon}}$ the characteristic function of Ω_{ε}. If $\int_{\Omega}\left|\nabla(-\Delta)^{-1} f\right| d x<+\infty$, then by the Lebesgue dominated convergence theorem

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}}\left|\nabla(-\Delta)^{-1} f\right| d x=\int_{\Omega}\left|\nabla(-\Delta)^{-1} f\right| d x
$$

and

$$
\left|T_{\varepsilon} f\right|_{L^{1}} \leqslant \frac{1}{\varepsilon} \int_{\Omega}|\nabla u| \delta d x \leqslant \frac{c}{\varepsilon}|f|_{L^{1}(\Omega, \delta)}
$$

from Proposition 1.
The Banach-Steinhaus Uniform Boundedness principle then implies that there exists a constant $c(\Omega)>0$ such that

$$
\begin{equation*}
|\nabla u|_{L^{1}(\Omega)} \leqslant c(\Omega)|f|_{L^{1}(\Omega, \delta)} \tag{16}
\end{equation*}
$$

and the lemma is proven.
Going back to the proof of Theorem 2, consider now the sequence

$$
u_{k} \in W^{2, p}(\Omega) \cap H_{0}^{1}(\Omega)(\text { with } p>N)
$$

solution of

$$
-\Delta u_{k}=f_{k}=\min (|f| ; k) \operatorname{sign}(f), \quad f_{k} \rightarrow f \text { in } L^{1}(\Omega, \delta)
$$

One can show that

$$
\left|\nabla\left(u_{k}-u\right)\right|_{L^{1}(\Omega)} \leqslant c(\Omega)\left|f-f_{k}\right|_{L^{1}(\Omega, \delta)} \rightarrow 0
$$

and therefore

$$
u \in W_{0}^{1,1}(\Omega)
$$

Letting ψ be the function introduced in Lemma 3, the fact that $\sup _{x \in \Omega}\left\{\frac{\psi(x)}{\delta(x)}\right\}=+\infty$ implies the existence of a function $f_{0} \in L^{1}(\Omega, \delta), \quad f_{0} \geqslant 0$, such that

$$
\int_{\Omega} f_{0}(x) \psi(x) d x=+\infty
$$

As a matter of fact, the Hopf Maximum Principle ensures the existence of a constant $k_{1}>0$ such that

$$
\psi(x) \geqslant k_{1} \delta(x) \quad \forall x \in \Omega
$$

Hence

$$
\begin{equation*}
L^{1}(\Omega, \psi) \subset_{>} L^{1}(\Omega, \delta) \tag{17}
\end{equation*}
$$

If $L^{1}(\Omega, \psi)=L^{1}(\Omega, \delta)$, there must exist a constant $c_{1}(\Omega)>0$ such that

$$
\begin{equation*}
|f|_{L^{1}(\Omega, \psi)} \leqslant c_{1}(\Omega)|f|_{L^{1}(\Omega, \delta)} \quad \forall f \in L^{1}(\Omega, \delta) . \tag{18}
\end{equation*}
$$

Since the function spaces $L^{1}(\Omega, \psi)$ and $L^{1}(\Omega, \delta)$ are Banach spaces, one can deduce this inequality from the properties of Banach spaces, see e.g. [1], Theorem 1.8. Relation (18) would then imply that $\psi(x) \leqslant c_{1}(\Omega) \delta(x)$ for all $x \in \Omega$, obviously contradicting the fact that

$$
\sup _{x \in \Omega}\left\{\frac{\psi(x)}{\delta(x)}\right\}=+\infty
$$

Let now $f_{0} \in L^{1}(\Omega, \delta)$ be such that $f_{0} \notin L^{1}(\Omega, \psi)$, i.e. such that $\int_{\Omega}\left|f_{0}(x)\right| \psi(x) d x=+\infty$, and assume that $f_{0} \geqslant 0$ (otherwise, simply consider $\left|f_{0}\right|$).
Defining the sequence $f_{0 k}=\min \left(f_{0} ; k\right)$ and letting \bar{u}_{k} be the solution of $-\Delta \bar{u}_{k}=f_{0 k}$, one has using Lemma 4 that

$$
\begin{align*}
0 \leqslant & \int_{\Omega} f_{0 k} \psi d x=-\int_{\Omega} \psi \Delta \bar{u}_{k} d x=-\int_{\Omega} \bar{u}_{k} \Delta \psi d x=\int_{\Omega} \bar{u}_{k} g d x \\
& \leqslant\left|\bar{u}_{k}\right|_{L^{N^{\prime}}} \cdot|g|_{L^{N}} \leqslant c\left|\nabla \bar{u}_{k}\right|_{L^{1}} \cdot|g|_{L^{N}} \leqslant c\left|f_{0}\right|_{L^{1}(\Omega, \delta)}|g|_{L^{N}} \tag{19}
\end{align*}
$$

Letting $k \rightarrow+\infty$ in relation (19), we derive from Beppo-Levi's theorem that

$$
+\infty=\int_{\Omega} f_{0} \psi d x=\lim _{k \rightarrow+\infty} \int_{\Omega} f_{0 k} \psi d x \leqslant c\left|f_{0}\right|_{L^{1}(\Omega, \delta)}|g|_{L^{N}}<+\infty
$$

which is absurd. Hence, there exists a function $f_{0} \in L^{1}(\Omega, \delta)$ such that the associate weak solution u_{0} satisfies $\left|\nabla u_{0}\right| \notin L^{1}(\Omega)$.

Proof of Lemma 3

For the sake of convenience, we start with the case $N=2$ and generalize the construction in a second step.

Let us first consider the open set

$$
\Omega_{1}=\left\{x=\left(x_{1}, x_{2}\right): x_{1}^{2}<x_{2}, x_{1}^{2}+x_{2}^{2}<\frac{1}{e}\right\}
$$

and define a preliminary function on Ω_{1} by

$$
w\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}^{2}\right) \operatorname{Ln}\left(\operatorname{Ln} \frac{1}{x_{1}^{2}+x_{2}^{2}}\right) .
$$

Some remarks are in order:

- In polar coordinates, w can be written as $w=r(\sin (\theta)-r \cos (\theta)) \operatorname{Ln}(|\operatorname{Ln} r|)$.
- Another possibility would be to choose, instead of $w, w_{0}=r \sin (\theta) \operatorname{Ln}(|\operatorname{Ln} r|)$ on $\{(r, \theta): r>$ $0,0<\theta<\pi\}$. In what follows, we can use w or w_{0}.

The function w has the following properties:

1. $w>0$ in Ω_{1},
2. $w\left(x_{1}, x_{1}^{2}\right)=0$ for $-x_{1 c}<x_{1}<x_{1 c}$ with $x_{1 c}^{4}+x_{1 c}^{2}=\frac{1}{e}$, and $w\left(x_{1}, x_{2}\right)=0$ for $x_{1}^{2}+x_{2}^{2}=\frac{1}{e}$,
3. $w \in C^{\infty}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{1}\right)$.

Indeed, it is sufficient to compute $\frac{\partial w}{\partial x_{i}}$ and $\frac{\partial^{2} w}{\partial x_{i}^{2}}$ and prove that $\Delta w \in L^{2}(\Omega)$.

$$
\begin{aligned}
& w\left[x_{1}, x_{2}\right]=\left(-x_{1}^{2}+x_{2}\right) \operatorname{Ln}\left[\operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right] \\
& \frac{\partial w}{\partial x_{1}}=-\frac{2 x_{1}\left(-x_{1}^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]}-2 x_{1} \operatorname{Ln}\left[n\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right] \\
& \frac{\partial w}{\partial x_{2}}=-\frac{2 x_{2}\left(-x_{1}^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]}+\operatorname{Ln}\left[\operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right]
\end{aligned}
$$

$$
\frac{\partial^{2} w}{\partial x_{1}{ }^{2}}=-\frac{4 x_{1}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{2} \operatorname{Ln}\left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]^{2}}+\frac{4 x_{1}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{2} \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}{ }^{2}}\right]}+\frac{8 x_{1}{ }^{2}}{\left(x_{1}{ }^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}
$$

$$
-\frac{2\left(-x_{1}^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]}-2 \operatorname{Ln}\left[\operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right]
$$

$$
\frac{\partial^{2} w}{\partial x_{2}^{2}}=-\frac{4 x_{2}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}\right)^{2} \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]^{2}}+\frac{4 x_{2}{ }^{2}\left(-x_{1}^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}{ }^{2} \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right.}-\frac{4 x_{2}}{\left(x_{1}^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]}
$$

$$
-\frac{2\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}{ }^{2}+x_{2}^{2}}\right]}
$$

$\Delta w=\frac{4\left(x_{1}^{2}-x_{2}+\left(2 x_{1}^{2}-x_{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right)}{\left(x_{1}^{2}+x_{2}^{2}\right) \operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]^{2}}-2 \operatorname{Ln}\left[\operatorname{Ln}\left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right]$.
Using polar coordinates, one can check that

$$
\Delta w \in L^{2}(\Omega),|\nabla w| \in L^{p}(\Omega) \forall p<+\infty .
$$

Consider now $x_{1 c}>\eta>0$ and an open set Ω, of class $C^{2,1}$ at least, such that

$$
\Omega \subset\left[-x_{1 c}+\eta ; x_{1 c}-\eta\right] \times\left[0, \frac{1}{\sqrt{e}}\right]
$$

and
$\partial \Omega \supset \Gamma_{0}=\left\{\left(x_{1}, x_{2}\right):-x_{1 c}+\eta<x_{1}<x_{1 c}-\eta, x_{2}=x_{1}^{2}\right\} \cap\left\{\left(x_{1}, x_{2}\right):-x_{1 c}+\eta<x_{1}<x_{1 c}-\eta, x_{1}^{2}+x_{2}^{2}=\frac{1}{e}\right\}$.
For $a>0: 0<2 a<x_{1 c}-\eta$, define a smooth function θ such that

$$
\theta \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right), \theta \geqslant 0 \text { and } \begin{cases}0 \leqslant \theta \leqslant 1 \\ \theta\left(x_{1}, x_{2}\right)=1 & \text { if }\left|x_{1}\right| \leqslant a \\ \theta\left(x_{1}, x_{2}\right)=0 & \text { if } \left\lvert\, x_{1}>\frac{3 a}{2}\right.\end{cases}
$$

In particular, the function θw vanishes on the boundary of Ω. Let us show that $\psi_{0}=\theta w$ satisfies the following properties:

1. $-\Delta \psi_{0}=f_{0} \in L^{2}(\Omega)$.
2. $\sup _{x \in \Omega}\left\{\frac{\psi_{0}(x)}{\delta(x)}\right\}=+\infty$.

Property 1 is obvious, since

$$
\left\{\begin{array}{l}
-\Delta \psi_{0}=-(\Delta \theta w+2 \nabla w \nabla \theta+\Delta w \theta) \in L^{2}(\Omega) \\
\psi_{0} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

To prove Property 2, consider $x=\left(x_{1}, \alpha x_{1}\right), 0<\alpha<1, \quad x_{1}$ small enough so that $x \in \Omega$. Then there holds

$$
\frac{\psi_{0}(x)}{\delta(x)}=\frac{\psi_{0}\left(x_{1}, \alpha x_{1}\right)}{\delta(x)} \geqslant \frac{\left(\alpha-x_{1}\right) \operatorname{Ln}\left(\left(-\operatorname{Ln}\left(1+\alpha^{2}\right) x_{1}^{2}\right)\right)}{\sqrt{1+\alpha^{2}}} \underset{x_{1} \rightarrow 0}{ }+\infty
$$

which shows that

$$
\sup _{x \in \Omega}\left\{\frac{\psi_{0}(x)}{\delta(x)}\right\}=+\infty
$$

Setting $g=\left|f_{1}\right|$ and considering $\psi>0$ solution of $-\Delta \psi=g, \psi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, one has by the maximum principle that $\psi \geqslant \psi_{0}$, so that $\sup _{x \in \Omega}\left\{\frac{\psi(x)}{\delta(x)}\right\}=+\infty$.

The construction above can be generalized to \mathbb{R}^{N}, let us outline the main steps of the procedure.

For $x=\left(x^{\prime}, x_{N}\right)=\left(x_{1}, \ldots, x_{N-1}, x_{N}\right) \in \mathbb{R}^{N}$, set

$$
\left|x^{\prime}\right|^{2}=x_{1}^{2}+\ldots+x_{N-1}^{2}, \quad \sigma(x)=x_{1}^{2}+\ldots+x_{N}^{2}
$$

We first consider the open set

$$
\Omega_{1}=\left\{x=\left(x^{\prime}, x_{N}\right),\left|x^{\prime}\right|^{2}<x_{N}, \sigma(x)<\frac{1}{e}\right\}
$$

and define on Ω_{1} the nonnegative function

$$
w(x)=\left(x_{N}-\left|x^{\prime}\right|^{2}\right) \operatorname{Ln}\left(\operatorname{Ln} \frac{1}{\sigma(x)}\right), x \in \Omega_{1} .
$$

w satisfies properties similar to those used in the two-dimensional case. For a small $a>0$, consider $\theta \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{cases}0 \leqslant \theta \leqslant 1, \\ \theta\left(x^{\prime}, x_{N}\right)=1 & \text { if }\left|x^{\prime}\right| \leqslant a \\ \theta\left(x^{\prime}, x_{N}\right)=0 & \text { if }\left|x^{\prime}\right|>\frac{3 a}{2}\end{cases}
$$

and an open set Ω of class $C^{2,1}$ with supp $\theta \cap \Omega_{1} \subset \Omega$ and $\theta w=0$ on $\partial \Omega$.
Then, the function $\psi_{0}(x)=\theta w(x)$ satisfies $-\Delta \psi_{0} \in L^{N}(\Omega)$, since $\Delta w \in L^{N}(\Omega)$ thanks to a straightforward computation. Setting

$$
e_{N-1}=(1, \ldots, 1), \quad x_{\alpha}=x_{N}(\alpha, \ldots, \alpha, 1) \in \Omega, \alpha>0
$$

for $x_{N}>0, x_{N}$ small enough, there holds

$$
\frac{\psi_{0}\left(x_{\alpha}\right)}{\delta\left(x_{\alpha}\right)} \geqslant \frac{\left(1-\alpha^{2}\left|e_{N-1}\right|^{2} x_{N}\right)}{\sqrt{1+\alpha^{2}\left|e_{N-1}\right|^{2}}} \operatorname{Ln}\left(\operatorname{Ln}\left(\frac{1}{x_{N}^{2}\left(1+\alpha^{2}(N-1)\right)}\right)\right) \underset{x_{N} \rightarrow 0}{ }+\infty .
$$

Therefore

$$
\sup _{x \in \Omega}\left\{\frac{\psi_{0}(x)}{\delta(x)}\right\}=+\infty
$$

Finally, considering the solution ψ of

$$
\left\{\begin{array}{l}
-\Delta \psi=\left|\Delta \psi_{0}\right|=g \in L^{N}(\Omega) \\
\psi \in W^{1, N}(\Omega) \cap W^{2, N}(\Omega),
\end{array}\right.
$$

and by the same argument as in the two-dimensional case, there also holds that

$$
\sup _{x \in \Omega}\left\{\frac{\psi(x)}{\delta(x)}\right\}=+\infty
$$

which ends the proof of Lemma 3.

Acknowledgment: the authors thank C. Falaise-Bougant for the realization of this manuscript and for helping with Wolfram Mathematica ${ }^{\circledR} 8$, which was used in the computation of the derivatives of w.

References

[1] C. Bennett, R. Sharpley, Interpolation of Operators, ed. Academic Press. London, (1983).
[2] M.F. Bidault-Veron, L. Vivier, An elliptic semilinear equation with source term involving boundary measures : the subcritical case. Rev; Mat. Iberoamericana 16 (2000), 477-513.
[3] H. Brezis, Analyse fonctionnelle théorie et applications, ed. Masson, Paris, (1983).
[4] H. Brezis, Th. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. in Diff. Eq, 1 (1996) 73-90. (Also personal communication to J.I. Diaz)
[5] J.I. Díaz, J.M. Rakotoson, On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary, J. Functional Analysis, doi:10.1016/j.jfa.2009.03.002, 257, (2009), 807-831.
[6] J.I.Díaz, J.M. Rakotoson, On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary, Discrete and Continuous Dynamical Systems, 27 3, (2010) 1037-1058.
[7] G. Demengel, F. Demengel Espaces Fonctionnels, Utilisation dans la résolution des équations aux dérivées partielles, CNRS Editions, (2007).
[8] J.M. Rakotoson, A few natural extension of the regularity of a very weak solution, Differential and Integral Equations, bf 24 11-12, (2011), 1125-1140.
[9] J.M. Rakotoson, Réarrangement Relatif: un instrument d'estimation dans les problèmes aux limites, ed. Springer Verlag Berlin, (2008).
[10] J.E. Rakotoson, J.M. Rakotoson, Analyse fonctionnelle appliquée aux dérivées partielles, ed. PUF, (1999).

Frédéric ABERGEL

Laboratoire de Mathématiques Appliquées aux Systèmes
École Centrale Paris
Grande voie des Vignes, 92295 Châtenay-Malabry Cedex
Jean-Michel RAKOTOSON*
Laboratoire de Mathématiques
et Applications, Université de Poitiers
Boulevard Marie et Pierre Curie, Téléport 2, BP 30179
86962 Futuroscope Chasseneuil Cedex, FRANCE
E-mail *rako@math.univ-poitiers.fr(corresponding author: Rakotoson)

