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Gradient blow-up in Zygmund spaces for the very weak

solution of a linear elliptic equation

Frédéric ABERGEL
Jean-Michel RAKOTOSON

Abstract

It is known that the very weak solution v € L*(Q) of — / ulApdr = / fdx for all test
functions ¢ € C?(Q), ¢ = 0 on 99, has its gradient in L1() W}?enever fe Ly(ﬂ; 6(1+|Ln 4))),
d(x) being the distance of x € Q to the boundary. In this paper, we show that if f > 0 is not
in this weighted space L'(Q;8(1 + |Ln 4])), then the gradient of u blows up in L(log L) at
least. Moreover, we show that there exist a domain 2 of class C*° and a function f € L}r(Q, J)

such that the associated very weak solution has its gradient being non integrable on (2.

Keywords Very weak solutions; Distance to the boundary; Regularity; Linear PDE; Monotone

rearrangement; Gradient blow-up.

1 Introduction

In this paper, we state and prove two results related to the behaviour near the boundary of very
weak solutions to Laplace’s equation. In the first part of the paper, we prove that the very weak

solution u € L*(Q2) of the so-called Brezis weak formulation (see [4, 5, 6])

—/uAgpdx:/fgpdx, Vo e C*Q), ¢=0on0dQ, (1)
Q Q



verifies / |Vu||Ln 6| dx = +oo whenever f > 0, f is integrable with respect to the distance
Q
function §(z) = dist (z,0) but f ¢ L'(€;6(1 + |Ln 4]). This result implies in particular that

|Vu| blows up in the Zygmund space L(Ln L):

[ 9ul.e(0)dt = oo, 2)

where |Vul.(t) = 1 [} |Vul,(0)do, [Vu

Tt

. 1s the decreasing rearrangement of |Vu| and €, =

10, meas (2)[ (see Section 2 below for the precise definitions).

In the second part, we construct an open bounded smooth set Q of RY, N > 2, and a function

ferL'y(Q9), fe Lt (97 d(1+ |Ln 5\)), such that the associate very weak solution u verifies

/Q |Vu|dr = 4o0. (3)

2 Background and notations

The main properties of Lorentz spaces, see e.g. [1, 9], are briefly recalled.
For a Lebesgue measurable set E of ), denote by | | its measure. The decreasing rearrangement

of a measurable function u is the function wu, defined by
uy s Qe =0, |Q[— IR, u.(s) =inf{t € R: |u>t| < s}.
In particular, there holds:
u,(0) = esssup v, u,(19]) = essinf u.

Introducing
1 t
V|4 (t) = ?/ |v|.(s)ds for t € Q, =]0, |Q|],
0
the Lorentz spaces can now be defined.

For 1 <p < +o0, 1 <¢q< o0,

1/ dt
Lr(Q) = {v : 2 — IR measurable , |v[},, = / [t5|v|**(t)]q? < —{—oo}
0
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and, for ¢ = +o0,

LP=(Q) = {v : 2 = IR measurable |, |v|p.c = sup t%|v|**(t) < +oo}.
t<|0]

Finally, we define
WHQ | ) = {0 € WHHQ) 1 [Vl € L9(@) }
and
Ch(Q) = {gp € C™ (), ¢ has compact support in Q}
For the sake of completeness, we also recall some general results concerning Equation (1).
Proposition 1. (see [2, 5, 8])
Let Q be an open bounded set of class C*' in RN, f € L*(€2,6), where () is the distance function

of x € Q to the boundary 0). Then, there exists a constant ¢ > 0 such that for any solution u of
(1), one has

1. |Vu|L1+%,w(Q‘5) < ol flv@s),

ul vt o) < €l flrias), N' = 2= if N > 2, N' = +oo otherwise.
2. If f 20, then u > 0.

3. If f € LY(Q;0(1 +|Ln d])), then u € Wy () and
Velee) < Al (a4 mn o)
4. If Qis a ball and f is radial, then v € W, (Q) and

|Vulrio) < ol flry@s)-

5. If Q =]a, b then the above estimate holds for all f € L*(]a, b[,9). O



3 Blow-up in Zygmund space for f ¢ L'(;(1+ |Ln 4]))
The aim of this section is to prove the

Theorem 1.

Under the assumptions of Proposition 1, if f >0 and f ¢ L*(Q;6(1 4 |Ln 6])), then any solution
u of (1) satisfies

1. / |Vu||Ln 0| dz = +o0;
Q

2. / |Vl (t)dt = +oo (ie. [,|Vu|max(Ln |Vul;0)dz = +0c0).
Q*
Before proving Theorem 1, we state and prove the

Lemma 1.

Let u be a very weak solution of (1) and assume that / |Vu|dr < 400. Then, u satisfies
0

/Vu-Vgpda::/fgodx, Ve Whe(Q) N H (). (4)
Q Q

Proof
By the density of C%(€2) in C}(€2), one has

/Vu-chd:c:/fgod:c, Vi € CHQ)
Q Q

and the lemma follows.

Using standard truncation and convolution arguments (see [10, 7, 3]), one can also prove the

following approximation result:

Proposition 2.

Let o € Wh(Q) N HY(Q). There exists a sequence @, € CL1(Q) such that

1. 3¢ >0, |Vulo < c(lW)loo + !w\oo> vn,



2 on = in C(Q) (i.e. Max |pn(z) = p()] ——0 ),
3. Vo, — Vo in L=(Q)N -weak star.

(proof omitted).
Proof of Theorem 1

Considering p € W1*°(Q) N H}(Q) and its approximating sequence as in Proposition 2, there holds

/ Vu-Veo,dr = / fond. (5)
Q Q
By Statement 3. of Proposition 2, one also has that
lim /Vu-Vgondm: /Vu-Vgodx (6)
n——+00 Q Q

and, using the mean value theorem and Statement 1.,
lon () — ()] < |V(pn — 9)leo - 6(2) < 0(x). (7)
Since f € L'(€;4), the Lebesgue dominated convergence theorem yields

lim /Q Foon dr = /Q foods. (8)

Combining relations (5) to (8), we obtain the result. O

Next, we want to prove

Lemma 2.

Under the assumptions of Proposition 1, if f > 0 and u is the very weak solution of (1) such that
/ |Vul||Ln §| dx < +oo, then there exists a constant c(2) > 0 (independent of u) such that

Q

/Qf(syLn 5| dr < c() </Q Vul(1+ |Lu §) dx+/ﬂf6dx> | ()



Proof Let us first note that, according to Proposition 1, Statement 1, we have
/ |Vuld de < c/ fodx < +oo.
Q Q

Therefore, the fact that / |Vu||Ln 0| dx < 400 is equivalent to / [Vul(1 4 |Ln 6]) dz < +oo,
since |Ln §] > 8 > 0 near St]he boundary. ’

Fix 0 < e < % and consider ¢; > 0 the first eigenfunction of (—A) with Dirichlet boundary
condition: —Ap; = A1 in Q, o1 = 0 on 9Q. Then, ¢ = 1| Ln (p; +¢)| € WH(Q) N H(Q) is a

good test function, and there holds

o1 sign (Ln (o1 +¢))

/ forlLn (p1 +¢)|dx = / Vu-Voi|Ln (o1 +¢)|de + / Vu -V, dz.
Q 0 Q p1t+e
(10)
Since |[V1|e < 400 and [Ln (¢ +€)| < |Ln 1| + 1, we deduce
/fgpl\Ln(gol o) de < c/ V(14 |Ln o) da. (11)
0 0
Letting ¢ — 0 and using Fatou’s lemma yields
| terltnailds < [ V@ + Lo ) (12)
0 0

Since there exist two constants ¢g > 0, ¢; > 0 such that co0 < 1 < ¢16, Relation (9) follows from
Relation (12).

End of the proof of Theorem 1

Let f > 0 be in L*(;0) and f ¢ L'(€;6(1 + |Ln 4])), so that /f(:v)5|Ln d|dz = +oo. From

Q
Lemma 2, we deduce that

/ |Vu| | Ln 0| dz = +o0, (13)
Q
which proves Statement 1.
As for Statement 2., we recall that
kK t
Lewp(2) = v € L'(Q), sup L(I)QI < 400
o<t<o] 1+ Ln =
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is the associate space of L(Ln L) = {v € LY(Q), / 0] (B)dt < +oo} (see [1]). As |Ln 6| € Leyy
0
since ¢ € L'(Q) for 0 < ¢ < 1, there holds

/ ]Vu] : ]Ln 5’ g ’LH 5’L€ZP(Q) : |VU’L(LH L) (14)
Q

Relation (14) and the fact that |Ln ¢

Leap(@) < +00 imply that
IVulpn L) = / |Vl (t)dt = +oo (15)
Qs

and Statement 2. is proven. &

4 Existence of a domain () and a very weak solution whose
gradient blows up in L'(Q)

The main result of this section is the

Theorem 2.
There exist a domain Q of RN, N > 2, of class C* and a function f € L'(Q,6) such that the weak
solution ug of (1) satisfies

[Vuo| ¢ L)

(that is: / |Vuo|(z) de = +00).
Q
The key ingredient in the proof of Theorem 2 is the

Lemma 3.
There exist a domain Q of RN, N > 2, of class C* and a nonnegative function g € LN (Q) such
that the unique solution 1 > 0 of =AY =g in Q, » € WAV (Q) N HI(Q), satisfies

iﬁg{%} -



Let us admit temporarily this lemma ( which amounts to saying that |V (z)| is very large near a
point of the boundary). Note that, according to Sobolev Embedding Theorem, W% (Q) is included
in C%(Q) for all @ < 1, but not in C%! in general.

Proof of Theorem 2

Let us consider the domain € constructed in Lemma 3 and assume that, for any f € LY(Q,§), the

unique solution u of (1) satisfies |[Vu| € L*(Q2). Then, define
LY(9Q,0) — LY
f = u= (_A)_1f7

u being the unique solution of (1), and set

(—A)

Tf=V(-=A)f
We start with the

Lemma 4.
If every very weak solution u satisfies / |\Vu|dx < 400, then
Q

sup  |Tf|piqyn is finite.
[f1p1(q,5=1

Proof
Choose 0 < ¢ < €q (g9 small enough) and set 2. = {a: €Q:i(x) > 5}, T.f = xo.V(=A)7 f, with

Xq. the characteristic function of Q.. If / |V(—A)~!f|dz < 400, then by the Lebesgue dominated
Q

hm/ |V (— f|d:v—/|V “f|dx

1 c
Tef|r < —/ [Vul|ddr < =|fl1 )
€ Jo 19

convergence theorem

and

from Proposition 1.
The Banach-Steinhaus Uniform Boundedness principle then implies that there exists a constant

c(£2) > 0 such that
Vulpo) < c(Q)]f]r s (16)



and the lemma is proven. &

Going back to the proof of Theorem 2, consider now the sequence
up € W2P(Q) N Hy () (with p > N)
solution of
—Auy, = f = min(|f|; k)sign (f), fr — f in L'(,6).
One can show that
|V (u — )| < Q)| f = frlrras — 0

and therefore

u e Wy (Q).

Letting 1) be the function introduced in Lemma 3, the fact that sup
€

{w<x>

} = 400 implies the

existence of a function fy € L'(Q,6), fo = 0, such that

[ o) i = e

As a matter of fact, the Hopf Maximum Principle ensures the existence of a constant k; > 0 such
that
Y(z) = kid(z) Ve

Hence

LY(Q,4) C LY(Q,0). (17)

If L'(Q,¢) = L*(£, ), there must exist a constant ¢;(Q) > 0 such that

[flevew < al@)flios VfeL'(Q06). (18)

Since the function spaces L'(2,1) and L'(Q, §) are Banach spaces, one can deduce this inequality
from the properties of Banach spaces, see e.g. [1], Theorem 1.8. Relation (18) would then imply
that ¥(x) < ¢1(Q)d(x) for all € €2, obviously contradicting the fact that

(5}
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Let now fy € L'(Q,6) be such that f, ¢ L'(,4), i.e. such that /]fo(:c)|z/1(:c) dr = 400, and
Q

assume that fy > 0 (otherwise, simply consider |fo).

Defining the sequence fo, = min(fo; k) and letting @ be the solution of —Awy, = fox, one has using

Lemma 4 that

O</foM/de:—/iﬁAﬂkdx:—/ﬂkAwdx:/ﬂkgdx
Q Q Q Q

< g v - gl < el V|- |gloy < el folr s lgloy. (19)

Letting k — o0 in relation (19), we derive from Beppo-Levi’s theorem that

+00 = / f(ﬂ/) dr = lim /fokwdac < C|f0|L1(975)‘g‘LN < 400,

which is absurd. Hence, there exists a function fo € L'(€, ) such that the associate weak solution
ug satisfies |Vug| & L'(9). &
Proof of Lemma 3

For the sake of convenience, we start with the case N = 2 and generalize the construction in a
second step.

Let us first consider the open set
2 2 21
Q) = {x = (x1,29) 1 x] < Xg, ]+ 25 < E}
and define a preliminary function on €; by

w(xy, ) = (29 — 27) Ln (Ln ;> :

23+ a3
Some remarks are in order:
- In polar coordinates, w can be written as w = r(sin(f) — 7 cos(#)) Ln (| Ln r|).
- Another possibility would be to choose, instead of w, wy = rsin(f) Ln (|Ln r|) on {(r,0) : r >
0,0 < 6 < 7}. In what follows, we can use w or wy.

The function w has the following properties:
1. w > 0in Qq,

10



. 1
2. w(zy,2?) =0 for —x1. <2 < 210 With 27, + 22, = =, and w(z1, 25) = 0 for 2?2 + 23 = ~
e

3. we C®(Q) N HAQ).

82

Indeed, it is sufficient to comput oz, e U; and prove that Aw € L?(Q).
wlzy, xa) = (—x21% + x9) Ln [Ln [mﬂ

211 (—x12 1
gw _ r1 (=217 4 29) e, Ln {n [ﬁ”

1 (1'12 + To ) Ln [m] 1 + Z2

2 —x? 1
aw:_ LL'Q( T +$2) —|—L7’L|:L7L|: g 2:|:|
8$2 <I12+JI2 )Ln[ 2+x :| ! —|—$2
0*w B 4112 (—21% + 19) N 4112 (—21% + 19) N 8112

- 2
81'1 <I12 + 29 ) Ln [W} (;L’12 + X9 ) In [m} (;(j12 + 29 )Ln [m]
2(— 2
BT N [
(212 + 222) L [sz] 1% + T2

Pw 4w9% (=112 + 19) N 439% (=112 + 1) Axy

2
8:132 (:L‘lz + 9 ) Ln [m] (fL‘lQ + Z9 ) Ln [W] (I’12 + Zo )L’I’L [m]
2(—x1® + 22)

_(x12—|—x2 )Ln[

5E12+€E2 ]

4 (xlz — X9 —+ (21‘1 — 1'2) Ln [m}) 1
(212 + 292) Ln [m 1% + 29

Using polar coordinates, one can check that

Aw € L*(Q), |Vw| € LP(Q) Vp < +oo.
Consider now 1. > 1 > 0 and an open set €, of class C*! at least, such that
QC [—am 4+ | x [0,
ar 1 L1e — y T~
1 521 n \/E

11



and

For a > 0:0 < 2a < x1. — n, define a smooth function 6 such that

(

0<0<1,

QECEO(]R?)? 9>0and S 9(1'1,1'2):1 if ‘Z’l‘ ga,

0(171,(132) =0 if |l’1 > 37a'

\
In particular, the function fw vanishes on the boundary of 2. Let us show that ¢y = fw satisfies

the following properties:
1. —A@Dg = fy € Lz(Q)

{5} =

Property 1 is obvious, since
—Athg = —(AGw + 2VwVO + Awb) € L*(Q),
Yy € HOI(Q)

To prove Property 2, consider z = (z1, ), 0 < a < 1, x; small enough so that = € 2. Then
there holds

= +00

ZE) 5(1‘) - V14 ao? z1—0

wo(l“)}

su = +00

xeg{ 6(x)

Setting g = | f1| and considering ¢ > 0 solution of —Ay = g, ¢ € H}(2) N H?(2), one has by the

maximum principle that ¢ > 1y, so that sup {M} = +00. &
zeQ 5(~T>

Yo(#) _ dolzr,am) _ (a—a1)In ((=Ln (1 +a?)zi))
o

which shows that

The construction above can be generalized to IRY, let us outline the main steps of the procedure.

12
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A

o DOIy = {(ml,xg) =X < 11 < Tye—N, Ty = x%}ﬂ{(ml,xg) D =X < 11 < T, mf—i—x% = -



For x = (2, zx) = (z1,...,05_1,7y5) € RY, set
7P =24 .. . +a%_,, ol@)=2>+.. . +2%.
We first consider the open set

1
0 = {x = (2',zn), |2']? <2y, o(z) < E}

and define on §2; the nonnegative function

w(z) = (zy — |'2) Ln (Ln ﬁ) e

w satisfies properties similar to those used in the two-dimensional case. For a small a > 0, consider

0 € C=(IRY) such that

(

0<0<1,

Oz’ xn) =1 if [2/] <a,

O(z',xn) =0 if |2/ > sa
\

2
and an open set € of class C?! with suppd N Q; C Q and w = 0 on ON.

Then, the function ¥g(z) = Ow(z) satisfies —A¢y € LYN(Q), since Aw € LY(Q) thanks to a

straightforward computation. Setting
en-1=(1,...,1), zo=2an(a,...,a,1) €Q, a>0,

for xn > 0, xy small enough, there holds

Yo(0) S (1 —a’lex1|*zn) Lo <L

5(xa) - \/1+C¥2|€N_1‘2

Therefore

{%(x)

sup
z€Q

Finally, considering the solution ¢ of

— A = |Ary| = g € LN (Q)

b e WIN(Q) NN (Q),

13



and by the same argument as in the two-dimensional case, there also holds that

i)

which ends the proof of Lemma 3. &
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