Gradient blow up in Zygmund spaces for the very weak solution of a linear elliptic equation

Frédéric Abergel, Jean-Michel Rakotoson

To cite this version:

Frédéric Abergel, Jean-Michel Rakotoson. Gradient blow up in Zygmund spaces for the very weak solution of a linear elliptic equation. 2011. hal-00647503v1

HAL Id: hal-00647503
https://hal.science/hal-00647503v1
Preprint submitted on 2 Dec 2011 (v1), last revised 20 Jan 2012 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Gradient blow-up in Zygmund spaces for the very weak solution of a linear elliptic equation.

Frédéric ABERGEL

Jean-Michel RAKOTOSON

Abstract

It is known that the very weak solution of $-\int_{\Omega} u \Delta \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in C^{2}(\bar{\Omega}), \varphi=0$ on $\partial \Omega, u \in L^{1}(\Omega)$ has its gradient in $\mathrm{L}^{1}(\Omega)$ whenever $f \in L^{1}(\Omega ; \delta(1+|\log \delta|))$ with $\delta(x)$ being the distance of $u \in \Omega$ to the boundary. Here, we show that if f is not in this weighted space $L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|)), f \geqslant 0$, then its gradient blows up in $L(\log L)$ at least. Moreover, we show that there exist a domain Ω of class C^{∞} and a function $f \in L_{+}^{1}(\Omega, \delta)$ such that the associated very weak solution has its gradient being non integrable on Ω.

Keywords Very weak solutions; Distance to the boundary; Regularity; Linear PDE; Monotone rearrangement; Lorentz spaces.

1 Introduction

In this paper, we state and prove two results related to the behaviour near the boundary of very weak solutions to Laplace's equation. In the first part of the paper, we prove that the very weak solution $u \in L^{1}(\Omega)$ of the so-called Brezis weak formulation (see $[4,5,6]$)

$$
\begin{equation*}
-\int_{\Omega} u \Delta \varphi d x=\int_{\Omega} f \varphi d x, \quad \forall \varphi \in C^{2}(\bar{\Omega}), \quad \varphi=0 \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

verifies $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x=+\infty$ whenever $f \geqslant 0, f$ is integrable with respect to the distance function $\delta(x)=\operatorname{dist}(x, \partial \Omega)$ but $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|)$. The result implies in particular, that $|\nabla u|$ blows up in the Zygmund space $L(\operatorname{Ln} L)$:

$$
\begin{equation*}
\int_{\Omega_{*}}|\nabla u|_{* *}(t) d t=\infty \text { with } \frac{1}{t} \int_{0}^{t}|\nabla u|_{*}(\sigma) d \sigma=|\nabla u|_{* *}(t), \tag{2}
\end{equation*}
$$

$|\nabla u|_{*}$ is the decreasing rearrangement of $\left.|\nabla u|, \Omega_{*}=\right] 0$, meas $(\Omega)[$.

In the second part, we construct an open bounded smooth set Ω and a function $f \in L^{1}(\Omega, \delta)$, $f \notin L^{1}(\Omega, \delta(1+|\operatorname{Ln} \delta|))$ such that the associate very weak solution u verifies

$$
\begin{equation*}
\int_{\Omega}|\nabla u| d x=+\infty \tag{3}
\end{equation*}
$$

For the sake of completeness, we recall some general results concerning the equation (1) that we shall summarize in the following

Proposition 1. (see [2, 5, 8])
Let Ω be an open bounded set of $C^{2,1}$ in $\mathbb{R}^{N}, f \in L^{1}(\Omega, \delta)$, where $\delta(x)$ is the distance function of $x \in \Omega$ to be the boundary $\partial \Omega$. Then, there exists a constant $c>0$ such that for any solution u of (1), one has

1. $|\nabla u|_{L^{1+\frac{1}{N}, \infty(\Omega ; \delta)}} \leqslant c|f|_{L^{1}(\Omega ; \delta)}$,
$|u|_{L^{N^{\prime}, \infty(\Omega)}} \leqslant c|f|_{L^{1}(\Omega ; \delta \delta}, N^{\prime}=\frac{N}{N-1}$ if $N \geqslant 2, N^{\prime}=\infty$ otherwise
2. If $f \geqslant 0$ then $u \geqslant 0$.
3. If $f \in L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$ then $u \in W_{0}^{1,1}(\Omega)$ and

$$
|\nabla u|_{L^{1}(\Omega)} \leqslant c|f|_{L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))}
$$

4. If Ω is a ball, f is radial then $u \in W_{0}^{1,1}(\Omega)$

$$
|\nabla u|_{L^{1}(\Omega)} \leqslant c|f|_{L^{1}(\Omega ; \delta)} .
$$

5. If $\Omega=] a, b\left[\right.$ then the above estimate holds for all $f \in L^{1}(] a, b[, \delta)$.

In Proposition $1 L^{p, q}(\Omega)$ denotes the Lorentz space, see e.g. [1, 9]. Their main properties are briefly recalled below. that we recall briefly the properties can be found in [9] For a Lebesgue measurable set E of Ω we denote by $|E|$ its measure. the decreasing rearrangement of a measurable function u is the function u_{*}. Then

$$
\begin{gathered}
\left.u_{*}: \Omega_{*}=\right] 0,|\Omega|\left[\rightarrow \mathbb{R}, \quad u_{*}(s)=\inf \{t \in \mathbb{R}:|u>t| \leqslant s\}\right. \\
u_{*}(0)=\underset{\Omega}{\operatorname{ess} \sup } u, \quad u_{*}(|\Omega|)=\underset{\Omega}{\operatorname{essinf}} u .
\end{gathered}
$$

We use the following Lorentz spaces,
for $1<p<+\infty, 1 \leqslant q \leqslant+\infty$

$$
L^{p, q}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable }|v|_{L^{p, q}}^{q}=\int_{0}^{|\Omega|}\left[t^{\frac{1}{p}}|v|_{* *}(t)\right]^{q} \frac{d t}{t}<+\infty\right\}
$$

for $q=+\infty$

$$
L^{p, \infty}(\Omega)=\left\{v: \Omega \rightarrow \mathbb{R} \text { measurable }|v|_{L^{p, \infty}}=\sup _{t \leqslant|\Omega|} t^{\frac{1}{p}}|v|_{* *}(t)<+\infty\right\}
$$

Finally, we introduce some notations : χ_{E} is the characteristic function of a set $E \subset \Omega$ and

$$
\left.|v|_{* *}(t)=\frac{1}{t} \int_{0}^{t}|v|_{*}(s) d s \text { for } t \in \Omega_{*}=\right] 0, \mid \Omega
$$

Denoting by $\partial_{i}=\frac{\partial}{\partial x_{i}}, \partial_{i j}=\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$, we define the following sets

$$
W^{1}\left(\Omega,|\cdot|_{p, q}\right)=\left\{v \in W^{1,1}(\Omega):|\nabla v| \in L^{p, q}(\Omega)\right\}
$$

and

$$
C_{c}^{m}(\Omega)=\left\{\varphi \in C^{m}(\Omega), \varphi \text { has compact support in } \Omega\right\} .
$$

2 Blow-up in Zygmund space for $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$

The aim of this section is to prove the

Theorem 1.

Under the same assumptions as for Proposition 1, if $f \geqslant 0$ and $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$ then any solution u of (1) satisfies

$$
\begin{aligned}
& \text { 1. } \int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x=+\infty \text {; } \\
& \text { 2. } \left.\int_{\Omega_{*}}|\nabla u|_{* *}(t) d t=+\infty \text {, (i.e. } \int_{\Omega}|\nabla u| \max (\operatorname{Ln}|\nabla u| ; 0) d x=+\infty\right) \text {. }
\end{aligned}
$$

The proof of Theorem 1 follows

Lemma 1.

Let u be a very weak solution of (1). Assume that $\int_{\Omega}|\nabla u| d x<+\infty$. Then u satisfies

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x \quad \forall \varphi \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega) . \tag{4}
\end{equation*}
$$

Proof

By the density of $C_{c}^{2}(\Omega)$ in $C_{c}^{1}(\Omega)$, one has

$$
\int_{\Omega} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x \quad \forall \varphi \in C_{c}^{1}(\Omega)
$$

By usual argument on truncation and convolution (see [10, 7, 3]) one can prove the following approximation result:

Proposition 2.

Let $\varphi \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$. Then there exists a sequence $\varphi_{n} \in C_{c}^{1}(\Omega)$ such that

1. $\exists c>0,\left|\nabla \varphi_{n}\right|_{\infty} \leqslant c\left(|\nabla \varphi|_{\infty}+|\varphi|_{\infty}\right) \quad \forall n ;$
2. $\varphi_{n} \rightarrow \varphi$ in $C(\bar{\Omega})$ (i.e. $\operatorname{Max}_{x \in \Omega}\left|\varphi_{n}(x)-\varphi(x)\right| \xrightarrow[n \rightarrow+\infty]{ } 0$);
3. $\nabla \varphi_{n} \rightharpoonup \nabla \varphi$ in $L^{\infty}(\Omega)^{N}$-weak star.
(proof omitted).

Proof of Theorem 1

Considering $\varphi \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ and its approximating sequence in Proposition 2, we have

$$
\begin{equation*}
\int_{\Omega} \nabla u \cdot \nabla \varphi_{n} d x=\int_{\Omega} f \varphi_{n} d x \tag{5}
\end{equation*}
$$

By statement 3. of Proposition 2, we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega} \nabla u \cdot \nabla \varphi_{n} d x=\int_{\Omega} \nabla u \cdot \nabla \varphi d x \tag{6}
\end{equation*}
$$

and by the mean value theorem, we have from statement 1 .

$$
\begin{equation*}
\left|\varphi_{n}(x)-\varphi(x)\right| \leqslant\left|\nabla\left(\varphi_{n}-\varphi\right)\right|_{\infty} \cdot \delta(x) \leqslant c_{\varphi} \delta(x) \tag{7}
\end{equation*}
$$

Since $f \in L^{1}(\Omega ; \delta)$, we derive from the Lebesgue dominated convergence theorem,

$$
\begin{equation*}
\lim _{n} \int_{\Omega} f \varphi_{n} d x=\int_{\Omega} f \varphi d x \tag{8}
\end{equation*}
$$

Combining relations (5) to (8), we obtain the result.

Next we want to prove

Lemma 2.

Under the same assumption as for Proposition 1, if $f \geqslant 0$ and u is the very weak solution (1) such that $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x<\infty$., then there exists a constant $c(\Omega)>0$ (independent of u) such that

$$
\begin{equation*}
\int_{\Omega} f \delta|\operatorname{Ln} \delta| d x \leqslant c(\Omega)\left(\int_{\Omega}|\nabla u|(1+|\operatorname{Ln} \delta|) d x+\int_{\Omega} f \delta d x\right) \tag{9}
\end{equation*}
$$

Proof Let us first note that according to Proposition 1 statement 1, we have

$$
\int_{\Omega}|\nabla u| \delta d x \leqslant c \int_{\Omega} f \delta d x<+\infty
$$

Therefore, $\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x<+\infty$ is equivalent to $\int_{\Omega}|\nabla u|(1+|\operatorname{Ln} \delta|) d x<+\infty$, since $|\operatorname{Ln} \delta| \geqslant$ $\beta>0$ near the boundary.
For $0<\varepsilon<\frac{1}{2}$, let us consider $\varphi_{1}>0$ the first eigenfunction of $-\Delta$ with the Dirichlet condition, $-\Delta \varphi_{1}=\lambda_{1} \varphi_{1}$ in $\Omega, \varphi_{1}=0$ on $\partial \Omega$. Then, $\varphi \equiv \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| \in W^{1, \infty}(\Omega) \cap H_{0}^{1}(\Omega)$ is a good test function. We then have

$$
\begin{equation*}
\int_{\Omega} f \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| d x=\int_{\Omega} \nabla u \cdot \nabla \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| d x+\int_{\Omega} \nabla u \cdot \nabla \varphi_{1} \frac{\varphi_{1} \operatorname{sign}\left(\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right)}{\varphi_{1}+\varepsilon} d x \tag{10}
\end{equation*}
$$

Since $\left|\nabla \varphi_{1}\right|_{\infty}<+\infty$ and $\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| \leqslant\left|\operatorname{Ln} \varphi_{1}\right|+1$ we deduce

$$
\begin{equation*}
\int_{\Omega} f \varphi_{1}\left|\operatorname{Ln}\left(\varphi_{1}+\varepsilon\right)\right| d x \leqslant c \int_{\Omega}|\nabla u|\left(1+\left|\operatorname{Ln} \varphi_{1}\right|\right) d x . \tag{11}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$ Fatou's lemma yields

$$
\begin{equation*}
\int_{\Omega} f \varphi_{1}\left|\operatorname{Ln} \varphi_{1}\right| d x \leqslant c \int_{\Omega}|\nabla u|\left(1+\left|\operatorname{Ln} \varphi_{1}\right|\right) . \tag{12}
\end{equation*}
$$

Since there exist two constants $c_{0}>0, c_{1}>0$ such that $c_{0} \delta \leqslant \varphi_{1} \leqslant c_{1} \delta$ we deduce relation (9) from relation (12).

End of the proof of Theorem 1

Let $f \geqslant 0$ be $L^{1}(\Omega ; \delta)$ and $f \notin L^{1}(\Omega ; \delta(1+|\operatorname{Ln} \delta|))$ then $\int_{\Omega} f(x) \delta|\operatorname{Ln} \delta| d x=+\infty$. Therefore, from Lemma 2, we deduce that

$$
\begin{equation*}
\int_{\Omega}|\nabla u||\operatorname{Ln} \delta| d x=+\infty \tag{13}
\end{equation*}
$$

While for the second statement 2., we recall that

$$
L_{\text {exp }}(\Omega)=\left\{v \in L^{1}(\Omega) \sup _{0<t \leqslant|\Omega|} \frac{|v|_{* *}(t)}{1+\operatorname{Ln} \frac{|\Omega|}{t}}<+\infty\right\}
$$

is the associate space of $L(\operatorname{Ln} L)=\left\{v \in L^{1}(\Omega) \quad \int_{\Omega}|v|_{* *}(t) d t<+\infty\right\}$ (see [1]). Now we have that $|\operatorname{Ln} \delta| \in L_{\text {exp }}$ since $\delta^{-\varepsilon} \in L^{1}(\Omega)$ for $0<\varepsilon<1$, and we then deduce

$$
\begin{equation*}
\int_{\Omega}|\nabla u| \cdot|\operatorname{Ln} \delta| \leqslant|\operatorname{Ln} \delta|_{L_{\text {exp }}(\Omega)} \cdot|\nabla u|_{L(\operatorname{Ln} L)} \tag{14}
\end{equation*}
$$

Relation (13) and the fact that $|\operatorname{Ln} \delta|_{L_{\text {exp }}(\Omega)}<+\infty$ implies that

$$
\begin{equation*}
|\nabla u|_{L(\operatorname{Ln} L)}=\int_{\Omega_{*}}|\nabla u|_{* *}(t) d t=+\infty . \tag{15}
\end{equation*}
$$

3 Existence of a domain Ω and a very weak solution whose gradient blows up in $L^{1}(\Omega)$

The main result of this section is

Theorem 2.

There exist a domain Ω of $\mathbb{R}^{N}, N \geqslant 2$ of class C^{∞} and a function $f \in L^{1}(\Omega, \delta)$ such that the weak solution u_{0} of (1) satisfies

$$
\left|\nabla u_{0}\right| \notin L^{1}(\Omega)
$$

(that is $\int_{\Omega}\left|\nabla u_{0}\right|(x) d x=+\infty$).
The key lemma in the proof if Theorem 2 is the following result

Lemma 3.

There exist a domain Ω of $\mathbb{R}^{N}, N \geqslant 2$ of class C^{∞} and a nonnegative function $g \in L^{N}(\Omega)$ such that the unique solution $\psi>0$ of $-\Delta \psi=g$ in $\Omega, \psi \in W^{2, N}(\Omega) \cap H_{0}^{1}(\Omega)$ satisfies

$$
\sup \left\{\frac{\psi(x)}{\delta(x)}: x \in \Omega\right\}=+\infty
$$

Let us admit temporarily this lemma (which merely amounts to saying that $|\nabla \psi(x)|$ is very large near a point of the boundary). Note that according to Sobolev embedding $W^{2, N}(\Omega)$ is included in $C^{0, \alpha}(\bar{\Omega})$ for all $\alpha<1$ but not in $C^{0,1}$ in general.

Proof of Theorem 2

Let us consider Ω the domain constructed in Lemma 3. Assume that for any $f \in L^{1}(\Omega, \delta)$ the unique solution u of (1) satisfies $|\nabla u| \in L^{1}(\Omega)$. Then define

$$
(-\Delta)^{-1}: \begin{array}{lll}
L^{1}(\Omega, \delta) & \rightarrow & L^{1}(\Omega) \\
f & \mapsto & u=(-\Delta)^{-1} f .
\end{array}
$$

u being the unique solution of (1), and set

$$
T f=\nabla(-\Delta)^{-1} f
$$

Then one has

Lemma 4.

If for all very weak solution u, we have $\int_{\Omega}|\nabla u| d x<+\infty$. Then

$$
\sup _{|f|_{L^{1}(\Omega, \delta)}=1}|T f|_{L^{1}(\Omega)^{N}} \text { is finite. }
$$

Proof
Let $0<\varepsilon \leqslant \varepsilon_{0}$ (ε_{0} small enough). $\Omega_{\varepsilon}=\{x \in \Omega: \delta(x)>\varepsilon\}$ and $T_{\varepsilon} f=\chi_{\Omega_{\varepsilon}} \nabla(-\Delta)^{-1} f$ with $\chi_{\Omega_{\varepsilon}}$ being the characteristic function of Ω_{ε}. If $\int_{\Omega}\left|\nabla(-\Delta)^{-1} f\right| d x<+\infty$ then by the Lebesgue dominated convergence theorem

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega_{\varepsilon}}\left|\nabla(-\Delta)^{-1} f\right| d x=\int_{\Omega} \mid \nabla(-\Delta)^{-1} f d x
$$

and

$$
\left|T_{\varepsilon} f\right|_{L^{1}} \leqslant \frac{1}{\varepsilon} \int_{\Omega}|\nabla u| \delta d x \leqslant \frac{c}{\varepsilon}|f|_{L^{1}(\Omega, \delta)} .
$$

We derive (the Banach-Steinhaus boundedness principle) that there exists a constant $c(\Omega)>0$ such that

$$
\begin{equation*}
|\nabla u|_{L^{1}(\Omega)} \leqslant c(\Omega)|f|_{L^{1}(\Omega, \delta)} . \tag{16}
\end{equation*}
$$

Considering the sequence
$u_{k} \in W^{2, p}(\Omega) \cap H_{0}^{1}(\Omega), p>N$, solution of $-\Delta u_{k}=f_{k}=\min (|f| ; k) \operatorname{sign}(f), \quad f_{k} \rightarrow f$ in $L^{1}(\Omega, \delta)$,
then one has

$$
\left|\nabla\left(u_{k}-u\right)\right|_{L^{1}(\Omega)} \leqslant c(\Omega)\left|f-f_{k}\right|_{L^{1}(\Omega, \delta)} \rightarrow 0 .
$$

Thus

$$
u \in W_{0}^{1,1}(\Omega)
$$

Since $\sup \left\{\frac{\psi(x)}{\delta(x)}: x \in \Omega\right\}=+\infty$ there exists a function $f_{0} \in L^{1}(\Omega, \delta), \quad f_{0} \geqslant 0$ such that

$$
\int_{\Omega} f_{0}(x) \psi(x) d x=+\infty
$$

Indeed one has, using the Hopf maximum principle, the existence of a constant $k_{1}>0$ such that

$$
\psi(x) \geqslant k_{1} \delta(x), \quad \forall x \in \Omega
$$

Therefore,

$$
\begin{equation*}
L^{1}(\Omega, \psi) \subset_{>} L^{1}(\Omega, \delta) \tag{17}
\end{equation*}
$$

If $L^{1}(\Omega, \psi)=L^{1}(\Omega, \delta)$ then necessarily, there exists a constant $c_{1}(\Omega)>0$ such that

$$
\begin{equation*}
|f|_{L^{1}(\Omega, \psi)} \leqslant c_{1}(\Omega)|f|_{L^{1}(\Omega, \delta)} \quad \forall f \in L^{1}(\Omega, \delta) \tag{18}
\end{equation*}
$$

(This is due to Banach principle or equivalently, since the function space $L^{1}(\Omega, \psi)$ and $L^{1}(\Omega, \delta)$ are Banach function space, one can deduce this inequality from one of properties related to Banach function space [1], Theorem 1.8).
Relation (18) would imply $\psi(x) \leqslant c_{1}(\Omega) \delta(x)$ for all $x \in \Omega$. This contradicts the fact that

$$
\sup \left\{\frac{\psi(x)}{\delta(x)}: x \in \Omega\right\}=+\infty
$$

Therefore, there exists a function $f_{0} \in L^{1}(\Omega, \delta)$ such that $f_{0} \notin L^{1}(\Omega, \psi)$, i.e. $\int_{\Omega}\left|f_{0}(x)\right| \psi(x) d x=+\infty$.
We may obviously assume that $f_{0} \geqslant 0$ (otherwise, we consider $\left|f_{0}\right|$).
Defining the sequence $f_{0 k}=T_{k}\left(f_{0}\right)=\min \left(f_{0} ; k\right)$ and \bar{u}_{k} the solution of $-\Delta \bar{u}_{k}=f_{0 k}$ one has using relation (16)

$$
0 \leqslant \int_{\Omega} f_{0 k} \psi d x=-\int_{\Omega} \psi \Delta \bar{u}_{k} d x=-\int_{\Omega} \bar{u}_{k} \Delta \psi d x=\int_{\Omega} \bar{u}_{k} g d x
$$

$$
\begin{equation*}
\leqslant\left|\bar{u}_{k}\right|_{L^{N^{\prime}}} \cdot|g|_{L^{N}} \leqslant c\left|\nabla \bar{u}_{k}\right|_{L^{1}} \cdot|g|_{L^{N}} \leqslant c\left|f_{0}\right|_{L^{1}(\Omega, \delta)}|g|_{L^{N}} . \tag{19}
\end{equation*}
$$

Letting $k \rightarrow+\infty$ in relation (19), we derive from Beppo-Levi's theorem

$$
+\infty=\int_{\Omega} f_{0} \psi d x=\lim _{k \rightarrow+\infty} \int_{\Omega} f_{0 k} \psi d x \leqslant c\left|f_{0}\right|_{L^{1}(\Omega, \delta)}|g|_{L^{N}}<+\infty,
$$

which is absurd. Hence, there exists a function $f_{0} \in L^{1}(\Omega, \delta)$ such that the associate weak solution u_{0} is such $\left|\nabla u_{0}\right| \notin L^{1}(\Omega)$.

Proof of Lemma 3

For the sake of convenience, we shall start with the case $N=2$ and we shall generalize the construction in a second step.

Let us first consider the open set

$$
\Omega_{1}=\left\{x=\left(x_{1}, x_{2}\right): x_{1}^{2}<x_{2}, x_{1}^{2}+x_{2}^{2}<\frac{1}{e}\right\} .
$$

We define the preliminary function on Ω_{1} by

$$
w\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}^{2}\right) \operatorname{Ln}\left(\operatorname{Ln} \frac{1}{x_{1}^{2}+x_{2}^{2}}\right) .
$$

(Remarks :

- in polar coordinates w can be written as $w=r(\sin (\theta)-r \cos (\theta)) \operatorname{Ln}(|\operatorname{Ln} r|)$.
- another possibility for the choice of w is $w_{0}=r \sin (\theta) \operatorname{Ln}(|\operatorname{Ln} r|)$ on $\{(r, \theta): r>0,0<\theta<\pi\}$, in what follows, we can use w or $\left.w_{0}\right)$.

One has the following properties for w :

1. $w>0$ in Ω_{1},
2. $w\left(x_{1}, x_{1}^{2}\right)=0,-x_{1 c}<x_{1}<x_{1 c}$ with $x_{1 c}^{4}+x_{1 c}^{2}=\frac{1}{e}, w\left(x_{1}, x_{2}\right)=0$ for $x_{1}^{2}+x_{2}^{2}=\frac{1}{e}$.
3. $w \in C^{\infty}\left(\Omega_{1}\right) \cap H^{2}\left(\Omega_{1}\right)$.

Indeed it is sufficient to compute $\frac{\partial w}{\partial x_{i}}$ and $\frac{\partial^{2} w}{\partial x_{i}^{2}}$ and prove that $\Delta w \in L^{2}(\Omega)$.
$w\left[x_{1}, x_{2}\right]=\left(-x_{1}{ }^{2}+x_{2}\right) \log \left[\log \left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right]$
$\frac{\partial w}{\partial x_{1}}=-\frac{2 x_{1}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}^{2}\right) \log \left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]}-2 x_{1} \log \left[\log \left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right]$
$\frac{\partial w}{\partial x_{2}}=-\frac{2 x_{2}\left(-x_{1}^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}{ }^{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}+\log \left[\log \left[\frac{1}{x_{1}^{2}+x_{2}^{2}}\right]\right]$
$\frac{\partial^{2} w}{\partial x_{1}{ }^{2}}=-\frac{4 x_{1}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{2} \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]^{2}}+\frac{4 x_{1}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{2} \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}+\frac{8 x_{1}{ }^{2}}{\left(x_{1}^{2}+x_{2}{ }^{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}$
$-\frac{2\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}^{2}+x_{2}^{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}-2 \log \left[\log \left[\frac{1}{x_{1}^{2}+x_{2}{ }^{2}}\right]\right]$
$\frac{\partial^{2} w}{\partial x_{2}{ }^{2}}=-\frac{4 x_{2}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{2} \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]^{2}}+\frac{4 x_{2}{ }^{2}\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)^{2} \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}-\frac{4 x_{2}}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}$
$-\frac{2\left(-x_{1}{ }^{2}+x_{2}\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]}$
$\Delta w=\frac{4\left(x_{1}{ }^{2}-x_{2}+\left(2 x_{1}{ }^{2}-x_{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}^{2}}\right]\right)}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right) \log \left[\frac{1}{x_{1}{ }^{2}+x_{2}^{2}}\right]^{2}}-2 \log \left[\log \left[\frac{1}{x_{1}{ }^{2}+x_{2}{ }^{2}}\right]\right]$
Using polar coordinates, one can check that

$$
\Delta w \in L^{2}(\Omega) \text { and }|\nabla w| \in L^{p}(\Omega) \text { for all } p<+\infty
$$

One can consider $x_{1 c}>\eta>0$ and an open set Ω of class $C^{2,1}$ at least such that

$$
\Omega \subset\left[-x_{1 c}+\eta ; x_{1 c}-\eta\right] \times\left[0, \frac{1}{\sqrt{e}}\right] .
$$

$\partial \Omega$ contains $\Gamma_{0}=\left\{\left(x_{1}, x_{2}\right):-x_{1 c}+\eta<x_{1}<x_{1 c}-\eta, x_{2}=x_{1}^{2}\right\} \cap\left\{\left(x_{1}, x_{2}\right):-x_{1 c}+\eta<x_{1}<\right.$ $\left.x_{1 c}-\eta, x_{1}^{2}+x_{2}^{2}=\frac{1}{e}\right\}$.

For $a>0: 0<2 a<x_{1 c}-\eta$, we define $\theta \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\theta \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right), \theta \geqslant 0 \text { such that } \begin{cases}0 \leqslant \theta \leqslant 1 \\ \theta\left(x_{1}, x_{2}\right)=1 & \text { if }\left|x_{1}\right| \leqslant a \\ \theta\left(x_{1}, x_{2}\right)=0 & \text { if } \left\lvert\, x_{1}>\frac{3 a}{2}\right.\end{cases}
$$

Therefore, the function θw vanishes on the boundary of Ω. Let us show that $\psi_{0}=\theta w$ satisfies the following properties

1. $-\Delta \psi_{0}=f_{0} \in L^{2}(\Omega)$.
2. $\operatorname{Max}\left\{\frac{\psi_{0}(x)}{\delta(x)}, x \in \Omega\right\}=+\infty$.

Property 1 is obvious, since

$$
\left\{\begin{array}{l}
-\Delta \psi_{0}=-(\Delta \theta w+2 \nabla w \nabla \theta+\Delta w \theta) \in L^{2}(\Omega) \\
\psi_{0} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

To prove statement 2.) we consider $x=\left(x_{1}, \alpha x_{1}\right), 0<\alpha<1, \quad x_{1}$ small enough so that $x \in \Omega$, then

$$
\frac{\psi_{0}(x)}{\delta(x)}=\frac{\psi_{0}\left(x_{1}, \alpha x_{1}\right)}{\delta(x)} \geqslant \frac{\left(\alpha-x_{1}\right) \operatorname{Ln}\left(\left(-\operatorname{Ln}\left(1+\alpha^{2}\right) x_{1}^{2}\right)\right)}{\sqrt{1+\alpha^{2}}} \underset{x_{1} \rightarrow 0}{ }+\infty .
$$

This show that

$$
\sup \left\{\frac{\psi_{0}(x)}{\delta(x)]}: x \in \Omega\right\}=+\infty .
$$

Setting $g=\left|f_{1}\right|$ and considering $\psi>0$ solution of $-\Delta \psi=g, \psi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, one has by the maximum principle that $\psi \geqslant \psi_{0}$ (so that $\sup \left\{\frac{\psi(x)}{\delta(x)}: x \in \Omega\right\}=+\infty$).

We can generalize the above construction in \mathbb{R}^{N}, let us outline the main steps of the procedure.
For $x=\left(x^{\prime}, x_{N}\right)=\left(x_{1}, \ldots, x_{N-1}, x_{N}\right) \in \mathbb{R}^{N}$, we denote by

$$
\left|x^{\prime}\right|^{2}=x_{1}^{2}+\ldots+x_{N-1}^{2}, \quad \sigma(x)=x_{1}^{2}+\ldots+x_{N}^{2} .
$$

We first consider the open set

$$
\Omega_{1}=\left\{x=\left(x^{\prime}, x_{N}\right),\left|x^{\prime}\right|^{2}<x_{N}, \sigma(x)<\frac{1}{e}\right\} .
$$

We define on Ω_{1} the nonnegative function

$$
w(x)=\left(x_{N}-\left|x^{\prime}\right|^{2}\right) \operatorname{Ln}\left(\operatorname{Ln} \frac{1}{\sigma(x)}\right), x \in \Omega_{1} .
$$

w satisfies the same properties as in statements 1., 2., 3.. For $a>0$ (small), consider Consider $\theta \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ such that

$$
\begin{cases}0 \leqslant \theta \leqslant 1, \\ \theta\left(x^{\prime}, x_{N}\right)=1 & \text { if }\left|x^{\prime}\right| \leqslant a \\ \theta\left(x^{\prime}, x_{N}\right)=0 & \text { if }\left|x^{\prime}\right|>\frac{3 a}{2}\end{cases}
$$

Let us consider an open set Ω of class $C^{2,1}$ such that $\operatorname{supp} \theta \cap \Omega_{1} \subset \Omega$ and $\theta w=0$ on $\partial \Omega$.

Then the function $\psi_{0}(x)=\theta w(x)$ satisfies $-\Delta \psi_{0} \in L^{N}(\Omega)$ since $\Delta w \in L^{N}(\Omega)$ by a straightforward computation. Setting

$$
e_{N-1}=(1, \ldots, 1), \quad x_{\alpha}=x_{N}(\alpha, \ldots, \alpha, 1) \in \Omega, \alpha>0
$$

for $x_{N}>0, x_{N}$ small enough, there holds and considering $x_{N}>0$ small enough, we have set and

$$
\frac{\psi_{0}\left(x_{\alpha}\right)}{\delta\left(x_{\alpha}\right)} \geqslant \frac{\left(1-\alpha^{2}\left|e_{N-1}\right|^{2} x_{N}\right)}{\sqrt{1+\alpha^{2}\left|e_{N-1}\right|^{2}}} \operatorname{Ln}\left(\operatorname{Ln}\left(\frac{1}{x_{N}^{2}\left(1+\alpha^{2}(N-1)\right)}\right)\right) \underset{x_{N} \rightarrow 0}{ }+\infty .
$$

Therefore

$$
\sup \left\{\frac{\psi_{0}(x)}{\delta(x)}: x \in \Omega\right\}=+\infty
$$

Considering

$$
\left\{\begin{array}{l}
-\Delta \psi=\left|\Delta \psi_{0}\right|=g \in L^{N}(\Omega) \\
\psi \in W^{1, N}(\Omega) \cap W^{2, N}(\Omega)
\end{array}\right.
$$

we have $\sup \left\{\frac{\psi(x)}{\delta(x)}: x \in \Omega\right\}=+\infty, g \in L^{N}(\Omega)$

Acknowledgment : We thank C. Falaise-Bougant for the realization of this manuscript and helping with Wolfram Mathematica ${ }^{\circledR} 8$ which we used for the computation of derivative of w.

References

[1] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press. London, (1983).
[2] M.F. Bidault-Veron, L. Vivier, An elliptic semilinear equation with source term involving boundary measures : the subcritical case. Rev; Mat. Iberoamericana 16 (2000), 477-513.
[3] H. Brezis, Analyse fonctionnelle théorie et applications, (1983), Masson, Paris.
[4] H. Brezis, Th. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for $u_{t}-\Delta u=g(u)$ revisited, Adv. in Diff. Eq, 1 (1996) 73-90. (Also personal communication to J.I. Diaz)
[5] J.I. Díaz, J.M. Rakotoson, On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary, J. Functional Analysis, doi:10.1016/j.jfa.2009.03.002, 257, (2009), 807-831.
[6] J.I.Díaz, J.M. Rakotoson, On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary, Discrete and Continuous Dynamical Systems, 273 (2010) 1037-1058.
[7] G. Demengel, F. Demengel Espaces Fonctionnels, Utilisation dans la résolution des équations aux dérivées partielles (2007), CNRS Editions.
[8] J.M. Rakotoson, A few natural extension of the regularity of a very weak solution, Differential and Integral Equations, bf 24 11-12,(2011), 1125-1140.
[9] J.M. Rakotoson, Réarrangement Relatif: un instrument d'estimation dans les problèmes aux limites, (2008), Springer Verlag Berlin.
[10] J.E. Rakotoson, J.M. Rakotoson, Analyse fonctionnelle appliquée aux dérivées partielles, (1999), PUF.

Fréderic ABERGEL

Laboratoire de Mathématiques Appliquées aux Systèmes
Ecole Centrale Paris
Grandes Voies des Vignes, 92295 Châtenay-Malabry Cedex
Jean-Michel RAKOTOSON*
Laboratoire de Mathématiques
et Applications, Université de Poitiers
Boulevard Marie et Pierre Curie, Téléport 2, BP 30179
86962 Futuroscope Chasseneuil Cedex, FRANCE
E-mail *rako@math.univ-poitiers.fr(corresponding author: Rakotoson)

