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Reconfiguration Analysis
using Generic Component Models

Anne-Lise Gehin, Marcel Staroswiecki

Abstract—This paper presents a formal approach to analyze
system reconfigurability, based on a Generic Component Model
(GCM), which describes the system from the services provided
by its components, and their organization into Operating Modes,
in order to achieve specific objectives.

Following a bottom-up approach, services provided by ele-
mentary components are used as resources for services at a
higher level. Several versions exist when the same service can
be rendered by using distinct sets of resources. Reconfiguration
results from the existence of multiple versions, since a faulty
resource does not imply loosing the services that use it. A level
regulation example shows the effectiveness of the proposedmodel
and tools.

Index Terms—Reconfigurability Analysis, Generic Component
Model, Fault Tolerant Control, Functional Decomposition.

I. I NTRODUCTION

T HE increasing demand for safety and reliability calls for
the integration of Fault Detection and Isolation (FDI) and

Fault Tolerant Control (FTC) issues, at the very early stages
of control systems design. A lot of effort has been directed to
the design of efficient FDI algorithms [1], [2]. Typically, FDI
involves checking the consistency of observations from thereal
time system operation with prior available, model-based [3],
or data-based [4] knowledge. FTC issues have been considered
more recently [5]. Typically, the problem is to control to the
extent possible the operation of the system in the presence of
fault(s). What is meant by control, in this situation, is defined
in [6] under three major headings:

1) continue the system operation without (unbearable) loss
of performance,

2) continue the system operation with reduced specifica-
tions,

3) abandon the mission while avoiding disaster.

A more precise statement of the FTC problem is given in
[7], [8], [9]. FDI algorithms, being part of the informationsys-
tem of the supervised process, need information redundancy,
whereas FTC being part of the decision and actuation system,
is based on decision and actuation redundancy, i.e., on the
redundancy of the services which are provided to the users by
the process components. The existence of such a redundancy
characterizes the reconfigurability property of a system, that
is, the potential it has (or not) to continue to carry out its
objectives, when some failure occurs [7].
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Different approaches have been proposed to the design of
FTC algorithms under actuator faults [10], [11], [12], or sensor
faults [13], [14]. Most of them use the quantitative system
behavior model, for example, state and output equations in the
time domain. Integrating such approaches in complex systems
that involve human operators in the control loop, needs the
development of a decision support system to analyze faulty
situations and inform the operators about the different possi-
bilities the system still has (or not) to achieve its objectives,
in a qualitative way.

In this paper, we propose to analyze system reconfigurability
using a generic component model (GCM), first introduced for
studying the interoperability of intelligent instruments[15].
This model is based on the notions of service and their
organization into User Selected Operating Modes (USOMs).
Modelling the component services requires a functional ap-
proach, which has been used in the design of control or
diagnosis systems [16], [17], [18]. The proposed model in-
cludes more general features (e.g. service versions, enabling
conditions, operating modes going further than the classical
distinction between normal and faulty, etc.), for buildingan
on-line decision support system to analyze the fault tolerance
possibilities, and assist the operators in case of failures. It can
be applied at any hierarchical level of a system, since it allows
for the modelling of high-level components by aggregating
low-level models [19].

The paper is organized as follows. The generic component
model is presented in Section 2 and used in Section 3 to model
the nominal behavior of a system. Section 4 shows its ability
to analyze the system reconfiguration possibilities. Section 5
illustrates the proposed approach on a level regulation process.
Section 6 presents concluding remarks.

II. T HE GENERIC COMPONENT MODEL

The Generic Components Model (GCM) describes compo-
nents from the point of view of the user, who receives services
and can use them in different operating modes. Users may be
human operators or other system components, and requests for
services can be addressed through direct or remote connec-
tion. Interconnections are taken into account by aggregating
lower level components into higher level ones. The formal
description of GCMs allows for component manipulation in a
systematic way at any hierarchical level.

This section introduces the GCM, first using a verbal
description, then providing a formalized model.

A. Services

From the user viewpoint, a system component provides
one or more services. For example, a level sensor provides
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a signal which depends on the level of liquid in a tank. The
signal may be validated or not, it may be filtered or not, the
sensor might memorize the minimum (the maximum) value
in a given time window, or provide an alarm if the signal
exceeds a given threshold, and so on. All these are examples
of services provided in the normal operating mode. More
services could be provided in the installation, initialization,
degraded operation, maintenance modes, thus giving the sensor
the status ofintelligent sensor [20].

A service is described by the variables it consumes(cons),
the variables it produces(prod), and a procedure(proc) which
transforms the former into the latter. Services are derived
from the components behavior, that is governed by physical
laws and (possibly) embedded software. For example, a tank
consumes input and puts out mass flows, and produces a stored
mass, by the procedurėm(t) = qin(t) − qout(t), (wherem is
the stored mass,qin is the flow in the input pipe,qout is the
flow in the output pipe), which follows from the conservation
of mass; theregulationservice of a controller consumes sig-
nals from sensors and produces signals to actuators according
to a given algorithm.

Services may be providedunconditionallyor on specific
requests. The storage service of a tank is systematically
provided (no special request is necessary), at all times and
whatever the values of the inputs and outputs; a sensor
provides itsmeasurementservice on aread request from a
processor. Services may beenabledor not, so as to control
the conditions under which the requests are accepted: theread
request should not be enabled when the sensor is known to
be faulty or under maintenance. Both the request(rqst) and
the enabling condition(ena) are necessary for a conditional
service to be delivered, but the request for a service is issued
by the user, while the enabling condition is processed by the
control system.

The resources(res) of a service are defined as the set
of hardware and software elements required to the service
realization. Examples of resources are the non leaking tank
for a storageservice, the transducer, filter, analog to digital
converter, etc. for themeasurementservice of a sensor.

B. Versions

Services describe what the user expects to obtain from a
component under normal operation. However, there are two
reasons by which a given services will fail to deliver the
appropriate value of the variables it produces:

- Internal faults affect some resourcesres needed by
the service. As a result, the actual values of the produced
variablesprod are not those specified byproc. A leak in
a tank is an example of an internal fault. The procedure
ṁ(t) = qin(t) − qout(t) does not correctly describe the be-
havior of a leaking tank since the flow associated with the
leak is not taken into account.

- External faults affect the inputscons of the service. A
level regulation service is subject to an external fault when
the level value it consumes is false, due to a fault in the level
sensor, or if its time stamp is outdated, due to a fault in the
communication system.

Fault tolerant components integrate multiple instances
of a same service, listed as a set of versions. Each
version sj of a service s is a 6-tuple defined as
sj =

〈

consj, prod, procj , rqst, enaj, resj
〉

.
Note that all versions of the same service share the same

request, and produce the same outputs (so they can be in-
terchanged), but they cannot be simultaneously enabled, and
at least one among the inputs, procedures and resources is
different from one version to another one.

The different versions of a same service may obviously
differ by their accuracy, running time, energy consumption,
therefore a preference relation can be defined by the designer,
the details of which are not developed here. As a result, the
set of versions of a service is ordered, the link with enabling
conditions being straightforward: at timet when services is
requested, the version which is enabled is the most preferred
one such that all the resources it needs are known to be non-
faulty.

C. User selected operating modes

Control systems are expected to achieve different objectives
at different times. For example, a level regulation objective
makes sense only if the tank has been filled, and a set-
point value has been provided to the controller. Therefore,
the level regulationservice should not be enabled when the
tank is empty (during someno-operationmode), or when
it is emptying (in anend of productionmode), or when it
is filling up using the maximum input pump flow (during a
preparationmode). Theregulationmode should be preceded
by apreparationmode, in which not only the tank is filled up
but also theenter set-pointservice is enabled. Transition from
thepreparationto theregulationmode should be possible only
if the tank has really been filled up and the set point has really
been entered.

Similarly to software applications that are decomposed into
consistent menus, the set of services of a given component is
structured into several operating modes, which are associated
with specific objectives. These modes are called USOMs(User
Selected Operating Modes).

USOMs are defined by the design engineer, taking into
account functional and safety specifications. A USOM must
obviously contain all the services that are required to achieve
its objectives, and it must not contain services that are not
allowed to run simultaneously for safety reasons.

More or less standard approaches and methodological tools
are available for the analysis of the operating modes of
production systems [21].

D. Definition of the generic model

The generic model of a component is now defined.
Definition 1 (Generic model):The generic model of a com-

ponent is defined by:
1) a deterministic automatonA(M, τ, m0) where:

• M = {mi, i ∈ Im} is a set of User Selected Operating
Modes(USOMs), each of which is represented by a vertex
of the automaton,
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• τ = {τij , i, j ∈ Im} is a set of transitions, each of
which is defined byτij = {mi, mj , cij} wheremi is the
origin USOM,mj is the destination USOM, andcij is a
firing condition,

• m0 ∈ M is the initial USOM, that is the mode where the
system stays when it is switched on.

2) a set of services S = {sl, l ∈ Is}, each
of them being a set of pre-ordered versions,
sl = {sj

l , j ∈ J(sl)}. A version of a service is the 6-
tuple s

j
l =< cons

j
l , prodl, proc

j
l , rqstl, ena

j
l , res

j
l >.

3) USOM and services are linked in the following way:
• each USOM is associated with a subset of services

Si, i ∈ Im, with ∪i∈Im
Si = S

• each USOM is associated with one or several objectives
to be achieved.

III. B UILDING SYSTEMS FROM COMPONENTS

Systems are built from the interconnection of different com-
ponents. Indeed, the services delivered by some components
consume variables which are produced by services of other
components. For example, the value produced by themeasure-
mentservice of a level sensor is consumed by theregulation
service of a controller, which in turn produces variables which
are consumed by thepower modulationservice of the actuator.

In the GCM, interconnections are taken into account by
considering higher level components which aggregate lower
level ones. Sensors, actuators, process components are at
the (lowest) field-level. Hierarchical system architectures are
obtained by creating the GCM of aggregated components, at
different levels.

A. The system pyramidal structure

The interest of creating high level components is to reason
on high level services, ending at the top level of the overall
system and its control objectives. Because systems can have
components that participate in more than one functionality
simultaneously, we use a pyramidal structure (see Fig. 1)
rather than a hierarchical one, where a low level component
would belong to only one high level component. The number
of levels is decided by the designer so as to obtain the
view of the system which suits him best. Letl = 1 be the
lowest decomposition level (field components) andl = n be
the highest decomposition level (the system). In a pyramidal
structure, the following properties hold(l ≥ 2):

• each component of levell − 1 belongs to at least one
component of levell,

• any component of levell includes at least one component
of level l − 1.

Note that such decomposition is not unique, and the result
will generally depend on the designer who performs the mod-
eling task. In industrial processes, high level componentsshow
themselves, very often, in a way that is evident to operators
because they have functional meaning (the steam generator,
the catalytic cracking unit, etc.). For example, reasoningabout
services is easier if the components which are implied in a
same regulation loop are grouped together.

Fig. 1. Pyramidal decomposition of a system.

B. Aggregation of Operation Modes

Let Cl be the set of components modelled at level
l (l = 1, . . . n), let a, b ∈ Cl−1 (l ≥ 2) and let c ∈ Cl be a
component that aggregatesa andb. Let A(M(a), τ(a), m0(a))
and A(M(b), τ(b), m0(b)) be the deterministic automata
associated with componentsa and b. The automaton
A(M(c), τ(c), m0(c)) associated with componentc is obvi-
ously included in the parallel composition of the two automata
A(M(a), τ(a), m0(a)) andA(M(b), τ(b), m0(b)):

• M(c) ⊆ M(a) × M(b)
• τ(c) ⊆ τ(a) ∪ τ(b)
• m0(c) =

(

m0(a), m0(b)
)

Indeed, letγ = (α, β), γ ∈ M(c), α ∈ M(a), β ∈ M(b).
This means that the modeγ of componentc is defined
as componenta being in modeα and componentb being
in mode β. The parallel composition exhibits all possible
modes. However, some of them cannot be given any functional
interpretation. For example, the association(actuator on, sen-
sor off, loop regulation on), is non-significant and can be
eliminated. This is done by hand, according to the system
specifications, for each aggregated component. The fact that
all possible modes are automatically obtained from the parallel
composition ensures that no significant mode is forgotten in
the aggregation process, while non-significant mode elimina-
tion at each step refrains the combinatorial explosion. The
process can be assisted by using some rules as in [22].

C. Aggregation of services

Let S(a) and S(b) be the services offered by two compo-
nentsa and b, and let componentc be their aggregation. Let
γ = (α, β) be a consistent mode, then any combination of the
servicesSα(a) (associated with modeα of componenta) and
Sβ(b) (associated with modeβ of componentb) can be used
to design services provided by componentc. In other words,
any “program” using “instructions” fromSα(a) andSβ(b) can
be a service available in modeγ.

More generally, letΓ be a set of components at levell − 1
and letc be the component obtained at levell by aggregating
all componentsk ∈ Γ. Let

cons(c) = ∪k∈Γ ∪s∈S(k) cons(s) (1)

prod(c) = ∪k∈Γ ∪s∈S(k) prod(s) (2)

(note thatcons(c) ∩ prod(c) may be non-empty, since some
components inΓ may consume variables produced by some



4

other ones). Letyσ ⊂ prod(c) andxσ ⊂ cons(c). Creating a
relation betweenxσ andyσ can be done (if needed) by design-
ing a procedureσ such thatcons(σ) = xσ, prod(σ) = yσ and
proc(σ) is a program that use the servicesS (k), k ∈ Γ. Since
several subsets ofΓ and several procedures overS (k) , k ∈ Γ
could establish the same relation between the variables of
interest, several versions might exist. The set of all the versions
can be found in a rather automated way, for simple kinds
of programs composed of sequences and parallel executions
[23]. Once the services of an aggregated component have been
designed, ordering their versions follows from cost / quality
of service considerations, that are not developed here.

IV. A NALYSIS OF FAULT TOLERANCE USING THE GENERIC

MODEL

Fault tolerance is the possibility of still achieving a given
(set of) objective(s) in the presence of a given (set of) fault(s).
Therefore, its analysis rests on three points:

1) are there services that allow one to achieve the objectives
of the current USOM?

2) how are these services to be managed when faults occur?
3) how are the USOM to be managed when the objectives

of the current USOM can no longer be achieved due to the
fault(s)?

A. Management of service versions

Remind that a services is a set of pre-ordered versions:
s =

{

sj , j ∈ J(s)
}

. Each version can be used for the same
purpose, but the pre-ordering expresses a preference between
them. A versionsj of the services should obviously be
disabled whens does not belong to the current USOM. It
should also be disabled when some resources inresj are
detected faulty. A disabled version is calledunavailable. A
service is unavailable when it has no available version.

Note that switching from one version which becomes un-
available to another one which is still available creates real
time issues (that are not addressed here). Indeed, during
the time delay between the occurrence of the fault and the
switching of the new version, the faulty system is under
nominal control, and that may result in loss of efficiency,
(temporary) loss of functionality or - even worse - complete
loss of control, if reconfiguration occurs too late. Minimizing
the impact of such transients is a major challenge in the design
of active Fault Tolerance, that has received little attention in
the literature [24], [25], [26]. Although the proposed approach
does not specifically address real time issues, it may be
noted that ranking the versions of a service according to the
criticality of the switching (switching delay, control bumps,
etc.) is a possible strategy for reconfiguration.

It is also worth noticing that if a version is not currently
running, it will not be allowed to start, even if requested,
when disabled. However, if it is currently running, disabling a
version does not always stop the service delivery. For example,
an on / off valve normally delivers two services,V openand
V close (under only one version). If the valve gets blocked
closed, both services are disabled i.e. they become unavailable,
but V opencannot be run whileV closecannot be stopped.

The severity of the failure of a given resource with respect to
a service can be evaluated by counting the number of versions
that are still available after the failure has occurred (these are
usually called redundancy degrees [10], [13]). A resource for
which this number is zero is calledcritical.

B. Management of operation modes

1) Critical services:Let Oi be the set of control objectives
associated with USOMmi. As long as the servicesSi ⊆ S

associated withmi are available, the objectivesOi can be
achieved (otherwise, the component would be inconsistently-
designed). Note that this is true, by definition, whatever the
available versions of these services, because the GCM does
not need any specific description ofdegraded performance: if
a version belongs to the list associated with a service in the
GCM, it means that its performance is acceptable (whatever
the way performances are defined).

When services ofSi become unavailable, some objectives
of Oi might turn to be unachievable.Critical servicesare those
whose unavailability implies that at least one objective ofmi

cannot be achieved. The set of servicesSi ⊆ S, associated
with mi is, therefore, decomposed intoSi = Sc

i ∪ Snc
i , where

Sc
i are the critical andSnc

i are the non critical ones. For
example, theregulation service is critical for theregulation
USOM.

2) Staying in a mode:When non-critical services become
unavailable, the system can obviously remain in the current
USOM, since its objectives can still be achieved: the system
is fault tolerant with respect to the current USOM objectives
and the current fault situation. On the contrary, when critical
services of the current USOM become unavailable, its objec-
tives can no longer be achieved, and the system is to be given
other objectives. This is an objective reconfiguration strategy
[7].

3) Transitions between modes:Objective reconfiguration
means firing a transition towards an USOM whose objectives
become the current ones. The system should, obviously, be
able to achieve these new objectives, which means that in the
destination USOM, no critical service is unavailable as a result
of the current fault situation.

When several USOM can be reached from the current one
in the USOM automaton, the choice of the destination USOM
(that is, of the new system objectives) is a decision problem
that must be considered at the system design stage. Unless the
system objectives can be ranked according to a total ordering
relation, the solution cannot be automated, thus leaving a very
important role to human operators in fault situations.

4) Implementation:The proposed model has been imple-
mented, by representing the relations between a USOM, its
objectives and the services which allow the objective satisfac-
tion with an AND-OR tree as shown on Fig. 2. Each USOM
is associated with one tree, whose root is labelled by its name.
The tree connects two types of nodes, namelyservicenodes
andversionnodes. The successors of aversionnode (resp. of
a servicenode) areservicenodes (resp.versionnodes). This
allows to express that a (higher level) version uses a set of
(lower level) services and that a service can be provided under
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Fig. 2. AND-OR tree.

several versions. Aversion is an AND node and aserviceis
an OR node. The leaves of the tree correspond to elementary
services. Faults (repair operations) remove (restore) arcs in the
graph. Reconfiguration possibilities result from the existence
of paths between the root and the leaves. If no such path
exists, USOM reconfiguration must be considered. The set of
the USOM trees is analyzed at each occurrence of a fault
or a repair operation, allowing operators to decide on the
possibility to switch versions and stay in the current USOM
or on the obligation to switch to another USOM with different
objectives.

This procedure does not put a high demand on FDI al-
gorithms, but it adapts to the information they are able to
provide. In the ideal case, any single fault is known from FDI
(indeed, fault detection and isolation shows which resource
is faulty). Similarly, any resource repair is known. Therefore,
the elementary services that are affected are directly known
and the whole procedure can be run as described above.
The procedure obviously accepts multiple faults: when several
resources are faulty, there is a set of elementary services
(instead of only one) which become unavailable. When FDI
cannot isolate the fault but instead provides a set of resources
amongst which one or several are faulty, then the algorithm
just performs the same way: every service which needs some
of the suspected resources is considered as unavailable. Fi-
nally, the reconfiguration possibilities can be researchedeven
if FDI does not locate faults at the resource level, but at the
level of non elementary services.

Following the detection and isolation of a fault, existing
reconfiguration possibilities are associated with existing paths
in the AND-OR tree. Finding these paths is easy, and provides
the operators with a good decision support system for reconfig-
uration. Choosing one reconfiguration possibility, when several
ones exist, is a decision problem that is not addressed here
(different strategies can be used, e.g. confining the fault at
the lowest possible level, switching a minimum number of
components).

V. EXAMPLE : THE TWO TANK SYSTEM (TTS)

A. TTS description

The example presents a part of a level control process
composed of two identical tanks (see Fig. 3). Each tank

Fig. 3. Two Tank Process.

is cylindrical of cross-section areaA = 0.0154 m2. Mea-
surements available from the process are the water levels
(continuous sensorsL1 for tanks T1, and qualitative sensor
L2 for tankT2). The qualitative values are associated with the
level intervalslow = [0, 9[ cm, medium = [9, 11] cm and
high = ]11, 60] cm.

The main aim of the TTS is to provide a continuous water
flow QN to a consumer via an outlet valveVN , located at the
bottom of tankT2. The water level in tankT2 has, therefore,
to be maintained at the medium level, and TankT1 is filled by
pumpP1 up to a nominal water level of 50 cm. The flowsQ1,
resp.Q2 between the two tanks are controlled by valvesV1,
resp.V2 placed on connecting pipes at levels 0 and 30 cm. All
valves can only be completely opened or completely closed.
For the nominal case, valveV2 is closed and not in use. Valve
V1 is used to control the water level in tankT2 and tankT1 is
controlled by a PI (Proportional Integral) level controller. All
cross-sections of the valves are equal to3.6 10−5 m2.

B. TTS objectives and their organization

For the TTS, six control objectives and five USOMs are
defined:

CO0 : No action

CO1 : Reach the level set points as quickly as possible

CO2 : Regulate the levels to the set points

CO3 : Completely empty the system

CO4 : Do not spoil the environment (the liquid in the tank

is supposed to be dangerous)

CO5 : Maintain the system operation ability

USOM0 : No operation

USOM1 : Preparation

USOM2 : Regulation

USOM3 : End of production

USOM4 : Fall back

The USOM automaton is shown on Fig. 4 where the
notation{*} specifies the control objectives the system has
to achieve for the given USOM.
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Fig. 4. TTS USOM automaton.

Fig. 5. TTS pyramidal decomposition.

C. TTS hierarchical decomposition

As the main objectives of the system are to keep the
levels in the tanks constant, the TTS is decomposed into two
subsystems, each of them associated with a level regulation
loop which includes the components required to process it
(Fig. 5) whereC1 is the PI controller associated with pump
P1 andC2 is the on/off controller associated with valveV1 or
V2.

D. Component description

The elementary components are the two valvesV1 andV2,

pumpP1, tanksT1 andT2, sensorsL1 and L2 and controllers
C1 andC2. The GCM of each of them is given below.

1) Tanks: Two USOMs can be distinguished for a tank:
USOM0 (not in use), USOM1 (in use).
No objective is associated withUSOM0. In USOM1

each tankTi, i = 1, 2 offers the serviceTi store on top
of the changeUSOM service. USOM1 objective is store
some quantity of liquid. It can be fulfilled thanks to
service Ti store, which is described by the procedure
li(t) = min

{

max
{

0, ai

∫

∆qi(t) dt
}

, lmax
i

}

where li(t) is
the output (prod), corresponding to the level in tanki, ∆qi(t)
is the input (cons) corresponding to the difference between
the input pipe and output pipe flows, andai is a parameter.

2) Sensors:Three USOMs are associated with the TTS sen-
sors:USOM0 (not in use), USOM1 (test)andUSOM2 (au-
tomatic). In USOM1 andUSOM2 sensorLi, i = 1, 2 pro-
vides the serviceLi levelon an operator request (inUSOM1)
or on a controller request (inUSOM2). The procedure asso-
ciated withLi level is hi(t) = gi(li(t)) whereli(t) is the true
level in tank i, hi(t) is its measured value andgi is a given
function.

3) Valves:As for the sensors, three USOMs are associated
with the TTS valves:USOM0 (not in use), USOM1 (man-
ual) and USOM2 (automatic). In USOM1 and USOM2,
valveVi, i = 1, 2 provides the servicesVi openandVi close
associated with an operator request inUSOM1 and with
a controller request inUSOM2. The associated proce-
dure isqi(t) = ki.sign (∆pi(t)) .

√

|∆pi(t)| for Vi openand
qi(t) = 0, ∀∆pi(t) for Vi close where qi(t) is the flow
through valvei, ∆pi(t) is the pressure drop between its input
and output, andki is a parameter.

4) Pump: The pump USOMs areUSOM0 (not in use)and
USOM1 (in use). In USOM1 the objective is to operate the
pump according to the requests delivered by the controller
using the serviceP1 deliver Q. As the pump is supposed to
be perfect, it is described by the procedureq(t) = Q(t) where
Q(t) is the flow parameter associated with the request for the
deliver service, andq(t) is the flow really delivered.

5) Controller C1: Three USOMs are distinguished
for C1: USOM0 (not in use), USOM1 (tank filling),
USOM2 (level regulation)where the objective inUSOM1 is
to fill up the tank as fast as possible using the serviceC1 max
flow. The objective, inUSOM2 is to regulate the level in the

tank using the serviceC1 regul.
C1 max flow is associated with the procedure

Q(t) = Qmax and C1 regul is associated with the procedure
Q(t) = min{KP.(h1(t) − l∗1) + KI.

∫

(h1(t) − l∗1)dt, Qmax}
whereQmax is the maximum value of the flow which can be
requested from pumpP1, l∗1 is the reference level for the PI
controller(50 cm), andKP = 1.10−3, (resp.KI = 5.10−6)
are the proportional (resp. integral) coefficients of the PI
regulator.

6) Controller C2: The USOMs of controllerC2 are:
USOM0 (not in use)and USOM1 (level regulation) where
the objective inUSOM1 is to calculate the valve position
for level regulation using the serviceC2 calcul pos Vi. This
service consumesh2(t) and produces the control request for
the valveVi according the following procedure:

if hi(t) = low =⇒ Vi = open

if hi(t) = high =⇒ Vi = close

E. Aggregation procedure

1) USOM aggregation: We create the subsystemlevel
controlled tank 1 which aggregates pumpP1 (2 modes),
level sensorL1 (3 modes), controllerC1 (3 modes) and
tank T1 (2 modes). The product of theUSOM automata
gives 36 compound modes, amongst which many are incon-
sistent, for example, (T1 in use, L1 test, P1 not in use,
C1 level regulation), leaving only five consistent modes
(whose label gives the functional interpretation):

LC1 not in use = (T1 not in use,L1 not in use,

P1 not in use,C1 not in use)
LC1 start of production = (T1 in use,L1 automatic,

P1 in use,C1 tank filling)
LC1 regulation = (T1 in use,L1 automatic,P1 in use,

C1 level regulation)
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LC1 end of production = (T1 in use,L1 automatic,

P1 not in use,C1 not in use)

LC1 maintenance = (T1 not in use,L1 test,

P1 not in use,C1 not in use)

∨ (T1 in use,L1 test,P1 in use,C1 not in use)

The USOMs of the subsystemlevel controlled tank 2are
defined in the same way.

2) Service aggregation:Suppose the subsystemlevel con-
trolled tank 1 is in the regulation modeLC1 regulation.
The choice of this mode implies the choice of the modes
T1 in use, L1 automatic, P1 in use, C1 level regulationfor
the components belonging toLC1. The low level services from
which the services provided byLC1 can be generated are:

T1 store= 〈∆qi, l1, proc1, rqst1, ena1, res1〉

L1 level = 〈h1, l1, proc2, rqst2, ena2, res2〉

C1 regul = 〈(h1, w1), Q1, proc3, rqst3, ena3, res3〉

P1 deliver Q = 〈Q1, q1, proc4, rqst4, ena4, res4〉.

The sets defined in (1)-(2) areprod(LC1)={l1, Q1, q1} and
cons(LC1) = {∆qi, h1, w1, Q1}.

Running the sequence of low level servicesmeasure, com-
pute, actuatecreates a relation betweenh1, w1 and q1. The
functional interpretation is aregulation service provided by
the high level componentLC1. The associated program is:

repeat
request the measurement service ofL1 (L1 level)
request the calculation service ofC1 (C1 regul)
request the actuation service ofP1 (P1 deliver Q1)

until end ofLC1 regul

Since only the presence/absence of low level services (and
not the way they are organized) is of interest in the sequel,
the high level services are summarized by the set of low level
services they need :

LC1 regul = {T1 store, L1 level, C1 regul, deliver Q1}

In the regulation mode, services of the subsystemlevel
controlled tank 2 are defined fromT2 store, L2 level,
C2 calculate, Vi open, Vi close (i = 1, 2). Considering the
cross-sections of the different valves and the levels in the
different tanks as defined by the nominal regulation conditions
(l1 = 50 cm, l2 = 10 cm), the outflow to the consumer is
always lower than the flow through any valveV1 or V2.
Consequently, the level in tankT2 decreases when the two
valves V1 and V2 are closed and increases when one valve
at least is open. Two versions of the regulation service of
LC2 can then be designed by using only one valve for the
regulation:

LC2 regul =
vers.1:

{T2 store, L2 level, C2 calculate, V1,2 close, V1 open}
vers.2:

{T2 store, L2 level, C2 calculate, V1,2 close, V2 open}

Using the two valves for the regulation is supposed not to
be considered by the designer.

The servicesLC1 regul and LC2 regul are associated
to define a service provided by the TTS itself allowing the
realization of control objectiveCO2. This service is defined
assys regul = {LC1 regul, LC2 regul}.

F. Fault scenarios

To illustrate the reconfiguration analysis on the TTS, con-
sider three fault examples. In the three cases, the current op-
eration mode is supposed to be the regulation one (USOM2),
and the currently used service for achievingCO2 is sys regul.

1) Scenario 1 -V1 blocked closed:ServiceV1 close cannot
be stopped and serviceV1 open cannot be started. Therefore,
the nominal version,

vers.1:
{T2 store, L2 level, C2 calculate, V1,2 close, V1 open}
to provideLC2 regul becomes unavailable but the degraded
version,

vers.2:
{T2 store, L2 level, C2 calculate, V1,2 close, V2 open}
remains available. The servicesys regul is not directly
affected by the fault andCO2 can still be achieved, using the
second version ofLC2 regul, that is using valveV2 instead
of valve V1.

2) Scenario 2 -V1 blocked open:ServiceV1 open gets
permanent in time and serviceV1 close becomes unavailable.
Therefore, all the versions (vers.1 and vers.2) ofLC2 regul

become unavailable, which implies the unavailability of the
servicesys regul and the impossibility to fulfill the regulation
objective. The system has to be switched to an USOM in which
this objective does not appear, namely thefall back USOM or
the end of productionUSOM.

3) Scenario 3 - leak inT1: The storage serviceT1 store

becomes unavailable and the environment protection objective
(CO4) can no longer be fulfilled. The system has to be
switched to an USOM in which this objective does not appear,
namely thefall back USOM. In this USOM, achievingCO3

leads to completely empty the tanks.

VI. CONCLUSIONS

The Generic Component Model is a formalized description
of the operation of devices at any hierarchical level of a con-
trolled system. It is well suited for human operators reasoning,
since the features it implements are directly connected with
the operator point of view, namely operating modes, delivered
services, and achieved objectives.

The GCM provides a systematic tool for finding the different
reconfiguration strategies of a system when faults occur.
Within a given operating mode, a system is reconfigurable
if there exist different versions of the services which allow to
achieve its current objectives. These versions are ranked ac-
cording to a preference relation. This allows an automated real
time management of the system configurations, when faults
occur, as long as needed service versions are available. When
the objectives of a given operating mode can no longer be
achieved, the reconfiguration procedure changes the operating
mode.
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By automatically analyzing not only the hardware compo-
nent redundancies but above all the functional redundancies
(expressed in terms of services), the proposed approach takes
an active part in the design of control reconfiguration laws.
Unlike in multi-model approaches, all control laws must notbe
pre-designed, and reconfiguration solutions can be determined
on line on the basis of the AND/OR tree. This tree allows to
analyze the system reconfigurability in the presence of faults,
since it essentially depends on the pattern of AND/OR nodes.
Moreover, the approach holds for multiple faults, does not
require a complete fault isolation mechanism and is not limited
to a restricted class of faults. The potentially dangerous issues
associated with the switching between different configurations
are minimized by ranking the different versions and by favor-
ing local reconfiguration at lower level components rather than
at higher level subsystems.

As for a wide range of modelling processes, building the
AND/OR tree requires human operators. Very few systems can
be modelled completely automatically (except in very simple
cases, for example electric circuits), and modelling paradigms
which result in sets of rules to be respected (like e.g. the Bond
Graphs energetic frame) are welcome. We believe that the
generic component model defines such a consistent framework
as far as functional modelling is concerned in a fault tolerance
context.

The GCM and the associated aggregation and reasoning
tools were applied to more complex systems (steam generator,
complex gasifier) in the CHEM FP5 European contract1, and
they were implemented in a general Decision Support System
for process supervision (see www.chem-dss.org).
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