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Abstract

Systems are built by connecting different components (e.g., sensors, actuators,
process components) that are, in turn, organized to achieve system objectives.
But, when a system component fails, the system’s objectives can no longer be
achieved. For many years, numerous studies have proposed efficient fault de-
tection and isolation (FDI) and fault-tolerant control (FTC) algorithms. This
paper considers faults that lead to the complete failure of actuators. In this spe-
cific case, the system’s physical structure changes, and the system model thus
becomes incorrect. The potential that the system has to continue to achieve its
objectives has to be re-evaluated from a qualitative point of view, before recal-
culating or modifying the control algorithms. To this end, this paper proposes
a self-updating system model to reflect the current system potential, a formula-
tion of system objectives using temporal logic, and a verification method based
on model checking to verify if the objectives can still be achieved by the faulty
system. The systems considered are discrete-continuous systems.

Keywords: self-updating model, reconfigurability analysis, fault-tolerant
control, model checking

1. Introduction

Control systems are expected to achieve different objectives at different times
(e.g., production objectives, quality objectives, safety objectives). The achieve-
ment of these objectives relies on the services provided by the system compo-
nents (e.g., sensors, actuators, process components). If a component fails, the
system objectives can be compromised [1]. For this reason, in order to meet the
increasing demand for system safety and reliability, control systems are increas-
ingly integrating fault detection and isolation (FDI) and fault-tolerant control
(FTC) procedures [2].

FDI algorithms aim to detect and the localize the faults ! as quickly as
possible, in order to make decisions that will avoid their propagation and their

IThe literature gives slightly different meanings for the notions of ”fault” and ”failure”.
Isermann provides a survey related to the standardisation of these two notions in chapter 2.2
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undesirable effects. They check the consistency of the real time system oper-
ation observations using the available model-based or data-based knowledge.
Venkatasubramanian et al. has published a good review of the FDI meth-
ods, classified in quantitative, qualitative or process history categories [4], [5],
[6]. FTC concerns the potential for the system to continue its operations with
the required performances, despite component failures. FDI algorithms, being
part of the information system of the supervised process, need information re-
dundancy, whereas FTC algorithms, being part of the decision and actuation
system, need decision and actuation redundancy, (i.e., the redundancy of the
services that are provided to the users by the system components) [7].

Different approaches have been proposed for the design of FTC algorithms
[8], [9]. In passive approaches, the controllers are fixed and designed to be robust
against a class of presumed faults. In passive FTC, a system may tolerate only
a limited number of faults, which are assumed to be known before designing
of the controller. The fault considered are time-varying processes or uncertain
parameters in the system component models. Suppose, for example, that a
pump is used to regulate the level in a tank and that a regulator is used to
produce the pump control v(t) so as to obtain the pump flow Q = k,.v(t),
where k(v) is uncertain (i.e., not well identified) or is time varying because
there is a leak that depends on the pump’s rotational speed; thus, the delivered
flow @ will not have the desired value. In passive approaches, the controller
parameters are adapted from an estimation of the value k(v) (adaptive control)
or from a minimization of a predictive criterion (robust control). (Readers
interested in passive FTC approaches can referred to references [10] and [11] for
a good introduction. Readers interested in adaptive or robust control methods
can refer to references [12], [13].)

Compared to the passive approaches, an active FTC system uses the avail-
able resources and both physical and analytic system redundancy to deal with
unanticipated faults, either by selecting a pre-computed law, or by synthesizing
a new one in real time [14], [15]. After a failure, a part of the services provided
by the system’s components may become unavailable and the overall system will
work inadequately, if, for example, a faulty sensor (resp. actuator) makes the
plant partially unobservable (resp. uncontrollable). Objectives can be achieved,
in spite of the faults, if at least one of two procedures - fault accommodation and
system reconfiguration - can be used successfully. Fault accommodation relies
on estimating the variables provided by the faulty sensors; system reconfigura-
tion uses alternative actuators or sensors to provide services that are equivalent
to the services previously provided by the failed components. Systems recon-
figuration includes control reconfiguration: designing or the selecting a new law
to control the new components implied in the new control loops [16].

of his book [3]: a fault is defined as an un-permitted deviation of at least one characteristic
system property (i.e., feature) from the acceptable, usual or standard condition and a failure is
a permanent interruption of a system’s ability to perform a required function under specified
operation conditions. Since a failure results from one or more faults and since a fault may
initiate a failure or a malfunction, these two terms are used indifferently in this paper.



As this paper deals with actuator faults, and as sensors are assumed to
be non-failing, only system reconfiguration will be considered. More precisely,
what is meant by reconfiguration in this paper is, despite faulty components,
the possibility of:

1. continuing system operation without intolerable loss of performance,
2. continuing system operation with reduced specifications, or
3. abandoning the mission while still avoiding disaster.

Different approaches have been proposed to the design of FTC algorithms
under actuator faults [17], [18], [19]. But, in most of cases, these approaches use
the quantitative system behaviour model including, for example, the state and
output equations in the time domain to select or redesign the input vector, the
output vector, the control law and the set-point. But in the case of a complete
failure of an actuator, the potential for the system to achieve its objectives has
to be re-evaluated qualitatively before synthesizing of a new control law. To
express these possibilities in term of available or unavailable functions is a very
precious understandable information for operators who supervise the system
and who have to exactly know at each time what they can expected for this
system.

In this paper, we propose analysing system reconfigurability using a self-
updating model and a model-checking technique. The idea is to provide the
mechanisms to automatically calculate the real system model each time a fault
occurs and then to evaluate whether or not this updated model will be able to
achieve the system’s objectives. In computer science logic, model checking refers
to a method for formally verifying that a model meets a given specification [20],
[21], [22]. System specifications are expressed as temporal logic formulas, and
models take the form of state transition graphs. Efficient symbolic algorithms
are used to test whether or not a given model satisfies the given specifications;
if not, the algorithm generates a counterexample. By studying the counterex-
ample, the source of the error in the model can be highlighted and the model
corrected. Model checking has proven to be a successful technique to verify
the requirements and design of a variety of real-time embedded, safety-critical
systems [23], [24]. Its application to analysing the reconfigurability of a system,
is, we think, an original idea.

Our reconfigurable control architecture is presented in Figure 1. Two parts
can be distinguished: diagnosis and reconfiguration. The diagnosis part aims to
detect and identify faults. A fault is detected when the observations made on
the real system are inconsistent with the prediction of the system model. A fault
identification module is then run to identify the faulty component and its fault
type (e.g., valve blocked in the open position or in the closed position for a valve).
In the opposite case, the behaviour of the system is considered as normal (non-
faulty), and the current system model remains valid. The reconfiguration part
of our reconfigurable control architecture uses the result of the diagnosis part
to automatically calculate an updated model, using the real observations and
the fault reports. If the faulty system, as it is described by its updated model,
allows the system to achieve its specified objectives, the updated model becomes



Figure 1: The reconfigurable control architecture.

the new current system model. In the opposite case, the system reconfiguration
is considered as impossible, and the system is shut down or placed to a safe
state.

This paper focuses on the reconfiguration part, so the diagnosis part is not
described. The diagnosis is assumed to be correctly performed by an appropriate
procedure. The systems considered are continuous systems for which continu-
ous variables are discretised, and the faults are assumed to be permanent, not
intermittent. The rest of the paper is organized as follows. Section 2 describes a
system from a functional viewpoint. Section 3 presents our framework for gen-
erating a self-updating system model. Section 4 introduces the temporal logic
used for describing system objectives and the model checking method used to
automatically calculate reconfigurability. Section 5 presents the example used
to illustrate the different notions. Section 6 provides our conclusions and some
prospects for future research.

2. Functional viewpoint

Systems are built by connecting different components, which provide services
to users [7]. For example, a sensor provides a measurement service; a pump
provides two services: delivering a flow and not delivering a flow; a controller
provides a calculation service; and a tank provides a storage service. Lower
level components (e.g., sensors, actuators, controllers and process components)
are grouped to form subsystems in order to define higher level services. For
example, a level sensor, a pump, a controller and a tank can form a single
subsystem that provides a regulation service in which the controller uses the
tank level provided by the measurement service to calculate the pump’s input
control. The advantage of creating high-level components is to provide high-
level services, which ends up in the overall system and its control objectives.

A service is described by the variables it consumes (cons), the variables it
produces (prod), and a procedure (proc) that transforms the former into the
latter. Services are derived from the component behaviour, which is governed
by physical laws and (possibly) by embedded software. For example, a tank
consumes input and puts out mass flows, and produces a stored mass, using the
procedure 11(t) = gin(t) — Gout(t), where m is the stored mass, ¢;;, is the flow in
the input pipe, and g,y is the flow in the output pipe. The procedure follows
from the principle of conservation of mass. The regulation service of a controller
consumes data provided by a measurement service and produces signals to an
actuation service according to a specific algorithm.

Services describe what the user expects to obtain from a component or from
a subsystem under normal operation. However, there are two reasons for a given
service s to fail to deliver the appropriate values of the variables it produces:



e Internal faults affect some resources (res) needed by the service. As a
result, the actual values of the produced variables (prod) are not those
specified by the procedure (proc). A leak in a tank is an example of an
internal fault. The procedure m(t) = gin(t) — qout(t) does not correctly
describe the behaviour of a leaking tank since the flow associated with the
leak is not taken into account.

e [External faults affect the inputs (cons) of the service. A level regulation
service is subject to an external fault when the level value it consumes is
false, due to the failure of the level sensor, or if its time stamp is outdated,
due to a failure in the communication system.

Fault-tolerant components integrate multiple instances of the same service,
listed as a set of versions. All versions of the same service produce the same
outputs (so they can be interchanged), and at least one among the inputs,
procedures and resources is different from one version to another. The different
versions of this same service differ by their accuracy, running time and/or energy
consumption, and they are ranked by the designer. When a service is requested,
the version that is selected is the most preferred in that all the resources it
needs are known to be non-faulty. The first version of this ordered set is named
nominal version, and the other versions are degraded versions. The service
becomes unavailable if there is not any version that allows it to be provided.

To take into account the unavailability of a part of the services associated
to a component, the notion of operating modes is introduced. For example,
three modes are associated to a valve: normal, blocked_on, blocked_off. In the
non-faulty case, the operating mode is normal. The valve_open and valve_close
services are available. The operating mode of the valve is blocked_on (resp.
blocked_off) if the valve is blocked in the open (resp. closed) position, and only
the service valve_close (resp. valve_open) is available. Due to the unavailability
of a part of the system component services, the achievement of the nominal
system objectives may become impossible. The designer may have to implement
degraded objectives to increase the system’s fault tolerance capability. The
system can in this case continue its operations with a reduced but tolerable
performance. Nevertheless, the normal system behaviour model is no longer
valid. A new model has to be calculated in order to check whether or not the
system can continue to meet its objectives. For this reason, in the next section,
we propose a self-updating model mechanism that produces the real behavioural
model of the system for each observation time.

3. The Self-Updating Modelling

The paper focuses on faults corresponding to the complete loss of a service
provided by an actuator. Because a fault of this type totally changes the sys-
tem’s physical structure, the normal system behaviour model is no longer valid.
Thus, a flexible system model mechanism is required to automatically update
the system model. This mechanism has three parts: a database containing ba-
sic knowledge about the system, a procedure for identifying the current system



state of the system, and an algorithm to automatically build the system model
using the first and second parts.

3.1. Basic Knowledge Database

Basic knowledge is the knowledge required to infer the current system con-
ditions and predict how the system will evolve. This information is the result
of the functional analysis, especially the specification of the control objectives,
which requires measurement, calculation and action services to give the process
variables their expected values.

More formally, let the basic knowledge be:

o V ={vy,vq,...,u0,}, the list of the process variables to control,

o Y, ={y”, 45", ...,ya’ }, the discrete set of the possible values of the vari-
able v; €V,

o (= {cl7 C2y eeey cm}, the system components,

o Ay, = {ay’,ay’,...,as’ }, the list of the control actions that can be used
by a controller to modify the value of the variable v;,

o M, ={m{,m3,..,m; }, the list of the operating modes for the compo-
nent c;,

n n
Let O = U Yo, + U Ay, be the set of the observation atoms (i.e: an observation
j=1 i=1
atom is a possible value for a measured output or a control input).

m

Let D = U M., be the set of the diagnosis atoms (i.e.: a diagnosis atom is a
=1

possible operating mode for a component), where m is the number of compo-

nents.

A control action a is then defined by two elements:

e PC(a) - a pre-condition that states which observation and diagnosis atoms
must hold true before the running of the control action,

e EF(a) - an effect, expressed as a variation direction for the controlled
variable, that takes into account the variable’s initial value before applying
the new control and the values of variables that influence the controlled
variable. This effect determines possible values for the controlled variables
as the result of the control action.



8.2. Current system state identification

The current system state is given by the subset of the observation and diag-
nosis atoms ‘%hat hold true.

Let Oy C HYW = (yzfl,,y% ,yﬁ’; ) - where x,; denotes an arbitrary

j=1
number between 1 and the number of elements of the set Y,,,, and y;i] denotes
one of the values of the variable v; - be the part of the observation vector ob-
tained from the sensor outputs.
Let Oy C H Ay, = (a;il,...,a;{;v,...,agz ) - where z,, denotes an arbitrary

; n

j=1
number between 1 and the number of elements of the set A4,,, and aTU denotes
one of the control action applied on the variable v; - be the part of the obser-
vation vector obtained from the actuator inputs.

m

Let D C H M, = (mg) ,...,mg ,..,mg ) - where z,; denotes an arbitrary
'« 7 n
j=1
number between 1 and the number of elements of the set MC]., and m;]v denotes
one of the modes of the component ¢; - be the diagnosis vector. The components
of this vector are determined by an appropriated diagnosis module which is not

described in this paper but which is presented in [25], [26].

As a result, the current system state is given by the triplet:
so = (Oy(0),04(0), D(0))
= (421,00, w2 (0).a22 (0),...a22, (0),m (0),..omEz, (0))

where 7 (0),...,yz" (0) are the values of the measured outputs, az! (0),...,ag" (0)

are the values of the control inputs, and mg! (0),...,mg (0) are the operating
modes of the system components.

8.8. System Modelling Algorithm

The system modelling algorithm uses the system’s basic knowledge to deter-
mine the possible successor states from the current system state. It returns a
graph G(S,T, so) as the updated model, where:

e 5q is the current system state, given directly from observations and diag-
noses,

e S = {s;} is the finite set of states reachable from sg, with each state s;
being defined as the current state from the list of observation and diagnosis
atoms that holds true for this state: s; = (Oy (4),04(i), D(3)),

o T = {t;;} is a set of transitions, each of which is defined by ¢;; = {s;, s, a;}
n
where s; is the origin state, s; is the destination state, and a; € U Avj is

j=1
a control action, such as s; checks PE(a;) and s; checks EF(a;).



This graph can be automatically generated by Algorithm 1. From the current
state s, the algorithm searches the control actions that can be applied to sg
n
among the global control action set (J A; (i.e: the control actions in which
i=1
so verifies the pre-condition PFE). If such a control action a; is found, one or

several new states are created (lines 6-7). All these states have:

e an identical set of diagnosis atoms to sg (line 8), which is determined
by a specific diagnosis module, called the diagnoser, at the time that the
current system state is identified,

e an identical set of input observation atoms to sg, excepting the new control
action a; that replaced the corresponding previous control action (line 9-
10),

e a set of output observation atoms, which combines the effects of the actions
applied to the variables to be controlled (line 11).

The newly found states, if they have not already be found in a previous step,
are added to the graph G(S,T,sg) (lines 12-14). The search process then is
iterated until no new state is found (lines 20-25).

Note that a pI‘lOI"l the potential state space of the behaviour model is equal

to: H Yy, | x H |Ay,| (the notation |.| is used to express the cardinality of
Jj=1 Jj=1

a set). But in reality, among all the possible combinations of variable values
and control inputs only a few of them have a physical meaning. For example, a
combination pump=on and valve=off is forbidden if the pump is at the input
of a pipe where the valve is at the output. On the same idea a combination with
a high liquid temperature and a low liquid level may be forbidden for security
reasons. One of the key points of our algorithm is that it does not investigate
all the potential states but that it only referees on the available control actions,
that extremely limits the complexity. In every cases, the size of the generated
behaviour model stays enough small to be easily processed by the classical model
checking algorithms.

4. Model Verification

4.1. The model checking requirements

The diagnoser identifies the current system state sg = (Oy (0),04(0), D(0)).
According to Algorithm 1, the successor states of the current system state can be
predicted. A fault is detected when a discrepancy exists between the predicted
behaviour and the behaviour really observed. The diagnoser’s aim is to detect
the fault (i.e., a discrepancy exists), to locate the faulty component (e.g., the
valve is faulty) and to identify the kind of fault (e.g., the valve is blocked in the
open position). This allows the algorithm to update the component’s operating
modes and the list of the available control actions to act on the process variables.



Algorithm 1 Model Generation

n n
Require: so, |J Ay;, U Y,
j=1 j=1
1: S« {so}, T + @, test_states < {sp}, new_list < @, again + true
2: while again do
3:  for all s, € test_states do

4: for alli=1ton do

5: for all a; € A,, do

6: if sorig checks PC(a;) then

7 create a new state sges: sSuch as:
8: Mdest; = Morig; V_] € [Lm]

9: Qdest; = Gorig;  Vj € [1,n] — {i}
10: Adest; = Qg

11: Ydest; checks EF(aj) Vj € [1,n]
12: if t(Sorig, Sdest, @;) ¢ T then

13: new_list < newist + {s}

14: T+ T+ {t(som‘g7 Sdests ai)}
15: end if

16: end if

17: end for

18: end for

19:  end for
20: if mew_list # @ then

21: test_states < new_list
22: new_list < @

23:  else

24: again < false

25:  end if

26: end while
27: return G(S,T, so)




The mechanisms on which the diagnoser is based are not described in this paper.
Some ideas about building this diagnoser have been given in papers [25], [26].

Once the updated model is obtained (by running Algorithm 1 with the new
system conditions as input), the next step is to check whether or not the new
model satisfies the system objectives. To this end, the model checking approach
translates the updated system model into a labelled transition model, called the
execution structure, on which the correctness properties, expressed as temporal
logic formulas, are verified by means of specific algorithms [27], [20]. The exe-
cution structure is, in our case, the updated model G(S, T, sg) to which a finite
set of logical atoms L = Oy UO4 U D is added.

More formally, the execution structure and a path in the execution structure
can be described through the following definitions:

Definition 1 (The execution structure). The execution structure is the state
transition graph M(S,L,T, so) where:

e L =0y UO4UD is a finite set of logical atoms describing the possible
values for the system inputs and outputs, and the possible operating mode
for the system components,

o S is the state set. Each state s € S is labelled with a set of atomic
propositions L(s) which contains all atoms true in that state, which means
that if p is an atomic proposition, then p is true at a state s if and only if
p labels s (i.e. p is an element of L(s)).

o T is the transition set defined as for the system model G(S,T, sp).

e sq is the initial state.

Definition 2 (Path in an execution structure). A path in an execution struc-
ture M in an infinite state sequence ™ = sq, S1,... such that for every i > 0,
(8iy8i+1) € T. 7 is used to denote the suffix of m starting at s;.

This execution structure can then check whether or not a system objective
expressed as a sequence of events to observe by the mean of a temporal logic
formula, can be achieved. This is the basic idea of the model checking technique.

4.2. The specification of system objectives

Many temporal logics have been defined and studied in the literature. In
temporal logic, the truth values of a proposition are not always constant in
time. Temporal operators are used to express propositions such as: “The level
is always equal to 20.”, “The level will eventually be equal to 20.”, “The level
will be equal to 20 wuntil the valve is opened.”. Linear temporal logic (e.g.,
LTL [28]) reasons about only one possible future for the evolution of a property.
Branching time logic (e.g., CTL [29]) assumes that a property might evolve
differently in the future if there is an unpredictable environment. For example,
such properties as “There is a possibility that the level will stay equal to 20
forever.” or “There is a possibility that the level will decrease.” can be used to

10



express different future executions, by taking into account the fact we do not
know whether or not the valve will ever open.

The systems we chose to study are partially non-deterministic since the ef-
fects of a control action are linked to the current state and system dynamic.
Furthermore, these systems are not always designed to achieve the final objec-
tives expressed as final states to be reached. Objectives may be expressed as
potentially cyclic execution sequences, such as maintaining a property, achiev-
ing an objective periodically or within a number of steps after the request was
made, or achieving several objectives in sequence. Branching time logic is quite
appropriate for formulating such objectives and integrating the part of non-
determinism since it allows the expression of multiple execution possibilities.
As the system model is based on a state graph, a temporal logic that refers to
“states” rather than “actions” (e.g., TLA [30], ACTL [31]) is preferable. For
this reason, we chose the computation tree logic CTL* [32] to formulate the
system objectives.

Clarke et al describes CTL*, and its use in model checking, in their texbook
[20]. The main definitions and concepts of CTL* and model checking are re-
viewed below. Readers already familiar with these definitions and concepts can
skip directly to section 5.

4.2.1. The CTL* semantic

Let P be the set of the atomic propositions and p € P an element of P.
According to Emerson’s work [27], CTL* formulas are built from P using “path
quantifiers” and “temporal operators”.

e Path quantifiers are used in a given state to specify that all or some of the
paths starting at that state have certain properties. Two types of path
quantifiers are possible:

— A is a universal path quantifier, meaning that certain properties hold
true on all paths starting from a given state.
— F is an existential path quantifier, meaning that certain properties

hold true on some paths starting from a given state.

e Astemporal logic does not explicitly express time as quantity, five temporal
operators are introduced to describe path properties:

— X (next time) requires that a property hold true in the path’s second
state.

F (eventually or in the future) is used to affirm that a property will
hold true at some states on the path.

G (always or globally) specifies that a property holds true at every
state on the path.

— U (until) states that a property holds true if there is a state on the
path in which the second property holds true and if the first property
holds true at every previous state on the path.

11



Figure 2: Examples of CTL* formulas [33].

— R (release) requires that the second property holds true along the
path, up to and including the first state in which the first property
holds, although the first property is not required to hold true in the
future.

There are two types of formulas in CTL*: state formulas, which are true
in a specific state, and path formulas, which are true along a specific path. If
f is a state formula, the notation M,s |= f means that f holds true at state
s in the execution structure M. Similarly, if f is a path formula, the notation
M, 7 = f means that f holds true along path 7 in M. The relation |= is defined
inductively as follow (assuming that f;, fo are state formulas and g1, g2 are path
formulas):

e M,skE=p<pe L(s) (pis true in the current state)

e M,skE-fie M sl fi

e M,sEfivVfaoe MsEfior M,skE fo

e M,sEfinhfaeoM,sE fiand M, s E fo

e M,s = E(g1) < there is a path 7 from s, such that M, 7 | g1
o M,s = A(g1) < for every path 7 from s, M, 7 = ¢1

e M, 7= f1 & s is the first state of 7 and M, s = f;

e MimEX(q1) & M,nt = ¢

e M, 7= F(g1) < there is a k > 0 such that M, 7% |= ¢

e M,m=G(g1) & foralli >0, M,n' = ¢

e M,m E ¢1Ugs & there is a k > 0 such that M, " E g2 and for all
0<j<k, M,/ =g

o M,m = giRgs < for all j > 0, if for every i < j M,7* [~ g then
Maﬂ_j ':92

The figure 2 gives some examples of CTL* formulas. Each computation tree
has the state so as its root [33].
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4.2.2. CTL* objective formulation

In order to make easier their translation into CTL* formulas, the system
objectives may be split into different properties to checked. According the type
of studied systems, a such classification may make appeared:

e reachability or liveness objectives, such as EF(g), which requires that the
system may be able to reach desired states where g holds true, and AF(g),
which requires that the system will be guaranteed to reach those desired
states. The traffic light will turn green is an example of liveness objective.

e safety objectives, such as AG(—g), which means g must absolutely be
avoided, and EG(—g), which means that an attempt must be made to
avoid g. The lights in cross directions are never on at the same time is an
example of a safety property for a traffic light controller.

e maintainability objectives, such as AG(g), which means g must be main-
tained, and AF(AG(g)), which means that the system will always reach
some future state from which ¢ can be permanently maintained. Any
regulation system makes appeared maintainability objective.

A such decomposition makes easier the written of CTL* formulas for any
engineer and brings him an important help to make sure nothing forgotten. He
only has to check that all the constraints are correctly extract from the system
requirements.

The purpose of our paper is to evaluate the possibilities the system has, or
does not have, to carry out its objectives, in faulty situations. The existence of
solutions to continue the system operation is based on the existence of multiple
versions of the same service, which characterizes the system reconfigurability
property. Since control actions are modelled for different outcomes that cannot
be predicted at the time of execution (i.e., it is impossible for the system to
know a priori which of the different possible outcomes will actually take place),
different reconfiguration results may be obtained. For instance, a reconfigu-
ration might guarantee that an objective will be accomplished, or might just
provide the possibility of success. CTL* logic allows the differences in these
results to be described and defined. For example, the strong objective AF(g)
means that the reconfiguration guarantees the accomplishment of the desired
objectives, while the weak objective EF(g) expresses that reconfiguration only
has a chance of success.

Automatic reconfiguration is a complex procedure during which the objec-
tives can be changed at the moment that the fault report is received. If nominal
objectives cannot continue to be fulfilled, the solution of carrying out the de-
graded objectives has to be evaluated. For a desired property g, the temporal
objective would be AG(g) (i.e., g always holds true) in the normal operating
mode. If there is a fault that causes g to deviate from its desired value, then re-
configuration will correct this deviation and will keep g within its desired value
range. But in a non-deterministic system, a control action sent by the recon-
figuration procedure cannot be guaranteed to produce the desired effects (i.e.,
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the original objective cannot be guaranteed). This situation can be described
as EF(AG(g)), which means that g will eventually be accomplished in some fu-
ture state from which g will be permanently maintained. However, this does not
satisfy the requirements of some high-security systems. Thus, EF(AG(g)) must
be changed into a strong solution, such as AF(AG(g)). If the execution struc-
ture satisfies the objective AF(AG(g)), then reconfiguration will be successful
in spite of non-determinism.

4.3. The model checking

Let ¥ be a objective expressed in CTL* logic. Let M(S,L,T,sy) be the
execution structure. The model checking task aims to determine which states
in S satisfy W. To accomplish this, the formula ¥ is first decomposed into
sub-formulas that make only the connectives =, A, 1L, EX, EG and EU appear,
using the following equivalences [20]:

o AX(f) =—EX(~f)
e EF(f)= E(trueUf)
o AG(f) =~EF(-f)
o AF(f) =~EG(~f)

o A[fUg] = ~E[~gU(=f A —g)] A =EG(~g)
o A[fRg] = -E[-fU~g]
e E[fRg] = ~A[~fU~g]

The labelling operation is then processed. This operation determines the
set label(s) of the sub-formulas of ¥ that are all true in s. This operation is
repeated for each state of M, starting with the smallest sub-formulas and work-
ing recursively towards W. Initially, label(s) is just L(s). The algorithm then
processes the sub-formulas with nested CTL* operators. When the algorithm
terminates, the result is the set of states of the model that satisfy the formula.
If this set includes the initial state sg, then M satisfies .

Some examples are given below to describe how states are labelled.

If U is:

1. L: then no states are labelled with 1.
2. p: then label s with p if p € L(s).
3. Uy AWy label s with U1 A W5 if s is already labelled both with ¥; and
Us.
4. —\\2111: label s with =W, if s is not already labelled with 0.
5. EG(¥):
o Label all the states with EG(¥),
o If any state s is not labelled with ¥y, delete the label EG (1),
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e repeat
delete the label EG(¥;) from any state if none of its successors is
labelled with EG(¥,)
until there is no change.

6. E(U,U,)
o If any state s is labelled with U5, label it with E(¥;UW5)

e repeat
label any state with E(¥;UW,) if it is labelled with ¥y and at least
one of its successors is labelled with E(U,UV5)
until there is no change.

7. EX(Vy): label any state with EX(¥;) if one of its successors is already
labelled with ;.
8. AF (V)

o If any state s is labelled with AF(¥,), label it with AF(¥4)

e repeat
label any state with AF'(Wq) if all successor states are labelled with
AF(0)
until there is no change.

These eight sub-algorithms can be combined to deal recursively with the
different formulas. For example, the verification of the formula S(AF(AG(x)))
will be processed in three steps: 1- S(x), 2- S(AG(z)), and 3- S(AF(AG(2))).
Applied to the reconfigurability analysis of a system, this method make it possi-
ble to determine whether or not a faulty system has the potential to continue its
operation without intolerable performance losses or with reduced specifications.
Let now apply the proposed methodology on a didactic example.

5. Example: The Two Tank System (TTS)

5.1. A description of our TTS

We chose the TTS to illustrate our method because this example (or similar
ones) has been used to illustrate different approaches in fault diagnosis and fault
tolerant control [2], [34], [35], [36]. This example is related to a level-regulation
process involving two identical connected tanks (see Fig. 3). The main objective
of the T'TS is to provide a continuous water flow Qo to a consumer via an outlet
valve Vp, located at the bottom of tank T5. To accomplish this objective, pump
P, fills tank T7 up to a nominal water level of 50 cm. The flow in tank T is
kept at a level of 10 cm via valve V7 placed in tank 77 on a connecting pipe at
level 30 cm. Valve V5, placed in tank 77 on a connecting pipe at level 0 cm,
is always closed in the nominal case and is used as a backup valve when V; is
faulty.

The nominal objective is to regulate the level in tank 77 up to a water level
of 50 cm. In the case in which the nominal objective cannot be fulfilled, users
accept a regulation to a water level just under the valve V; location (i.e., 30 cm).
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Figure 3: The two tank process.

The available process measurements are the water levels [; for tanks 77, and
lo for tank T5, given respectively by the sensors L; and Ls. For the nominal
case, a controller C turns of f the pump P; when [y is 50 cm (degraded case:
30 cm) and turns it on when [; reaches 45 cm (degraded case: 25 cm). Another
controller Cy turns on valve V; (or V4 ) if I5 falls to 9 cm and turns it of f when
level rises to 11 cm.

There were many reasons for choosing the TTS example for our paper, other
than the one stated above. First, multi-tank systems are widely used in indus-
trial domains as diverse as chemistry, production and power plants. Second,
many physical processes include the inflow and outflow of materials and thus
can be modelled by multi-tank systems. A complex system can be decomposed
into many of these small basic systems for analysis. Third, this example allows
us to specify nominal and degraded objectives and illustrates some interesting
proprieties, such as the cycle execution and the non-determinism. In fact, the
TTS regulation process requires a cyclic execution of services that makes it
possible to increase the levels and then to decrease them. The flow between
the two tanks varies according to the different water levels in each tank. Thus,
during the regulation process, a single valve action results in different water
level changes in each tank. This is a non-deterministic property that has to be
formulated correctly.

5.2. The functional viewpoint

From the TTS description, the nominal control objective is “to regulate the
level in tank 77 between 45 cm and 50 cm and to regulate the level in tank 75
between 9 cm and 11 cm”. The degraded version of this objective is “to regulate
the level in tank T} between 25 cm and 30 cm and to regulate the level in tank
T, between 9 cm and 11 cm”. Accomplishing this control objective relies on the
services provided by the T'TS components: the two valves Vi and V5, pump Py,
tanks 7 and Ty, sensors L1 and Lo and controllers Cy and Cs. The sensor L;
provides a measurement service: L;_level. The valve V; provides two actuation
services: V;_open and V;_close. The pump P; provides two services: Pj_open
and P;_close. The tank T; provides a storage service T;_store. The controller C;
provides a calculation service according a regulation algorithm. Several operat-
ing modes can be associated to the TTS components: {normal, non normal} for
the tanks, the controllers and the sensors and {normal, blocked_on, blocked_off }
for the valves and the pump. This functional analysis supports the definition of
the system’s behaviour model.

5.83. The system model

The basic knowledge required by the TTS to infer the current system con-
ditions and predict the system’s evolution is as follow:
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e The list of the process variables to control is V = {Iy,l5}

e The possible values for the variable [ are :
Y, = {[0,25][, 25,125, 30, 30,30, 45], 45, ]45, 50[, 50,150, 60] }

e The possible values for the variable 5 are: Y;, = {[0,9[,9,]9,11[,11,]11,60]}
e The system components are: C = {Py, Vi, s}

e The component that can be controlled to act on Iy is: C;, = {P1}

e The components that can be controlled to act on Iy are: C), = {V;, Va}

e The possible actions to modify Iy are : A;, = {P;_on, P,.of f}

e The possible actions to modify ls are: A;, = {Vi_on,Vi_of f,Va_on,Va_of f}

e The operation modes for the component P; are:
Mp, = {ok(P), stuck_on(P), stuck_of f(P1)}

e The operation modes for the component V;, where ¢ = 1;2 are:
My, = {0k(V;), stuck_on(V;), stuck_of f(V;)}

We assumed that the TTS sensors, controllers and tanks cannot fail. For
this reason, they do not appear in the basic knowledge.
Based on the basic knowledge description,

e the set of the observation atoms is:
O ={l; €[0,25],1; = 25,11 €]25,30[,1; = 30,11 €]30,45[,1; = 45,1; €]45,50[,1; = 50,
Iy € [0, 9[, ly = 9, Iy 6]9, 11[, lo =11,15 6]11, 60], Py _on, Pl,Off, Vl,OTL, Vvl,Off,
Vaon, Vo of f}

e the set of the diagnosis atoms is:
D = {ok(Py), stuck_on(Py), stuck_of f(Py), ok(V1), stuck_on(V1), stuck_of f(V7),
ok(Va), stuck_on(Va), stuck_of f(Va)}

Each control action is specified in term of pre-conditions and effects as follow
where the sign 1 (resp. ’}‘, =) means that the level rises (resp. falls, keeps
the same value).

e P off:=

— case —stuck_on(Vq)
PC(Pyof f) = Pi_on A (I1 = 50)
EF(Pyoff) =11 — if Vi_close
EF(Pioff)=111] if Vi_open

— case stuck_on(V7)
PC(Py-off) = Pion A (I, = 30))
EF(Pioff) =11 — if Va_close
EF(Pioff)=111] if Va_open
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o Pi_on:=

— case stuck_on(Vq)
PC(Pl,on) =P off AN (ll = 45)
EF(Pi_on) =1y | if Vi_open
EF(Pyon) =111 if Vi_close

— case stuck_on(V7)
PC(P1,0TZ) = Pl,Off A (ll = 25))
EF(Pyon) =11 ] if Va_open
EF(Pyon) =111 if Va_close

o Vi _close :=

PC(Vi_close) = Vi _open A (I3 = 11)
EF(Viclose) =13 |

o V] _open =

— case —stuckC(Py)
PC(V;i_open) = Vi_close A (I2 = 9)
EF(Vy-open) =13 1

— case stuckC(Py)

PC(Vi-open) = Vi_close A (I2 = 9))
EF(Vi_open) =la 1 if (I > 30)
EF(Vi_open) =1ls ] if (I1 < 30)

o V5 open =

— case —stuckC(Py)
PC(Va_open) = Vi _close A stuck_ O(Vi) A (la = 9)
EF(Va_open) =1s 1

— case stuckC(Py)
PC(Vaoopen) = Vs _close A stuck_ O(V1) A (I = 9))
EF(Va_open) =1y 1 if (I3 > I3 > 0)

o V5 close :=

PC(Va_close) = Va_open A (o = 11)
EF(Va_close) =1 |

5.4. Generating the model

The system’s behaviour model can be automatically generated from the
system’s basic knowledge and from the identification of the current system
state. Suppose that the diagnoser identifies the system’s current state as:
so = {l1 €]45,50[,1s = 11, Py _close, Vi _open, ok(Py), ok(V1)}.

In this case, the system is not faulty since the diagnosis vector is Dy =
{ok(cj)}Ve; € Cy,. The corresponding system behaviour model is the
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Figure 4: The normal behaviour model.

normal behaviour model (Figure 4). This model can be automatically
generated from sy by running Algorithm 1. Algorithm 1 receives as input
the state sp, denoted state 1 on the graph presented in Figure 4. Among
the control actions in A;; UA;,, only Vi _close has its pre-condition verified
by so. This control action takes the place of Vj_open. The list of the
input observation atoms of the successor states of sq is P;_close, Vi _open.
The list of the output observation atoms of the successor states of sq
is obtained from the possible combinations of the effects of the control
actions P _close, V;_open. These effects are “to maintain [;” for P;_close
and “to decrease l5” for Vi_open. State 2 on the graph given in Figure 4
was found in this way. A state with I3 €]45,50[, 1 €]9, 11] is not taken into
account as such a state leads to no new control actions. Successors states
from ss are determined in the same way. The system model does not need
to be recalculated when there is no change in the diagnosis vector D.

5.5. Formulating the TTS objectives

In the normal operating mode, the objective of the TTS is to maintain
the tank 75 level between 9 cm and 11 cm and to try to maintain the
tank 73 level between 45 cm and 50 cm. This temporal objective can be
expressed as AG(9 < ls < 11)AEG(45 <13 < 50). The nominal objective
is to regulate the level in tank T3 up to a water level of 50 cm. In the case
in which the nominal objective cannot be fulfilled, users accept a revised
objective that regulates the water level in tank 77 just under the valve Vj
location (i.e., 30 cm). This degraded objective is acceptable only in faulty
situations and can be expressed by the CTL* formula: AF(AG(9 <12 <
11) A EG(25 < 1y < 30)).

The system is assumed to be well designed and thus able to fulfil the nom-
inal objective in non-faulty situations. This hypothesis can nevertheless
be checked by testing the formula AG(9 < Iy < 11) A EG(45 < I3 < 50)
on the execution structure corresponding to the system’s nominal model
(see Figure 4). In faulty situation, the reconfigurability analysis proce-
dure first tests the nominal objective, expressed as AF(AG(9 < 12 <
11) A EG(45 < l; < 50)). If the evaluation result shows that the nom-
inal objective cannot be fulfilled, the degraded objective, expressed as
AF(AG(9 <12 < 11) A EG(25 < I; < 30)) is tested.

5.6. The model checking procedure

Suppose the current state of the system is the state noted 1 on the figure 4.
From this state, the model generation algorithm predicts that the control
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Figure 5: Model obtained when valve Vj is stucked in the opened position.

action V'1_close will be applied and that the system will evolve to the state
2. Consequently to the running of this new control action, the level [5 must
decrease. If this level is increasing instead of decreasing a fault is detected.
The fault detection time is linked to the system dynamic. If a priori any
component may become faulty at any time, a fault sign usually manifests
after attempting to apply an action on the system. To continue with our
example, if the predicted state noted 2 in the figure 4 is not observed when
the control action V'1_close is run, it is probably because this action has
not been correctly realised. Consequently, the fault localisation time can
be reduced by testing as first fault mode, a fault mode corresponding to
the last action applies on the system (i.e. V1_stuck_on in our example).

The corresponding revised system model obtained when the diagnoser
detects that valve V; is blocked in the opened position is given in Figure
5. State 1 is the current system state at the time the diagnoser detects
the fault. This model is the execution structure for the model checking
procedure. The nominal objective to be checked is expressed by the CTL*
formula AF(AG(9 <12 < 11) A EG(45 < 11 < 50)). The current state
(state 1) obviously does not check this CTL* formula, but the question
remains “Will the nominal objective be fulfilled in the future ?7”. To answer
to this question, the CTL* formula is tested as proposed in section 4.3.

Let be f the abbreviation for 9 < [2 < 11 and g be the abbreviation for
45 < 11 < 50. The CTL* formula AF(AG(9 < I2 < 11) A EG(45 <
[1 < 50)) is first re-written in terms of the basic connectives —, A, L
,EX,EG and EU, using the equivalences given in section 4.3. The CTL*
formula becomes AF(=EF(—f)AEG(g)). The labelling operation is then
processed, dealing recursively with the different sub-formulas. Let S(v))
denote the set of all states labelled with the sub-formula . The processing
steps are:

1. S(g) = {1}. Only state 1 shown on the graph given in Figure 5
verifies 45 < 1 < 50.

2. S(EG(g)) = {}. In order to calculate S(EG(g)), the states of S(g)
are first labelled with EG(g), and then the label EG(g) is deleted
from any state if none of it successors is labelled with FG(g). This
deletion procedure is repeated until there is no change.

3. S(f) =13,4,5,6,7,8,9,10,11,12,13,14}. There are the states that
satisfy 9 < [2 < 11.

4. S(=f) ={1,2}

5. S(EF(~f)) = S(E(trueU f) = {1,2}

6. S(~EF(~f)) = {3,4,5,6,7,8,9,10,11,12,13, 14}
7. S(GEF(-f) NEG(9)) = {}
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8. S(AF(~EF(=f) N EG(g))) = {}

This result shows that the nominal objective cannot be met when the valve
V1 is blocked in the open position. The second step of the reconfiguration
procedure tests the degraded objective, expressed as (AG(9 <12 < 11) A
EG(25 <11 <30)). Re-written in terms of basic connectives, the revised
objective is AF(~EF(—f) A EG(g)), where f stands for 9 <12 < 11 and
g stands for 25 < [1 < 30. The different steps of the labelling procedure
are:

9) ={2,3,4,5,6,7,8,9,10,11,12,13,14}.
EG(g)) = {}-

EF(—f)) = S(E(rueUf) = {1,2}

~EF(~f)) = {3,4,5,6,7,8,9,10,11,12, 13, 14}

~EF(~f) N EG(g)) = {3,4,5,6,7,8,9,10, 11,12, 13, 14}
S(AF(~EF(~f)NEG(g))) = {1,2,3,4,5,6,7,8,9,10,11,12, 13, 14}.
In order to calculate S(AF (1)), the states of S(¢) are, first, labelled
with AF(1)), and then the label AF(v) is applied to any state that
has all its successors are labelled with AF () until there is no change.
State 2 is first found by this way and then state 1.

P NSO W=

This result is very strong because it means that the verified objective
holds true along every path from any state in the execution structure.
Specifically, since this set contains the initial state 1, it can be concluded
that, with this execution structure, if the reconfigurable control starts at
the moment when the fault is identified and the model is recalculated, the
degraded objective (AG(9 <12 < 11) A EG(25 <11 < 30)) is guaranteed
to be met at some later time.

6. Conclusion

By proposing a flexible model for expressing the real possibilities of con-
trolling a system when a fault occurs, we bring an important help to
operators who have to exactly know, at each time, what they can obtain
from the system they supervise. Moreover, these possibilities can be ex-
pressed in term of available and unavailable functions, and this kind of
information is well adapted to the human reasoning. The flexible model
we propose, is built on this functional analysis. It allows to take into
account the dynamic aspect required to oversee the system on line, and
to evaluate the availability of the services provided by the system compo-
nents. It takes the form of a state transition graph. Each state groups a
set of atoms whose values are true for this state. The atoms are obser-
vation atoms (i.e., measured values, control action values) and diagnosis
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atoms (i.e., the normal and faulty operation modes of the components).
The transitions between the states correspond to control action that can
be applied to the system when it is in the origin state to drive it to a
destination state. The transition graph is automatically built by an ap-
propriated algorithm each time the values of the diagnosis atoms change.
The algorithm requires as input the values of the observation and diagno-
sis atoms and a description of the control actions that can be provided by
the system’s components, expressed in the form of a pre-condition and one
or more effects. This description is obtained from the functional analysis
of the system. The values of the diagnosis atoms are updated by the di-
agnoser which is not described in this paper. The basic ideas for building
the diagnoser are the following. Comparing the states predicted by the
flexible model and the states actually observed makes it possible detect
faults. Using fault models, expressed as control actions, in terms of pre-
conditions and effects, make it possible to identify the faulty component
and the fault mode [25] and [26].

By associating diagnosis and reconfiguration, all built on the same model,
we hope to contribute to the development of a global supervisory control
system. Indeed, the interest of using the same model is to improve the
delay to reconfigure the system when a fault appears. Possible future re-
search is first to implement the global solution for supervising a system
in real time and second test our solution on a large system. One of the
future applications is the supervision of intelligent autonomous vehicles
in the InTraDe project (Intelligent Transportation for Dynamic Environ-
ments). This project is financed by European regional development fund-
ing through InterreglVB and is supposed to lead to the development of
an automatic navigation system for port terminals. In this context, the
ultimate objective of our work is to design a supervision system represent-
ing the management of the operating modes of a vehicle and giving the
conditions for its reconfiguration when a part of its inner components is
faulty or when another vehicle with it has to cooperate is not in a nominal
operating mode. One of the challenge is to see how the proposed repre-
sentation can be distributed on a set of subsystems (the vehicles or some
parts of a same of vehicle). Global objective has for this to be decomposed
into local sub-objectives and local diagnosis and reconfiguration possibili-
ties have to be merged to reconstruct global diagnosis and reconfiguration
solutions.
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