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RÉSUMÉ. Cet article étudie l’influence du mode de chargement sur la stabilité de systèmes élastiques 
discrets non conservatifs. La stabilité du système contraint est comparée à celle du système libre, 
par l’introduction de multiplicateurs de Lagrange. L’approche est illustrée avec le pendule 
généralisé de Ziegler. Elle est ensuite appliquée à un modèle à deux degrés de liberté représentant 
un sol contraint par un chargement isochore. On montre que le chargement isochore affecte 
sensiblement la frontière de stabilité pour le problème conservatif et pour le problème non 
conservatif. En dehors des instabilités par flottement, le critère de travail du second-ordre constitue 
une borne inférieure de la frontière de stabilité du système libre ainsi que la frontière du domaine 
de stabilité du système sous chargements mixtes proportionnels en déplacement. 
ABSTRACT. This paper shows that the loading mode strongly influences the stability of discrete non-
conservative elastic systems. The stability of the constrained system is compared to the stability of 
the unconstrained system, through the incorporation of Lagrange multipliers. Initially, the 
approach is illustrated for a two-degrees-of-freedom generalized Ziegler’s column. Then, it is 
applied to a two-degrees-of-freedom model representing a soil constrained with isochoric loading. 
The isochoric instability load is not necessarily greater than the instability load of the free problem. 
Excluding flutter instabilities, it is shown that the second-order work criterion is not only a lower 
bound of the stability boundary of the free system, but also the boundary of the stability domain, in 
presence of mixed perturbations based on proportional kinematic conditions.  
MOTS-CLÉS : stabilité des structures élastiques, problèmes non conservatifs, perturbations 
mixtes, systèmes contraints, stabilité matérielle, chargement isochore. 
KEYWORDS: stability of elastic structures, non-conservative problems, mixed perturbations, 
constraints, material stability, isochoric loading. 



1. Introduction 

Stability of elastic structures is a branch of engineering that has been well 
developed since the 1960s, especially in presence of non-conservative loading (e.g. 
Bolotin, 1963; Ziegler, 1968). Most of these studies have investigated non-
conservative loading such as circulatory loading. Another origin of non-
conservativeness is the nonlinear elastic behaviour with a non-symmetric Hessian 
tensor (Green and Naghdi, 1971). Cauchy elasticity may typically belong to such 
class of non-consevative elastic material (see more recently (Rubin, 2009)). Such 
non-conservative constitutive elastic relations are sometimes used in soil mechanics, 
as analysed by Zytynski et al. (1978) or more recently by Houlsby et al. (2005). 
Such constitutive relations may be also encountered when modelling anisotropic 
damage in quasi-brittle materials with unilateral effects (Carol, Willam, 1996; 
Challamel et al., 2006a). Moreover, inelastic behaviour such as plasticity or damage 
may also reveal an asymmetric stiffness matrix for the relationship between the stress 
rate and the strain rate (incremental response, e.g. (Darve, Vardoulakis, 2005)). This 
asymmetric matrix property is typically observed for non-associated plasticity 
models (Imposimato, Nova, 1998; Darve, Laouafa, 2000; Darve et al., 2004; Nicot 
et al., 2007) or damage models based on Mazars positive strain (Challamel et al., 
2006b). Moreover, the incompressible property of the flow rule is often employed 
when modelling ductile materials such as soil in undrained conditions, or metal. 
Therefore, it is crucial to rigorously investigate the effect of the incompressibility 
feature on the stability domain based on stability theory. This study also investigates 
polymer materials that may have the incompressibility property. However, in this 
paper, incompressibility is not understood as an intrinsic property of a material, but 
as a loading feature. We would employ the terminology isochoric loading to 
characterise such loading. The present study is restricted to elastic systems, since 
stability of inelastic media may reveal additional complexities (and in particular, the 
non-smooth character of the constitutive relation; see for instance Challamel, 
Pijaudier-Cabot, 2006c; Challamel, Gilles, 2007). Nevertheless, it is hoped that 
some of the conclusions of this study will be transposable to inelastic stability 
studies, based on the concept of Hill’s linear comparison solid (for incrementally 
piece-wise linear rate-independent constitutive relations, see Nguyen, 2000; 
Chambon et al., 2004). 

This paper uses a simple discrete elastic example to demonstrate the 
incompressibility effect on the stability boundary. The non-conservative nature of 
the problem may result from loading or from the constitutive law, and a single 
general criterion is derived for both problems. In other words, the treatment of the 
material’s stability problem and the structural stability problem is merged into a 
general framework. It is shown that the incompressibility property strongly affects 
the stability boundary. A two-degrees-of-freedom buckling problem illustrates the 
new results. 
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2. Equations of the dynamics – some usual stability results 

2.1. Lagrange’s equations 

The Lagrange’s equations (Ziegler, 1968) of a dynamical holonomic system 
could be written as: 
 

kkk
kk

qqQ
q
T

q
T

dt
d ,  [1] 

 
where T  is the kinetic energy and kQ  is the generalized forces. q  is a state variable 
of dimension n . It is chosen to linearize the dynamics equations in the vicinity of an 
equilibrium position denoted by eq such as: 
 

xqq
e

 [2] 

 
The linear differential system is then obtained for the perturbation equations: 

 
0xKxCxM  [3] 

 
where the matrix K  is generally a non-symmetric matrix. Matrix M  is assumed to 
be a definite positive matrix. The general properties of such a damped non-
conservative system have been extensively studied since the 1960’s. A detailed 
analysis of flutter and divergence bifurcation phenomena can be found in the recent 
paper of Kounadis (2007). 

2.2. Divergence criterion 

The stability concept used in this paper is stability in Lyapunov’s sense, which 
expresses the property of uniform continuity of the perturbed solution to initial 
conditions. For the undamped system, the stability criteria are greatly simplified. In a 
conservative system, the matrix K  is symmetric. Stability of the equilibrium can be 
investigated by means of the Lagrange-Dirichlet criterion. The definite positiveness of 
the stiffness matrix K  is easily checked from Sylvester’s criterion (La Salle and 
Lefschetz, 1961). The loss of definite positiveness is reached when the determinant of 
one of the submatrices of Sylvester’s criterion vanishes. The eigenvalues of the matrix 
K  are assumed to depend continuously on the loading parameters. The boundary 
between stability and instability is generally given by the singularity condition: 
 

0det K  [4] 
 



In this undamped case, stability is associated with the stability in Lyapunov’s sense, 
or simple stability. It is worth mentioning that the proof of stability is obtained by 
applying Lyapunov’s direct method. In a non-conservative system, the matrix K  is no 
longer symmetric: stability may be lost by divergence or by flutter. Instability by 
divergence is typically observed in conservative systems, one of the most popular 
examples being Euler buckling. The loss of stability in which the structure is oscillating 
at the critical load is called the oscillatory instability, or the flutter phenomenon. This 
kind of instability has been known for years in the field of aeroelasticity, for the 
bending-torsional flutter of a cantilever wing for instance (e.g. Bolotin, 1963). For civil 
engineering applications, the behaviour of suspension bridges may also result from 
flutter, as in the well-known Tacoma bridge collapse in 1940 (Bažant and Cedolin, 
2003; see more recently Plaut and Davis, 2007 or Plaut, 2008). The “static” stability 
criterion Equation [4] can be used again when stability is lost by divergence (Leipholz, 
1987; Gajewski and Zyczkowski, 1988). As the symmetry of the matrix K  is no longer 
guaranteed for non-conservative systems, the criterion of definite positiveness of the 
stiffness matrix and the divergence criterion given by Equation [4] have to be strictly 
distinguished. Flutter instabilities can be detected with a procedure available in the 
literature (see Afolabi, 1995; Gallina, 2003). 

2.3. The definite positiveness of the stiffness matrix criterion 

The definite positiveness of the stiffness matrix criterion can be enunciated as: 

K  definite positive  stability [5] 

This criterion is also encountered in problems of inelastic evolutions and is 
sometimes called the second-order work criterion, or Hill’s criterion (e.g. Nicot et 
al., 2007). The Equation [5] criterion is a sufficient condition of stability, in case of 
instability loss by divergence. The proof for elastic systems was rigorously given by 
Huseyin and Leipholz (1973). Absi and Lerbet (2004) also applied this criterion to 
Ziegler’s pendulum (Ziegler, 1968). It is worth mentioning that the definite 
positiveness of K  is strictly equivalent to the definite positiveness of the symmetric 

part of K , denoted by SK . Sylvester’s criterion may also be applied to the 

symmetrical matrix SK . The loss of positive definiteness is reached when the 

determinant of SK  is vanishing. As a consequence, the boundary of the second-
order work criterion may be written as: 

0det SK [6] 
Both criteria, Equations [6] and [4], are merged for conservative systems. 

However, for non-conservative systems, the Equation [6] criterion gives a lower 
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bound of the exact stability criterion in Equation [4], when instability prevails by 
divergence (see recently Lerbet et al., 2007). This theorem was shown for the first 
time, to our knowledge, by Huseyin and Leipholz (1973). The proof of this theorem 
can be based on a mathematical result given by Ostrowski and Taussky (1951): 
 

K  definite positive  0detdet SKK  [7] 
 

These inequalities are strictly verified for asymmetric matrix K . The results can 
be also shown using Bromwhich bounds, as noted by Willam and Iordache (2001). 
The theorem of Huseyin and Leipholz (1973) rigorously states that the second-order 
work criterion gives a lower bound of the exact stability criterion, when instability 
prevails by divergence or when instability by flutter appears for higher critical loads 
than that leading to divergence. However, the second-order work criterion no longer 
guarantees the stability (in Lyapunov’s sense) when there is stability loss by flutter. 
On a two-degrees-of-freedom system (extension of Ziegler’s column), Challamel 
(2005) showed that the second-order work criterion could be a lower bound or an 
upper bound of the exact stability criterion, depending on the structure of the mass 
matrix (instability arises by flutter for this system). 

3. Effect of additional constraints 

We would like to investigate the properties of such a dynamical system in 
presence of an additional constraint, given by: 

 
0qf  [8] 

 
Such additional constraint could be suggested for instance to stabilize the system in 

structural mechanics. This additional constraint could be also associated to an isochoric 
condition in soil mechanics. Therefore, the new dynamical system is written as: 
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T

dt
d ,  [9] 

 
where  is a Lagrange multiplier associated to the holonomic constraint 
Equation [8]. It is assumed furthermore, that the equilibrium position of the free 
system is also an equilibrium position of the constrained system: 
 

0eqf  [10] 
 

The dynamics equations of the constrained system are then obtained from: 
 



0fgradxKxCxM  with 00. fgradxT  [11]

It is easy from Equation [11] to obtain explicitly the Lagrange multiplier as a 
function of the state variables, such as: 

2
0

000
,,

fgrad

xKfgradxCfgradxMfgrad
xxx

TTT

[12]

Moreover, some simplifications may occur for the undamped system 0C . The 
acceleration term can be obtained from Equation [11] by inverting the mass matrix: 

xKMfgradMx 11 0 [13]

The constraint Equation [11] can be also applied to the acceleration term: 

00

0
00. 1

1

fgradMfgrad

xKMfgrad
xfgradx T

T
T [14]

It should be mentioned that such a constraint system behaves like active 
controlled system, as recently studied by Nudehi et al. (2006) on the active vibration 
control of a column using a buckling-type force. Finally, the constraint undamped 
system can be written as: 

0~ xKxM   with 0
00

0~
1

1

fgrad
fgradMfgrad

xKMfgrad
xKxK T

T

 and 

00. fgradxT [15] 

This is clearly a system of dimension (n-1), whose stability can be investigated from 
the minor of the stiffness matrix. There is no general theorem, to our knowledge, to 
investigate the stability of the constrained system from the stability of the free one. We 
suggest to study an academic structural example to illustrate the purpose. 

4. Example: non-conservative generalised Ziegler’s column

4.1. Stability of the free system 

A simple non-conservative problem was chosen to illustrate the preliminary 
results, especially when the stiffness matrix K  is no longer symmetric. The Ziegler 
column, loaded by a partial follower load (Hermann and Bungay, 1964; Leipholz, 
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1987) can be considered an interesting structural system, because instability by 
divergence and instability by flutter may both appear, depending on the structural 
parameters.  

Figure 1. Generalised Ziegler’s model subjected to partial follower load 

This undamped structural system is sometimes called a generalised Ziegler 
column. It is a pinned column with a sub-tangential or super-tangential buckling load 
F  (sub-tangential for 1 , super-tangential for 1 ). This is a two-degrees-of-
freedom system with a state vector 21,Tx , where i  is the rotation in each 
spring (see Figure 1). The stiffness of each spring is denoted by k . The 
dimensionless stiffness matrix is given by (see for instance Leipholz, 1987): 

p
pp

K
111

12
  and  

11
132mlM with 

k
Flp  [16] 

p  is the loading parameter and  is the parameter that characterises the orientation 
of the follower load (see Figure 1). 0  corresponds to the conservative case and 

1  to the academic case of Ziegler’s column. The “static” criterion can be 
applied to characterise the instability boundary by divergence (Equation [4]): 

011310det 2 ppK [17]

whereas the second-order work criterion Equation [6] leads to the lower bound: 

m

l

l
O

F 2

2

2m

1

k

k



0113
4

10det 2
2

ppK S  [18] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Stability diagram – Comparison with the second-order criterion 

Obviously, both criteria coincide in the conservative example 0 . It is easy 
to verify that Equation [18] is a lower bound of Equation [17] (see also Figure 2). 
We stress that no theoretical result can ensure the lower bound status of the second-
order criterion, when there is stability loss by flutter (even if this property is verified 
for this system). Flutter arises when one of the eigenvalues of the associated 
eigenvalue problem becomes complex with a positive real part. In the present case, 
the flutter load is calculated as (Hermann and Bungay, 1964; Leipholz, 1987): 

2

22

112
114188

p  [19] 

 

4.2. Stability of the constraint system 

Ziegler’s model under a partially follower load is considered again (Figure 1). 
Here, the factor control  is associated with the horizontal reaction load (this is 
similar to the reaction load considered by Kuznetsov and Levyakov (2002) for the 
Euler column). Following the notations of Equation [11] with 21,Tx , the 
additional constraint is chosen as: 
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2

1

0
n

k
kx  [20] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Generalised Ziegler’s model subjected to partial follower load – Effect of 
an additional constraint 0/ 21 ttt  

This constraint can be understood as an isochoric loading. It is easy to check that 
the equilibrium configuration 0x  verifies this additional constraint. Effect of this 
additional constraint is illustrated in Figure 3. The new dynamical system is a single-
degree-of-freedom system, and application of the divergence criterion (instability 
necessarily prevails by divergence for the single-degree-of-freedom system) to the 
system given by Equation [15] leads to: 
 

021122211 kkkk  [21] 
 
where ijk are the terms of the stiffness matrix K . The instability load of the 
constrained system, (or isochoric system) is calculated as: 
 

2
5021 p  [22] 

 
This value, which does not depend on the non-conservativeness parameter , 

can be found again by applying the virtual work principle: 

O

2m

F 

 

2

1

k

k



0sincos25 11111 Flk [23]

which leads to the post-buckling branch (affected by the parameter ): 

11

1

sincos2
5p [24]

The buckling load of Equation [22] is found again from Equation [24]. This 
buckling load 2/5p  is much higher than that of the free conservative system

2/53p . This property is discussed by Ziegler (1968) for conservative
systems: a clamped-hinged column has a higher load than a clamped-free column 
(see also Milner, 1995). However, one has to keep in mind that increasing stiffness 
does not necessarily increase the buckling load in the general case (as shown for 
instance by Tarnai (1980, 2002) for conservative systems).  

We provide a simple example of a non-conservative system, whose increase in 
stiffness does not necessarily lead to an increase in the instability load. Consider 
Ziegler’s model under a partial follower load, where the stiffness of the upper 
rotational spring tends to an infinite value (whereas the stiffness of the lower 
rotational spring is kept at a constant value denoted by k ). This system is equivalent 
to a single-degree-of-freedom system with 1  equal to 2  021 . A column
of length l2 is attached to a spring of stiffness k  and subjected to a partially 
follower load. Application of the virtual work principle leads to: 

0cossin2sincos2 11111111 FlFlk [25]

which leads to the post-buckling branch (affected by the parameter ): 

1

1

1sin2
p [26]

Hence, the buckling load depends on the parameter , in this case, and is equal 
to: 

12
1021 p [27]

Figure 4 and Figure 5 show a comparison between the stability boundary of the 
free system (system of Figure 1), the constrained system with the incompressibility 
(or isochoric) condition 021 , and the constrained system that has one
spring with infinite stiffness 021 .
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Figure 4. Comparison of the instability load of the free and the constrained system 

It is observed that there is a region 4/3;2/1  where the system with an
infinite stiffness has a lower instability load than the initial one, even in the 
divergence transition area 9/5;2/1 . For this non-conservative system, an
increase in stiffness may destabilise the system, even if only divergence instabilities 
are considered. 

Figure 5. Effect of isochoric loading on stability boundary 



Finally, a displacement constrained case may be studied as in Figure 6.  
 
 

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. Stability of Ziegler’s model with the constraint 02  

Suppose for instance that 2  is vanishing 02 , as an additional constraint 
associated with a torque 2C , which can be considered as a Lagrange multiplier. In 
this case, the stability limit is obtained from application of Equation [15] with the 
constraint 02  leading to: 

 
200 112 pk  [28] 

5. Continuum analogy 

5.1. Beck’s column 

The continuum analogy of Ziegler’s column is Beck’s column (clamped-free 
condition; Beck, 1952). It could be said that the continuum analogy of the 
generalised Ziegler problem under partial follower load is Contri’s column (Contri, 
1966). The effect of the discretisation process on the stability diagram has been 
studied in detail by Gasparini et al. (1995). For clamped-hinged conditions, the 
column stability problem under follower axial load has been investigated by 
Leipholz (1987), for example. The follower load column under clamped-hinged 

F 

m

O

2m

1O

F

C2 
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conditions has recently been analysed by Plaut (2006) in the post-buckling range. 
Plaut (2006) also showed the analogy with the problem of pipe conveying fluid. 
Indeed, Figure 7 can be understood as the continuum generalisation of the model 
presented in Figure 3.  

Figure 7. Concentrated follower load – a clamped-hinge condition 

The continuum isochoric condition Equation [20] would be written as: 

L
dss

0
0sin [29]

The buckling load of such a system is the same as the buckling load of the 
conservative system (with a vertical load). This result was found again for the 
discretised version of the continuum column, where the buckling load was found to 
be independent of  (see Equation [22]). However, as shown in the present paper 
(see Equation [24]), the post-buckling behaviour depends on the non-conservative 
parameter , and we can say that the system represented in Figure 7 is non-
conservative in the large. Nevertheless, it is not within the scope of this paper to 
consider the overall displacement behaviour of this non-conservative problem (see 
(Plaut, 2006)), since the displacement behaviour of the conservative problem is 
already quite complex from a theoretical and numerical point of view (Wang, 1997; 
Mikata, 2007). 

F (L)



These results would lead to the conclusion that the discretised and continuous 
column problem finally shows substantial similarities, except possibly the 
disappearance of the instability domain by divergence for large values of the non-
conservative parameter  in the continuous column (Gasparini et al., 1995). 

5.2. Some implications in soil mechanics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. A two-degrees-of-freedom system with a non-conservative law 

The stability of the discretised system depicted in Figure 8 is studied. This could 
be the discretised version of a Finite Element model to two degrees-of-freedom in 
plane strain conditions.  

The first-order isochoric condition is written for a square element as: 
 

0121 xxx T  with 
1
1

1  [30] 

 
One recognizes of course Equation [20]. The material tested is assumed to be 

linearly elastic and eventually non-conservative (a non-symmetric elastic stiffness 
matrix). Such constitutive relations can be encountered when modelling anisotropic 
damage in quasi-brittle materials with some unilateral effects (Carol and Willam, 
1996; Challamel et al., 2006a). We do not discuss the realistic nature of such 
constitutive law, given that the non-conservativeness provided from the loading 
aspect already a controversial topic (Elishakoff, 2005; Challamel et al., 2009). The 

x1t1

x2

t2
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non-symmetric stiffness matrix can also be referred to the elasto-plastic behavior of a 
geomaterial with a non-associated flow rule, whose incremental form may lead to a 
non-symmetric stiffness matrix. 

It is worth mentioning that the isochoric condition (see Equation [20]) does not 
necessarily lead to a safe upper bound of the stability boundary, as shown in 
Figure 5. It can be observed in Figure 5 that a critical parameter  exists where the 
incompressibility condition leads to a lower bound of the stability boundary 

25.1cr . A comparison between this structural example and various instabilities
found in soil mechanics may be interesting to investigate. In fact, the isochoric test 
of loose sand may decrease the instability boundary, whereas for a dense sand, the 
isochoric test may increase the instability boundary. In this formal analogy, the 
density parameter plays a role similar to that played by the non-conservativeness 
parameter  in the generalised version of Ziegler’s model. 

In static analysis, the force-displacement relation can be written as: 

FxK [31]

It can be relevant to introduce the control parameters: 

21 xxxv  and 21 FFq [32]

Equation [31] can be decomposed in the matrix form: 

2

1
1

2221

1211

2

1

11
01

11
01

10
11

10
11

x
x

kk
kk

F
F

[33]

It can be shown that Equation [33] can be also written as: 

2

1

F
q

x
x

dc
ba

v
with   

2212

21122211

kkb
kkkka

 and 
22

2221

kd
kkc

 [34] 

Finally, the relationship between the control parameters and the state parameters 
can be expressed by: 

vx
q

F
x

c
bbcad

d
2

11

1
 for  0d [35]

The invertibility condition is simply expressed when the determinant of the 
matrix introduced in Equation [35] does not vanish: 

00 21122211 kkkka [36]



This is also the controllability condition (in Nova’s sense) to achieve a test with a 
prescribed value of vx  (and in particular, the isochoric condition 0vx ). 
Equation [36] can be satisfactorily compared to Equation [21]. Moreover, it can be 
shown (Nicot et al., 2007) that the second-order work vanishes along the isochoric 
path, when Equation [21] is valid: 
 

2
12112221122112 xkkkkxKxFxFxW T  if 021 xx  [37] 

 
However, the Equation [21] criterion is different from the second-order work 

criterion Equation [6], as clearly highlighted below: 
 

0
22

det
2

2211
2

2112
2211

kkkk
kkK S  if 021122211 kkkk

 [38] 
 

Equation [38] shows that the second-order work criterion Equation [6] 
constitutes a lower bound to the instability criterion associated with the isochoric 
loading (if instability prevails by divergence). In other words, when the second-order 
work vanishes along the isochoric path, the determinant of the symmetric part of the 
tangent stiffness matrix has already vanished.  

It is worth mentioning that there exits other constrainsts where instability is 
reached before the instability load associated with the isochoric loading. This is for 
instance the case of a displacement constrained test with 2x  fixed, leading in this 
case to a much smaller instability load (see Equation [28]). Such a loading device is 
often considered in soil mechanics, in presence of mixed perturbations. In Equation 
[28], for instance, the criterion explicitly given by Nova (2004) with load-
displacement controlled tests can be noted. 

The isochoric condition can also be regarded as a particular case of the more 
general proportional kinematic condition: the lateral plates are displaced in such a 
way that strains increase in proportion to each other, with a given proportionality 
value 0  0201 xx . In this case, the second-order work is vanishing for: 
 

2
22101202211

2
022112 xkkkkxKxFxFxW T  if 0201 xx

  [39] 
 

Therefore, the stability boundary for this structural problem with mixed loading 
is obtained from: 
 

0201 xx 02101202211
2

0 kkkk  [40] 
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which is a generalization of Equation [21] for proportional kinematic conditions (this 
can be also found again from Equation [15]). The isochoric case corresponds to a 
proportionality value 0  equal to 1 . Furthemore,  

0
22

det
2

0

22
2

011
2

2112
2211

kkkk
kkK S    if  

02101202211
2

0 kkkk [41]

Hence, excluding flutter instabilities, the condition 0det SK  is a sufficient
condition of stability (lower bound of the stability boundary of the free system, and 
lower bound of the stability boundary of the system for proportional kinematic 
conditions). Applying the criterion Equation [40] leads to the stability boundary of 
the system for proportional kinematic conditions, parameterised by 0  as: 

1

122

0
2

0

0
2

0p [42]

The smallest instability load is obtained for: 

12
32221212

0
2

0
0

p
[43]

It can be shown that this characteristic value injected in the parametric stability 
boundary Equation [42] leads to the second-order work criterion 0det SK , given
by Equation [18]. In fact, as shown by Nicot et al. (2008), when the condition

0det SK  is met, the second order work vanishes along a given kinematic
direction corresponding to a certain proportionality value generally different to 1 . 
For the present problem, this characteristic proportionality value is calculated from 
Equation [41] as: 

p
p

k
k

2
11

11

222
0 [44]

Equation [43] and Equation [44] are equivalent when the stability value of the 
parameter p  is introduced from Equation [42]. As a consequence, excluding flutter 

instabilities, the condition 0det SK  is not only a lower bound of the stability
boundary of the free system, but also the boundary of the stability domain, for all 
mixed perturbations based on proportional kinematic conditions. 



6. Conclusions

In conclusion, the results presented may be summarised as follows. For 
conservative systems, the stability criterion is given by the vanishing of the 
determinant of the stiffness matrix 0detdet SKK . For non-conservative
elastic systems, the static criterion also holds in cases of divergence instabilities

0det K . For this type of instability, the second-order work criterion

0det SK  constitutes a lower bound of the stability boundary (Huseyin and

Leipholz, 1973). In cases of flutter instability, no theorem guarantees the lower 
bound status of the second-order work criterion. In other words, only flutter 
instabilities can precede the second-order work criterion. 

Incompressible solids (or solids under isochoric loading) were also studied in this 
paper. Material incompressibility may arise for inelastic media, but structural 
incompressibility is often encountered in structural mechanics, when constraints are 
added at the structural level. For the constrained system (with isochoric loading), the 
constraint is a state control law which also depends on the mass matrix. 
Incompressibility strongly affects the instability criterion, which is detailed for a two-
degrees-of-freedom system. A specific example shows that incompressibility increases 
the buckling load for conservative problems (as observed by Ziegler, 1968). For the 
non-conservative problem, the incompressibility condition does not necessarily give an 
upper bound to the free problem. In the present example, this depends on the degree of 
non-conservativeness (measured by the parameter ). We keep in mind that in some 
cases an increase in stiffness in a structure may also decrease the buckling load, even 
for conservative systems (Parnes, 1977; Tarnai, 1981; see also Tarnai, 2002). This 
phenomenon was also observed in non-conservative systems controlled by the flutter 
phenomenon (Sundararajan, 1974). We give another example of this phenomenon from 
Ziegler’s column under partial follower load. In the general case (and specifically, at 
the material scale), it was not possible to classify both stability domains (free problem 
and constrained problem) systematically, and a specific computation of the stability 
domains was therefore necessary.  

Excluding flutter instabilities, the second-order work criterion is not only a lower 
bound of the stability boundary of the free system, but also the boundary of the 
stability domain, for all mixed perturbations based on proportional kinematic 
conditions. The conclusions of this paper, and in particular the instability nature by 
divergence maybe strongly affected by infinitesimal damping (see for instance 
Kounadis, 2007). 
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