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A Situation-Adaptive Lane-Keeping Support System:

Overview of the SAFELANE Approach
Angelos Amditis, Member, IEEE, Matthaios Bimpas, George Thomaidis, Manolis Tsogas, Mariana Netto,

Saïd Mammar, Achim Beutner, Nikolaus Möhler, Tom Wirthgen, Stephan Zipser,
Aria Etemad, Mauro Da Lio, Associate Member, IEEE, and Renzo Cicilloni

Abstract—Going beyond standard lane-departure-avoidance
systems, this paper addresses the development of a system that
is able to deal with a large set of different traffic situations. Its
foundation lies on a thoroughly constituted environment detection
through which a decision system is built. From the output of
the decision module, the driver is warned or corrected through
suited actuators that are coupled to control strategies. The input
to the system comes from cameras, which are supplemented by
active sensors (such as radar and laser scanners) and vehicle
dynamic data, digital road maps, and precise vehicle-positioning
data. In this paper, the presented system design is divided into
three layers: the perception layer, which is responsible for the
environment perception, and the decision and action layers, which
are responsible for evaluating and executing actions, respectively.

Index Terms—Data fusion, integrated safety applications,
lane-keeping support (LKS) system, lane tracking.

I. INTRODUCTION

ROAD-TRAFFIC accidents are caused by many different

factors. According to an American study [1], a vast

majority of all traffic accidents (96.2%) are caused by human

error. Driver inattention is estimated to be involved in at least
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25% of all police-reported crashes [2]. Within SAFELANE,

accidents that are caused by driver inattention (e.g., drowsiness,

fatigue, distraction) are of special interest since the developed

system aims to prevent accidents resulting from poor lateral

control.

Lane-keeping-support (LKS) and lane-departure-warning

(LDW) systems have been a subject of intensive research and

development [3], [4]. Several systems are available on the

market for several years. Since the precursor system that was

introduced by Nissan in 2001, all the European car manufac-

turers propose such systems as first equipment. Even if these

systems are primarily designed for comfort, they generally

enhance safety by driver warning and active intervention in

highway driving situations where needed actions are generally

smooth [5].

Up to now, the most common techniques in lateral safety

are based on lane trackers using monocular video sensors to

detect the lanes up to 50 m ahead [6], [7]; in more recent

publications, laser scanners [8], high-resolution radar [9], and

infrared cameras [10] are also used [11], [12]. More efficient

approaches propose fusion techniques to complement the yaw-

rate-based road geometry, and estimate and predict changes in

the curvature of the road ahead using a digital map and Global

Positioning System (GPS) receivers, video cameras, and tracks

from the radar or stationary obstacles that represent guardrails

or posts [7], [13], [14].

While different warning channels are generally used, includ-

ing haptic vibrations on the steering wheel and sided audio

signals, active actions are generally delivered as an additive

steering torque. It should also be noticed that some decoupled

additive steering-angle solutions such as Advanced Front Steer-

ing systems are also available. Control techniques are of various

types ranging from classical approaches to adaptive, robust,

and fuzzy methods [15]–[17]. However, active systems that are

able to handle various traffic scenarios and driving situations on

the lane such as activation near the lane borders with the ability

to steer back the vehicle center of the lane are still not available.

SAFELANE, together with LATERAL SAFE [18],

comprises the lateral safety cluster of the Integrated

Project–PReVENT dealing with lateral- and rear-area active

safety applications. The research objective was to develop an

LKS system to go beyond the currently available systems and

to function safely and reliably in a wide range of even difficult

road and driving conditions. The system should be usable in

various types of vehicles, from passenger cars to heavy trucks,

and be operable on motorways and rural roads. In addition to
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passive LKS with haptic, acoustic, and optic human–machine

interface (HMI) elements, this system was intended to actively

steer back to the lane in critical situations.

In particular, the SAFELANE system has comprised an

adaptive LKS application, which, in the event of a detected lane

departure, triggers a driver warning or an active steering system.

Most of the related work to SAFELANE in lane-detection

systems is mainly based on vision sensors [19]–[21]. A model-

based decision module processes the sensor data for situation

awareness and deciding appropriate acting strategies, in partic-

ular, when the driver’s perception of the surrounding scenario is

very difficult due to limited visibility, critical workload, or the

driver’s inattention.

This paper is organized as follows: In Section II, the system

concept and the architecture are briefly described, whereas in

Section III, the design and the implementation of the main

modules are provided. Section IV summarizes the main techno-

logical innovation, achievements, and proposals for future work

in the relevant research field. Finally, Section V includes some

conclusions.

II. SYSTEM ARCHITECTURE

The proposed system is structured on a model-based ap-

proach with the use of vehicle-side technologies. Its decompo-

sition is made in three layers: the perception layer, the decision

layer, and the action layer, which are detailed below (see

Fig. 1).

The perception layer consists of a sensor system and im-

age processing. The basic input comes from cameras that are

monitoring the road in front of the vehicle. The cameras are

supplemented by vehicle controller area network (CAN) bus

data, digital road maps, and precise vehicle positioning (GPS).

Radar provides supplementary information that is integrated in

the data-fusion module.

The action layer comprises all system reactions in critical

lane-departure situations and involves the control of acoustic

or/and haptic warning actuators, as well as an active steering

actuator.

The decision layer determines the current overall situation

using a situation model with respect to the driver state, the

actual driven maneuver, the environment, the lane, and the

street condition. Based on the identified situation, the decision

model determines the output to be sent to the actuator system.

Input parameters are the most likely path (MLP) of the vehicle,

the fused lane data, as well as the estimated future vehicle

trajectory. Vehicle data like velocity, steering angle, and yaw

rate are also integrated.

The situation model selects the most likely set of predefined

situations, based on a set of information related to the vehi-

cle, the lane properties, the street type, the estimated driver

maneuver, the driver, and the environment around the vehicle.

Following the method presented in [22], all the predefined

situations are regarded as a combination of states of a state

machine. Two of the situations considered in the situation

model are briefly described below.

• Driver state: SAFELANE does not intend for a direct

observation of the driver to determine the driver state;

Fig. 1. Structure and modules of the SAFELANE system.

Fig. 2. Start of an overtaking.

for this estimation, we follow the approaches in [23] and

[24] that are based on the variation of the vehicle lateral

position analyzed with the low-frequency component of

the power spectrum of the steering-angle signal.

• Maneuver estimation: An example on how an overtaking

maneuver is represented in the state model is shown in

Figs. 2 and 3.

In the first state or phase “overtaking possible,” the vehicle

approaches an object (vehicle or obstacle; here, object 1) or

follows a heading vehicle. Transitions T1 and T2 are described

with a Sugeno fuzzy function. The inputs of the fuzzy function

are given by ego velocity, distance, and relative velocity to

the object. The second state “start overtaking” starts if the

vehicle heads toward the overtaking lane. Transitions T3 and T4

represent, again, the Sugeno fuzzy functions analyzing the ego

lateral position, the distance, and the direction of the tracked

object. The third phase is the overtaking itself. The state model

distinguishes between “overtaking in the same lane” (e.g.,

a bicycle) and the conventional “overtaking in the neighbor

lane.”
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Fig. 3. State model of an overtaking maneuver.

Fig. 4. Perception modules.

If a lane departure is predicted, the decision model decides,

based on a fuzzy-like controller [25], whether this is intended.

An intended lane departure activates the warning level “infor-

mation.” If it is detected that the lane departure is not intended,

the output is an acoustic or/and haptic warning, and the active

steering will be enabled. The decision criteria are time to lane

crossing (TLC), lane predicted minimum distance (LPMD), and

time to lane predicted minimum distance (TLPMD), which will

be analyzed in Section III-B.

III. DESIGN AND IMPLEMENTATION

A. Perception Modules

The perception modules are the following:

• image processing, which recognizes road and lane borders

and estimates the geometrical parameters of an underlying

lane model (e.g., clothoid), as well as the position and the

orientation of the vehicle relative to the lane;

• lane data fusion (LDF), which treats data from different

sources to furnish as output the tracking of the lane

borders.

Fig. 4 highlights that the extraction of map attributes from

the map database is included in the perception layer.

1) Image-Processing Module: The central component of the

sensor system is the vision-based lane recognition, which de-

tects the main and neighboring lanes (see Fig. 5).

The measurement points that are generated during the lane

recognition process serve as input data to the lane-marking-type

classification. The obstacle area detection marks regions in the

image where other objects are located like a vehicle driving

Fig. 5. Structure and interfaces of the image-processing module.

ahead. The lane recognition uses this information to restrict

the search of measurement points to free road areas. For lane

recognition, as well as for obstacle area detection, the vehicle

speed is needed. Map data have been used to adapt certain lane-

recognition algorithm parameters like the current lane curvature

and width.

a) Main lane recognition: A model-based approach with

the lane as a clothoid was chosen for the lane recognition be-

cause most streets and rail tracks are built according to clothoid

geometry. The road surface is assumed to be flat, and, therefore,

it could be modeled as a plane. The spatial vehicle state is

described by its position and orientation relative to the lane.

In images that are taken from the camera, search areas are

set, depending on the mode that the system is currently in.

Measurement points are searched on lines in the image plane.

At the program start or in case that the system “lost” the lane,

no valid lane state is at hand—the system is in the initialization

mode (see Fig. 6). Due to the fact that there are no available

spatial hints about the lane ahead, the search area extends

almost to the whole image on rigid wide lines (scan lines) in

the initialization mode. If the lane recognition was successful

in the previous image frame, a valid lane state exists and can be

projected onto the image plane. Since the lane state frame-to-

frame differences are usually small, it is reasonable to set the

scan lines along the lane projection. In both modes, a list of

scan lines serves as a basis to search for the lane contour edges

in the measurement algorithm step. One edge per scan line most

likely to belong to a lane border is selected out of the calculated

edges. The selected edges are fed to the estimation stage where

a new lane state is calculated.

—Search areas

In the initialization mode, the scan-line generation is

quite simple and follows a rigid setting scheme. In the

tracking mode, scan lines are set along the projected

predicted lane state. A scan line is set perpendicular to

the local lane border tangent (not necessarily horizontal)

in world coordinates. The line width and the space to

the next line are calculated, depending on the look-

ahead distance. If the current lane border is classified

as marked, the average lane-marking width is calculated

and will be added to the scan line width. Projected in

the image plane, the slope of the scan line is checked,

and the scan line is rejected if a certain threshold is

exceeded.
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Fig. 6. Scheme of lane-marking detection and lane modeling.

—Measurement points

The Laplacian of Gaussian (LoG) operator is used

for the gradient calculation as the basis for the edge

detection. Edges are detected where the gradient magni-

tude is maximal in the gradient direction, a threshold is

exceeded, and the gradient points into the local direction

of the lane. At the detected edge pixels, the structure

sensor [26] is computed. The quality of an edge pixel

is computed by the ratio of its eigenvalues and the

angle between the greater eigenvector and the tangent

on the projected lane border. If the quality of an edge is

good enough, a further validation is done by calculating

little edge segments. Because the optical features (e.g.,

texture) are different with respect to the distance to

the car, all measurement algorithm parameters like the

gradient threshold are adapted according to the ratio of

the pixel and the road plane coordinates.

—Selection

In the initialization mode, where no lane state predic-

tion of a previous time step is available, an extended

form of a Hough transform is employed. The operat-

ing modes of the Hough transform and the LoG are

described in image-processing articles, e.g., [27] and

[28]. Applied to the problem of lane measurement se-

lection, the Hough transform equation is defined by the

clothoid model, the vehicle position, and the direction

parameters. During the tracking mode, the contour edge

candidate next to the predicted lane state is used as a

measurement point on a scan line.

b) Neighbor lane recognition: The information of the

presence of neighbor lanes can be helpful in critical traffic

conditions for lane keeping. Thus, the two directly neighbored

lanes of the main lane where the vehicle is currently driving

in are estimated as well. This is done with the same methods

that are used for the main lane besides some deviations in the

initialization mode. If the main lane recognition was successful,

the neighbor lane recognition is triggered. The initial search

areas of neighbor lanes can be set more precisely compared

with the main lane because we know the location of one

neighbor lane border, and usually, neighboring lanes have the

same width. The neighbor lanes’ pitch angle is assumed to be

identical to that of the main lane (see Fig. 7).

Fig. 7. Neighbor lane recognition; road texture check in yellow windows.

False detection can happen on structures that look like lane

borders (e.g., crash barriers). Therefore, two additional tests are

applied. The first one compares the road texture of the main

lane and the neighbor lane. If the texture difference exceeds a

threshold, the test fails. The second one checks if there are any

obstacles inside the image area of the neighbor lane by means

of the object mask image. If one of the tests is not successful,

the neighbor lane recognition will be rejected.

c) Lane-marking classification: The knowledge of the

road-marking types, which delimits the own lane, is of great im-

portance for the lane-keeping task. Lane markings are assumed

to be solid or dashed marker lines. Dashed lane markings have

certain constant marking line width, line segment length, and

line gap length. Therefore, these three marking characterizing

values are taken as features for the marking-type classification.

The needed information to determine the features is available in

the lane border measurement points that are found in the course

of lane recognition and can be fed to a classifier.

d) Detection of disturbing objects on the lane surface:

The detection of lane markings in an image free of disturbing

objects like other cars or side barriers, which may generate

edges that can be misinterpreted as line-marking edges, is

relatively straightforward and a typical demonstration example

of image-processing tools. However, in many cases, disturbing

objects are present; therefore, a greater algorithmic effort is

required to exclude the “disturbed” image regions from the

lane-marking detection procedure. One method to detect such
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Fig. 8. Image and suppressed edge detection in the region of the car.

objects on a planar road surface is the analysis of motion-

compensated difference images described in [29]. The idea

behind is a motion compensation algorithm, which computes

the required image-warping parameters from an estimate of

the relative motion between the camera and the ground plane.

Based on an optical flow approach, the algorithm estimates

the warping parameters from displacements at corresponding

image corners and image edges. The corresponding edges are

calculated from an image and its successor (see Fig. 8).

e) Use of digital map data: Besides the use of map data

for the lane-keeping decision module, the lane detection can

also benefit from it. All lane-tracking systems have certain fixed

configuration parameters. The determination of a configuration

parameter is often a tradeoff between different scenarios con-

cerning environmental and lighting conditions. The idea to en-

hance the performance of lane-detection systems with map data

is based on the adaptation of certain configuration parameters

with respect to information about the vehicle environment from

a digital map.

2) LDF Module: All the previous systems will provide

the fusion module with estimated values of the road, lane,

and obstacle parameters and their respective values for the

variance of the estimation error or/and a level of confidence.

LDF provides a prediction even when lane markings are par-

tially missing and, in some cases, when they are completely

missing.

The role of this module is very important, as it leads to

increased robustness of the overall system and extends the

detected lanes by the camera sensor to greater distances using

information from the positioning unit [26]. Cases where the

camera fails to detect the lane markings due to restricted visibil-

ity or ambiguous markings can be handled using an appropriate

filter that keeps estimating the offset and updates the rest of the

parameters from the map data. Also, under normal conditions,

the final estimation is refined, as the module combines the

camera data in lower distances with the map data in greater

distances.

a) Data-fusion algorithm: The core of the algorithm for

fusing the lane attributes is described as follows and in the

following section.

1) If both the camera and map data are available, then the

final output is a combination of these two sources of

information.

2) If only one of these two sources is available, the final

output is equal to it.

3) If none of the camera or map data are available, then the

final output is a combination of the geometry extracted

using the radar data and the vehicle dynamics.

Because the offset of the vehicle from the lane marking is

provided only by the vision sensor, a linear Kalman filter for

estimating the lateral state is used in the case that camera data

are not available. This filter continues to provide estimations

of the offset for a specific amount of time when there is a

failure of the vision sensor. The time threshold, which defines

the capability of the filter to continuously provide lane-offset

estimations without measurements, is usually set below 2 s.

The state and the measurement vectors of this filter are the

following:

X = [y0 VL AL w]T (1)

Y = [ycam
0 wcam]T (2)

where y0 is the offset from the middle of the lane where the

vehicle is moving, and w is the width of this lane. ycam
0 and

wcam are the offset and the width provided by the camera,

respectively. VL and AL are the lateral velocity and the acceler-

ation of the vehicle (first and second derivatives of the offset),

respectively. For the first three states, a constant acceleration

(CA) model is used, whereas for the last state (width), a

constant state model is used.

The combination of the camera and map data to extract the

final trajectory that best describes the road is done using the

following:

yf =wc · yc + wM · yM x ≤ dC

yf = yM x > dC (3)

where yc, yM , and yf are the camera, map, and fused trajec-

tories, respectively. dC is the maximum distance of the camera

trajectory. wc and wM are the weights for the camera and the

map geometry, respectively, and are given by the following:

wc = σC/(σC + σM )

wM = σM/(σC + σM ) (4)

where

σC =
σ2

C − σ2
C,min

σ2
C,max − σ2

C,min

· (x/dC) (5)

where σ2
c is the variance of the estimated curvature from the

camera, and x is the distance from the ego vehicle. σM is the
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confidence that is calculated for the first segment of the map

data.

The main weight for the camera and the map data is based

on the variance of the estimated values. When the variance

increases, less confidence is assigned to the specific source

of information. Also, the distance from the ego vehicle is

considered. As the distance increases, more weight is assigned

to the map data than to the camera, as the estimation error for

the camera is getting very big for large distances ahead and,

more specifically, for distances that are greater than 50 or 60 m.

When there is no map or camera data, then the road geometry

is given by the following:

yf = yEV x ≤ dEV

yf =
∑

i=1,...,NR

wi
Ryi

R x > dEV (6)

where yEV is the lateral displacement, dEV is a distance thresh-

old, and NR is the number of objects that are detected by the

radar.

The curvature and the curvature rate in the case of the

radar objects are calculated using polynomial fitting to the

buffer, which holds all the previous locations of the objects.

The curvature using vehicle dynamics is calculated using the

following formula:

C0 = ω/V c1 = 0 (7)

where ω and V are the yaw rate and the velocity of the ego

vehicle provided by the CAN bus. The weight wi
R for the radar

object is calculated as

wi
R = σi

R/

NR∑

j=1

σj
R. (8)

B. Application Modules

The decision system is, to some extent, independent of the

HMI and the actuator control, which is responsible for the lane-

keeping function. It analyzes the current situation, identifies

the risk and critical situations, and suggests the proper action,

without knowledge of the HMI components.

1) MLP: Based on the information provided by the elec-

tronic horizon (EH) sensor and vehicle status data, the MLP

module predicts the most probable route for the vehicle to take.

Therefore, a minimum cost function for road classes in the

digital map database combined with the vehicle’s data leads

the MLP to educated guessing of the most probable route.

Depending on EH settings, two MLP types can be delivered:

1) MLP for a fixed distance (e.g., 900 m);

2) MLP for a defined time (e.g., 10 s), i.e., the extended

length is calculated dynamically, depending on the cur-

rent speed.

In the digital map database, available link attributes along the

MLP (such as the “Number of Lanes”) will be provided to other

applications.

2) TEM: The trajectory estimation module (TEM) predicts

the driver’s intention in a short term by estimating the future

path of the ego vehicle and its dynamics with respect to given

tracked road geometry and infrastructure. The TEM is focused

on the vehicle and the driver; it also calculates conventional and

new parameters of typical LDW/lane-keeping systems like time

to lane crossing or future lateral offsets.

The TEM has two subfunctions: On one hand, a dynamic

vehicle model is applied that includes lateral and longitudinal

vehicle properties; on the other hand, the estimated trajectory

is compared with the actual lane geometry in the lane-change

prediction function.

Moreover, the first subfunction assists the LDF function

when lane information is missing from the lane tracker. Then,

the only source of information is the map-extracted road geom-

etry, which lacks lane position data (i.e., the position of the

vehicle in the lane). The TEM subfunction acts as a dead-

reckoning function for the digital map attributes.

a) Dynamic trajectory estimation of vehicles: To predict

whether the vehicle is going to change lane in the nearest future,

the trajectory that it is likely to follow must be known in that

time period. This can be achieved using a first-order model such

as the constant velocity model [30]–[32], which corresponds to

a straight line. This simplified approach may introduce large

errors in the prediction of the future path in the case that the

ego vehicle is moving with CA. Thus, the CA model or the

constant turn rate (CTR) model is the most suitable model for

ego maneuvers. To correlate the two prevailing [33] types of

motion, the CTR model and the constant tangential acceleration

(CTRA) model, which was first introduced in [34] and takes

into consideration both the yaw rate and the acceleration of

the ego vehicle, can be applied. The road geometry is not used

in the prediction of the vehicle’s future path, making the lane

trajectory and the vehicle trajectory uncorrelated.

The measurement space consists of the yaw rate and the

velocity; first, a filtering process takes place to reduce the

measurement noise. This is done using a Kalman filter with

• a state vector [U A ϕ ω]T , which consists of the velocity,

acceleration representing the longitudinal motion, and the

yaw angle/yaw rate representing the lateral vehicle dynam-

ics, respectively;

• a measurement vector [U ω]T , which consists of the veloc-

ity and the yaw rate.

This way, the tangential acceleration of the vehicle is also

available in the next step, which will be used to calculate the

future path.

The prediction of the vehicle’s trajectory is done in the

ego-coordinate system (e.g., in the midpoint of the frontal

bumper). The predicted trajectory is a matrix consisting of the

future position of the vehicle for a fixed—a priori set—time

period Tmax. Each element of the matrix (x and y coordinates)

corresponds to a specific “future time.” The time step that is

selected for the estimation of the future points is also fixed (e.g.,

100 ms).

b) Lane-change prediction: The accurate knowledge of

the lanes and the ego trajectory allows extending current

methodologies that are used in LKS and LDW systems.
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TLC is defined as the time duration that is available for

the driver before any lane boundary crossing. Several research

studies outlined the importance of this indicator for both driver

performance evaluation and lane departure characterization

[35], [36]. Among usual observations concerning TLC time

evolution are small TLC value periods prior to lane departure.

This happens particularly in the case of driver drowsiness,

which generally leads to a slow rate of TLC decreases with

the possible presence of one or several TLC local minima

corresponding to driver corrections. On the contrary, in the case

of vehicle loss control, the decrease of TLC toward zero is gen-

erally faster. Unfortunately, real-time computation of TLC is

not easy due to several limitations to the availability of vehicle

state variables, vehicle trajectory prediction, and lane geometry;

however, computation time is also a limiting factor. Different

TLC calculations are possible; they include simplifications that

can be introduced, depending on the available sensors.

The static approach for the lane-change prediction is based

on the estimation of the lateral velocity and the acceleration of

the ego vehicle. Then, using a first- or second-order model, the

time when the predicted lateral distance is getting equal to zero

corresponds to the time that there is a lane change. To predict

the lane change taking into consideration the lane geometry, a

dynamic approach should be applied. The distances between

the trajectories of the vehicle and the lanes are calculated.

Thereby, the future lateral distance of the vehicle from the lane

is extracted for a fixed time period. Thus, when this distance

is getting equal to zero (or a minimum offset)—LPMD—it

means that there is a lane change, and the time that is re-

quired for the ego vehicle to change the lane can be predicted

(TLPMD).

The warning that indicates a lane departure will be cre-

ated using the TLC parameter or the LPMD and TLPMD

parameters.

A very simple model, as suggested in [33], takes into account

only the lateral velocity of the ego vehicle, whereas it considers

the lateral acceleration to be equal to zero.

For a more accurate estimation of the time when the vehicle

crosses a lane, a second-order model can be applied. Thus,

having the lateral distance of the vehicle, the lateral velocity,

and the lateral acceleration, it is easy to estimate the time that

is required for the vehicle to change the lane using a CA model.

This, however, still leads to a static approach for finding lane

changes, which does not take into account the lane geometry

and the respective changes. It uses only the current lateral

dynamic state of the ego vehicle, and it considers that, in the

region where the vehicle is located, the road is nearly straight.

Alternatively, the LPMD and TLPMD parameters are used

for a more realistic situation analysis, which takes into account

not only the dynamic state of the vehicle but the curvature of the

road as well. This method takes into consideration the predicted

trajectory of the ego vehicle and the extended trajectory that

describes the lane geometry to calculate the distances between

the predicted points of the two trajectories. Then, having the

distances with respect to time, the time when the distance is

minimized is acquired, and then, if this distance is smaller than

a threshold (or equal to zero), a warning is created, which indi-

cates a possible lane change, and the time when this happens

Fig. 9. TLC error calculation in a lane-change scenario (the benchmark of the
conventional and proposed approaches).

is the TLPMD. The algorithm is presented in the following

pseudocode:

veh_traj = {xV (i), yV (i)}

lane_traj = {xL(i), yL(i)}

yL(i) = y0 +
1

2
· c0 · x

2
L(i) +

1

6
· c1 · x

3
L(i)

xL(i) =xV (i)

lat_off = veh_traj − lane_traj

D(i) = yL(i) − yV (i), i = 1, . . . , N

LPMD = min {D(i)}

TLPMD = ii · dt|D(ii)=min{D(i)}

if ((LPMD < TH_D)(TLPMD < TH_T ))

then warning = 1, else warning = 0 (9)

where N is the length of the future trajectory of the vehicle, dt
is the time step that is applied in the calculation of the trajectory,

and ii is the index of the point that corresponds to the mini-

mum lateral offset between the ego vehicle and the extended

lane.

The methods that were presented for predicting the time

when the lane change is likely to happen are the first-order

static method, the second-order static method, and the dynamic

method using LPMD and TLPMD.

In the simulated test scenario, the vehicle is moving on a

straight road and then enters a constant curvature bend where,

after a while, it performs a lane change. The model that was

used for the prediction of the vehicle’s future path was the

CTR and CA model (CTRA), and the length of the predicted

trajectory was 40 points, with a time step of 100 ms (4 s).

The lane change, in this case, is happening at time t equal to

59.4 s.

The error for the estimated time to lane crossing is

shown in Fig. 9. The proposed approach in combination

with the extended path prediction and lane fusion offers two
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Fig. 10. Validation of a lane-drifting scenario.

advantages: On one hand, it predicts the lane change earlier than

the static methods—3.6 s against 2.4 and 1.9 s for the two static

TLC calculations, respectively, in the simulated scenario; on

the other hand, it suppresses false alarms in some lane-drifting

scenarios.

Finally, a lane-drifting scenario is presented, where the ego

vehicle is maneuvering for 1–2 s in a straight road (i.e., lateral

velocity not equal to zero) without changing lanes. In Fig. 10,

TLC is calculated using the static and dynamic approaches.

A lane-change warning is not produced using the dynamic

approach, as it should be. Instead, the static model provides a

false prediction for the lane change.

3) Decision Module: The decision system in the middle of

the entire process of the SAFELANE architecture, in between

the perception system and the actuator system, is responsible

for the interpretation of the sensor data and choosing the

appropriate action for lane keeping [37]. Its output is computed

on the basis of the above-described perception and application

modules. It then splits into six modules that interact by the

use of specified interfaces, which are defined by internal data

models:

• the MLP that estimates the vehicle route in the near future;

• the LDF fusing the lane data from different sensors to one

lane model;

• the TEM that estimates the future trajectory of the vehicle

in relation to the lane model;

• the decision module situation model: build a model of the

current situation from the sensor data;

• self-assessment: estimate the reliability of the system;

• decision model: decide what kind of action should be taken

from the current lane departure and situation.

The decision system takes the perception output, which

contains estimations of states and attributes for the objects and

entities that are situated on the same environment as the sub-

ject vehicle. The decision module aggregates the information

from the perception module and applies specific models that

are compared with reference models of predefined situations.

Additionally, the module infers fuzzy and binary relationships

among the entities. Another important aspect of the module

is the ability of self-assessment. The decision algorithms can

estimate the confidence level of their output; therefore, all the

modules that use the derived output are aware of the reliability

of the information that is provided. This is reflected on the

actuator module: If the reliability is high, active steering can

be applied; otherwise, a warning (haptic or sound) is given to

the driver.

Finally, the action is synthesized, transformed into the re-

spective data format, and handed over as input data to the

actuator system. The described transformation process is ac-

companied by a permanent self-assessment that decides how

reliable and safe the decisions made by the system are.

C. Actuator and HMI Modules

The task of the actuator module is to execute the actions that

are determined by the decision system. The actuator system

manages driver warning and active steering. It receives the

action request from the decision system in an adequate way.

According to the requested action from the decision module,

which is chosen on the basis of the current danger and self-

assessment, more (or less) intrusive [38], [39] warning or

intervening action requests are to be sent to the actuator. The

actuator module processes this request information and pro-

vides the control signal to actual actuator and HMI means. To

process this request information, action requests are translated

by the actuator module in terms of steering-wheel angle/torque

references that have been defined by suited algorithms in case

of active steering. This includes control algorithms if interven-

ing systems are to act and algorithms for the choice of the

vibration waveforms if a haptic action has to be taken by the

decision module [38]. The actuator system also performs self-

assessment of the decision system actions and verifies the vehi-

cle dynamic evolution. Safety-oriented actions have also been

adopted. For being able to work in closed-loop operation, the

actuator system uses information both from the decision system

and vehicle sensors. The information is processed in a PC or, in

the case of a smart actuator, in the actuator integrated hardware

itself. Control loops are activated according to the decision

system action request type. The actuator system also returns

messages to the decision system informing it on assessment

results and on the actual action realization.

1) Actuator System Development: The subsequent steps to

correctly develop the actuator systems that have been im-

plemented in SAFELANE demonstration vehicles have been

defined and followed.

• We define data exchange between the actuator and the

decision and sensor modules.

• Choice of the electric power steering (EPS): In this step,

the type of EPS, taking into account how to integrate it

in the vehicle, and whether the hydraulic power steering

should be maintained, has been addressed. Studies about

available space in the vehicle and the size of the EPS have

been carried out as well. The determination of the sensors

that are needed by the systems and whether redundancy
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Fig. 11. EPS prototype integration in a Volvo (VTEC) demonstrator vehicle.

between sensors should be used were done. This step also

addressed studies about how to include safety modules and

self-assessment (see Fig. 11).

• Construction of the low-level actuator control: The con-

struction of a system to drive the EPS to the correct angle

and/or torque reference values has been carried out, in-

cluding the necessary tests to assure the correct following

by the actuator of the given angle/torque reference.

• We develop high-level control algorithms for active steer-

ing to calculate the steering torque/angle references to be

sent to the EPS.

In the following, we concentrate on the last above-described

step to give information that is related to the high-level devel-

opment, active steering control, and HMI channels.

2) HMI Development: The use of the term human–machine

cooperation (HMC) makes sense when a human and a machine

are operating together in such a way that they can interfere

positively by improving their individual performances or nega-

tively by diverging their goals or a common goal. Many features

of the HMC have been addressed in aviation, while research

on this question is still to be developed in the car-driving

domain, although automation is being rapidly introduced in

the car, particularly for safety reasons (e.g., antilock braking

system, electronic stability program). We specify the next

three levels of interference processing between the driver and

the machine [40]–[42] in terms of the different SAFELANE

subsystems.

1) The action level concerns short-term actions; a minimal

anticipation of the actions to be taken is involved.

2) The planning level concerns medium-term actions, with

some planning involved by the driver.

3) Metacooperation level: Longer term actions are con-

cerned here, as the planning by the driver of which road

to take to get to his or her destination.

Based on these temporal frames, there are two main classes

of assistance: preventive or foresighted driving and short-term

decision assistance. This division suggests that the first one

would concern mainly informative or warning tasks to help the

driver and is related to the metacooperation level, whereas the

second one could be based on warning and on active systems,

Fig. 12. Basic information, perception, and response flow for the SAFELANE
HMI.

Fig. 13. HMI cooperation with AIDE.

like correction of the driver’s action, and is related to planning

and action levels. SAFELANE has addressed the latter where

the proposed lane-keeping systems are declined according to

cooperation modes. According to these modes, the system is

progressively intervening in the vehicle control with respect to

the driver [38], [41], [42]. Special classes of these possible co-

operation modes are mainly of concern; mutual control modes,

where a machine can criticize a driver’s action (warning mode),

suggest another action (action suggestion mode), prevent the

driver from going too far (limit mode; e.g., prevent the driver

to turn the wheels too much), or correct the driver’s action

(correction mode). Fig. 12 provides a view on the main HMI

channels on which SAFELANE has acted.
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Fig. 14. Overview of the controller strategy.

During the project, a close and open cooperation with another

European Union cofunded project named AIDE was estab-

lished. SAFELANE and its functionality were used as the use

case within the AIDE project. On the other side, SAFELANE

has benefited from recommendations and cooperation on HMI

devices [43], [44].

A driving simulator that is used for common development of

AIDE and SAFELANE was equipped with a steering actuator

for algorithm development and usability tests. An AIDE expert

clinic evaluated the SAFELANE functionality and proved very

positive with regard to the active steering functionality that was

developed at that time. The overview of the concept that is used

for the expert clinic is shown in Fig. 13.

In Section III-C3, we describe some of the results that

have been built within SAFELANE for lane keeping by active

steering.

3) High Level Control for Active Steering: As described

above, to carry out lane keeping by active steering, the

torque/angle reference to be sent to the EPS has to be calcu-

lated by a control algorithm. SAFELANE has proposed and

implemented in its test vehicles a lateral control system that

works with good performance even for very strong curvatures.

If the vehicle drifts out of the lane, the proposed active system

is turned on to help the driver to get back into the lane. The

proposed system has important new features with respect to the

known systems. While a look-ahead distance that is linear with

the speed is a known performing solution, particularly in the

highway context introduced in [36], the SAFELANE system

makes use of a quadratic look-ahead distance of the speed,

from which considerable improvement for active steering in

tight curves could be attained. A strategy to optimize the use

of the information coming from the lane-detection module

is proposed, and the driver can deactivate the lateral control

correction whenever he or she wants by simply manually coun-

teracting the system with an automatic reactivation under a set

of safety conditions This control strategy is described in detail

in [45].

In Fig. 14, an overview of the controller strategy as used and

developed for the Volvo Technology (VTEC) driving simulator

is given. The combination of three different modes is used: the

warning mode, the action suggestion mode, and the correction

mode. The action fusion module decides, based on the current

situation, the appropriate action to be performed at the steering

actuator.

IV. DISCUSSION ON THE SCIENTIFIC OUTCOMES

A. Perception Layer

With regard to the perception layer and the sensor system,

innovations are mainly related to the LDF approach that has

provided the fusion of the vision sensor information with radar

object trails and the digital map data information. The test

results have shown that the environment perception system is

able to solve complex situations, e.g., roundabout approach-

ing, which were indicated as critical scenarios from previous

research projects. Another example of enhanced behavior of

the lane-sensor fusion is the capability to also reconstruct lane

geometry when lane markers are not present (for a short period)

or occluded.

B. Application Level

All sensors provide their information to the decision system,

which includes a sensor fusion of vision sensor information,

vehicle sensor information, map data, and MLP information, as

well as radar sensor information. This sensor fusion enables

an enhanced environment perception compared with simple

vision-based lane-tracking systems.

An important innovative aspect in SAFELANE is the MLP

module and the usage of digital map data with enhanced

Advanced Driver Assistance Systems (ADAS) attributes. This

information extends the limited range of onboard physical

sensors such as radar or cameras.

Future vehicle subsystems dealing with safety, comfort, and

intelligent navigation require accurate map data from the EH.

The latter provides all probable paths ahead of the current

position of the vehicle along with any data available through the

map data provider and other in-vehicle systems. The EH that ac-

companies the positioning unit is not just a conventional sensor

but rather a virtual sensor providing information retrieved from

a digital map database (see Fig. 15).
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Fig. 15. Extension of physical sensors with the EH.

Based on the information provided by the EH sensor and ve-

hicle data, the MLP algorithm predicts the most probable route

for the vehicle to follow. Therefore, a minimum cost function

for road classes in the digital map database combined with the

vehicle’s data leads the algorithm to educated guessing of the

most probable route. Using the enhanced ADAS attributes and

environment parameters provided by the EH along the MLP

(i.e., the number of lanes, the lane width, the lane-marking

type, and the curvature), the environment perception can be

improved by removing ambiguities in the lane detection and,

thus, increasing the availability and the reliability of the system.

V. CONCLUSION

SAFELANE has developed a safety system for avoiding lane

departures for a large and complex set of traffic scenarios.

Because of the modular nature of the SAFELANE system, it

is easy to introduce parts of the results into products. In a short-

term perspective, these results will be used to enhance current

state-of-the-art LDW systems. Looking a little bit further ahead,

the introduction of active steering will lead to vehicles with

complete LKS systems on the market.

Furthermore, other driver assistance applications such as

lateral cruise control and collision avoidance by steering share

many of the technological challenges of LKS. Future research

and product development projects focusing on these kinds of

applications will certainly benefit from the experiences that are

gained throughout the SAFELANE project.

Outputs from the perception layer coupled to robust control

strategies and a suited HMI have permitted to develop a system

that is able to give the driver a warning or a corrective action

in case of unintentional drifting out of the lane. In particular,

based on information coming from the sensing system and on a

model-based adaptive decision component, it has been possible

to provide an assistance system for the driver to keep in the

lane. Starting from a model-based approach, it is possible to

determine the trajectory of the vehicle and recognize if it is in a

straight road or if it is approaching a bend. This fact implies to

have a function that is always adapted to the driving situation

and to be configured to different sensors or actuators. These

objectives have been met by developing a common decision

system that was integrated into the demonstrator vehicles.

With respect to the traditional LDW systems, this adaptiveness

and flexibility of the developed system represents a relevant

improvement on the performance of the system.

In the action layer, several HMI aspects have been evalu-

ated with regard to user needs and user acceptance. Specific

results will shortly be presented in a follow-up paper from the

SAFELANE working team.
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