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Three Dimensional Trajectory Generation for an Autonomous Plane 

Djaber Boukraa1, Yasmina Bestaoui2, Naoufel Azouz3 

Abstract – A 3D optimal trim trajectories planner algorithm for an autonomous plane is presented in this 

paper. This planner can generate a sequence of 3D elementary trajectories for a set of predefined waypoints 

in space. The proposed algorithm uses a sequence of five elementary trim trajectories to generate a three 

dimensional global trajectory in space.  The trim property reduces significantly the complexity of the 

dynamical model and thus the resolution of the trajectory planning and tracking problems. This approach is 

based on the Bang-Zero-Bang strategy, taking into account the state and inputs constraints due to the 

vehicle dynamics, flight envelope and the actuators limitations. In this study, we demonstrate that this 

strategy satisfies the necessary optimality condition of Pontryaguin.  

Keywords: Autonomous plane, Trajectory  generation, Trim conditions 

I. Introduction 

Giving Unmanned Aerial Systems a decisional 

autonomy requires the development of control and 

decision methods to execute various operations during a 

mission, in particular the case with limited 

communications between the operator and the 

Unmanned Aerial Vehicle (UAV) or the case of 

dangerous or dull missions. The aerial vehicle must be 

able to follow the predefined flight plan, but also to 

generate a new flight plan in reaction to events occurring 

during the actual mission which can invalidate the actual 

flight plan. Trajectory planning is an optimization 

problem which generates an optimal trajectory between 

two configurations in the state space, considering a 

given performance index (time, energy or distance). Its 

feasibility depends on the choice of the optimization 

method, the performance index and a number of 

constraints from various nature, the latter depend 

essentially on the vehicle itself (architecture, dynamics 

and actuation modes) and the environment in which the 

vehicle moves (endurance, airspeed, altitude, landing 

and takeoff modes ...). Existing approaches in the 

literature do not deal with the general problem of the 

trajectory generation, but consider only some aspects 

e.g. the case of a single aerial vehicle moving in a static 

environment and without obstacles (free flight) [1]-[2], 

the cooperation between a vehicle’s formation moving 

in a common space [3]-[4] or the problem of collision 

and obstacles avoidance [5]-[6].  

 In general, trajectory planning techniques can be 

classified in three groups: techniques based on the 

optimal control theory, on the flatness theory and the 

probabilistic approaches.  

 The optimal trajectory can be found by

minimizing a given performance index

(execution time, power consumption, distance

covered...) and taking into account some 

dynamic and kinematic constraints [7]-[8]. 

 Differential flatness is a structural property of a

class of dynamical systems, where all the state

and input variables are expressed as functions

of a specific variable and its derivatives; this

variable being called the flat output. This

property can be used to simplify the resolution

of a planning problem when an explicit

characterization of the trajectories is necessary.

There is not a systematic method to find the flat

output. However, some references made it

possible to establish a specific criterion to

determine the flatness of some classes of

systems [9]-[11].

 In front of the difficulty to generalize the use of

analytical methods, heuristic approaches were

developed as the techniques of Road Map and

Rapidly Exploring Random Tree [12]-[13].

These techniques use in general a set of

primitives used to build the segments of the

global way at random. If a segment is feasible

(obstacle avoidance) then it is added to the tree

of the possible ways. The algorithm continues

the tree extension until it reaches the final

configuration. The disadvantage of these

probabilistic approaches is that the existence of

a feasible solution with a probability one is

guaranteed only with an unlimited computing

time (tends towards the infinite).

 Other simpler approaches in the literature use the 

Dubin’s principle [14] considering the shortest way with 

limited curvature for a vehicle moving in 2D. He 

showed that between two specified points in a plan the 

shortest way can be built from a sequence of circular 

and straight lines, by using a Bang-Zero-Bang strategy. 

Yang [6] uses this idea to generate feasible trajectories 

by taking account of the kinematics constraints, where 

he proposes an algorithm seeking the optimal positions 



of circles and line segments. Chandler [15] places the 

circles in the junctions between the line segments 

generated by the Voronoï Diagram. Anderson in [16] 

proposes an algorithm for the optimal trajectory on the 

horizontal plan, from a set of waypoints with constant 

altitude, using two types of elementary trajectories: 

circular and straight lines. His approach can only 

generate the trajectory in the case of navigation (lateral) 

mode. In the case of an aerial vehicle these approaches 

can be applied directly by considering a constant 

airspeed and altitude and using two elementary 

trajectories: the horizontal steady wings level and the 

horizontal turning flight 

 Our approach is partially inspired from Dubin’s work, 

the idea is to use the straight and circular lines to 

construct the optimal sequence of trajectories (global 

optimality), checking the Pontryaguin Maximum 

Principle (PMP) for elementary trajectories optimality 

(local optimality) [17]-[19]. It is a generalization of the 

approach presented in [16]. Our trajectory planner can 

generate a three dimensional trajectory in space, by 

adding the climb/descent steady wings level flights and 

the vertical helices to the initial trim elementary 

trajectories (horizontal steady wings level and horizontal 

turning flight). To reduce the complexity of the problem, 

we will use only the trim trajectories as primitives to 

generate the global trajectory, the non trim trajectories 

case will not be treated here. Several scenarios can be 

considered according to the mission specifications. For 

example, in the case of Unmanned Aerial Vehicles 

formation, the trajectory length must be equal to the 

segment between the waypoints, by opposition to the 

case of a free flight, where the objective of the passage 

by a waypoint is to avoid an obstacle or a prohibited 

area. More details on this point can be found in [16] 

which deals with three different scenarios of passage by 

a waypoint.  

In this paper, we are interested by the case of minimum 

time i.e. it is not necessary that the aerial vehicle passes 

exactly by the waypoint, but has only to reach his 

neighbourhood.  

This paper consists of four sections. Section 2 

presents a trajectory planner based on a Bang-Zero-

Bang strategy, using a set of trim trajectories as 

elementary trajectories. Then, we demonstrate that this 

strategy satisfies the optimality necessary condition of 

Pontryaguin. In section 3, two examples of scenarios 

with some comments and remarks are presented. Finally 

some concluding remarks are given in section 4.  

II. Trim Trajectories Planner

As usual in Aeronautics [20], three reference frames are 

considered in the derivation of the kinematics and 

dynamics equations of motion. These are the Earth fixed 

frame fR , the body fixed frame mR and the wind frame 

wR . The position and orientation of the vehicle should 

be described relative to the inertial reference frame 

while the linear and angular velocities 

   ;
T T

V u v w p q r  of the vehicle should

be expressed in the body-fixed coordinate system. The 

origin C of 
mR coincides with the center of gravity of 

the vehicle. Its axes  ccc ZYX are the principal 

axes of symmetry when available. They must form a 

right handed orthonormal frame.  The position of the 

vehicle C in fR can be described by: 

 Tzyx1 while the orientation is given by 

 T 2 with  Roll,  pitch and  Yaw 

angles.  The orientation matrix R is given by 
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where   cosc and   sins . This description

is valid in the interval
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
 . A singularity of this 

transformation exists for Zkk  ;
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The kinematics of the UAV can be expressed in the 

following way: 
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In Aeronautics, trim trajectories have a significant place. 

Under the trim condition the vehicle motion is uniform 

in the body fixed frame. The trim trajectories have the 

advantage of facilitating the planning and control 

problems. A linear control technique could be sufficient 

to stabilize the vehicle in the neighbourhood of trim 

conditions. Another advantage is that the aerodynamic 

coefficients which are variable in time and space 

become stationary under this condition and their 

identification becomes easier. 

II.1. Trim Conditions Determination Algorithm 

The vehicle configuration in space is defined by its 

linear and angular velocities and the pitch and roll 

angles. If we refer to some simplifying assumptions, 

neglecting the ground curvature and the air density 

variation with altitude, a vector of eight state variables 
T

rqpV ),,,,,,,(   would be enough to 

parameterize any trim trajectory in space. 



B. Performance index 

In the case of a trim trajectory, the external forces and 

moments are constant or equal to zero. The aim is to 

determine the trim conditions i.e. all accelerations 

vanish ( 0,,,,, rqpV   ). The state and control 

vectors are determined by the resolution of a nonlinear 

equations system. Thus, we can formulate a numerical 

optimization problem seeking to minimize all 

accelerations. The performance index chosen in the 

algorithm is the sum of the squares of accelerations: 

 222222
rqpVJ    (1) ( 

B. Constraints 

 The algorithm must take account of some constraints: 

under-actuation, flight envelope, trajectory geometry, 

actuators limitations and environment [17]-[20]. 

Under-actuation constraints 

 The autonomous plane has four control inputs: 

throttle, elevator, aileron and rudder, the number of 

degrees of freedom being six. Thus we can formulate 

two equality dynamical differential equations as 

constraints due to the underactuation.  

Flight envelope constraints 

 In order to guarantee some flight performances and 

for safety reasons we define a flight envelope. To avoid 

stalling phenomena, the vehicle airspeed should not be 

below a value called stalling speed. The maximum 

available power provided by the engines imposes a 

maximum limit speed. Limitations on the load factor are 

imposed to limiting the effort exerted on the structure 

during the turn and pull up. 

Trajectory geometry 

 The choice of the trajectory geometry (line, circle 

etc.) imposes kinematics constraints. In [17], we can 

find two examples of these constraints. The first one is 

an algebraic relation expressing the pitch angle as 

function of desired rate of climb (rate of climb 

constraint). The second example is an algebraic 

constraint allowing a coordinated turn by expressing the 

roll angle as function of desired heading rate. This 

ensures that the vehicle turning without skidding 

(coordinated turn constraint). These two constraints can 

be used in any optimization algorithm.  

Constraints dues to the actuators limitations 

 Throttle position is included between zero and 

maximum power available. The deflection angles of the 

control surfaces vary between two limits. These 

limitations can be introduced into any algorithm in form 

of algebraic inequalities as follows: 

max min max

min max min max

0 ,

,

e e e
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II.2. Trajectory Planner 

A. Problem formulation 

 We consider the vehicle in a trim flight with constant 

airspeed. The more general trim trajectory is a vertical 

helices with constants curvature and rate of climb. This 

trajectory can be described by the following equations: 
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We assume that the vehicle is equipped with a control 

system ensuring the reference trajectory tracking. The 

role of this system is to maintain the vehicle 

airspeedV attitude (Euler angles) and aerodynamic 

angles within their respective desired values: 

- Airspeed: )( VVfV cV 
- Attitude: ( ), ( ), ( )c c cf f f                 

- Aerodynamic angles: ( ), ( )c cf f           

with f , Vf , f , f , f et f  control laws (function of 

difference between reference  , , , , ,c c c c c cV     

and measured values  , , , , ,V      ) computed by

the control system. The state constraints defining the 

flight envelope are: 

maxmax    ,
maxmin0 VVV 

maxmin  
max  max  (4) 

The constant max is determined by the maximal value

of the load factor. Stalling phenomena imposes minimal 

vehicle airspeed minV and the maximal value of angle of 

attack max . The available engines power allows 

determining maximal vehicle airspeed maxV . A last 

constraint on the state allows maintaining the sideslip 

angle  in the neighbourhood of zero. To ensure the 

regularity of the coordinate transformation matrix, we 

suppose: 
2

  .

A trajectory 
T

tztytxtrt ))(ˆ),(ˆ),(ˆ()(ˆ   is known as

dynamically feasible if there exist inputs c , c , 

c , cV , c , c  such as )(ˆ)( trtttr   for all 0t , the 

dynamics and the constraints (4) being satisfied. The 

input of the trajectory planner algorithm are the desired 

airspeed V̂ and the waypoints coordinates 



3),,( Rzyx i  expressed in the Earth fixed frame: 

 nzyxzyxzyxV ),,(,...,),,(,),,(,ˆ
21 . 

Thus, the trajectory planner equations are given by: 
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If we suppose that the trajectories are traversed with a 

constant airspeedV̂ included between minV and maxV , 

the initial condition )0()0(ˆ trrt  and equations (5) 

guarantee a priori the dynamical feasibility of the 

trajectory. This trajectory will be generated by 

resolution of system (5), by  the ODE45 MATLAB® 

function (fourth order Runge Kutta method). 

We note that if max1 u , the trajectory generated 

by (5) is a circle on the right side of  the plane where the 

centre  is given by : 

min
ˆ ˆ ˆ( , , ) ( , , ) .( sin( ),cos( ),1)T T T

centx y z x y z R t t   
If

max1 u , the trajectory generated by (5) is a circle 

on the left side of the plane where the centre is given 

by : 

min
ˆ ˆ ˆ( , , ) ( , , ) .(sin( ), cos( ),1)T T T

centx y z x y z R t t   

If max2 u , the flight path angle is positive (up) and 

given by :
maxsin. VH 

If max2 u the flight path angle is negative (down) 

and given by: 
maxsin. VH  .

In this paper, we suppose that there is already an 

algorithm defining waypoints set and optimizing the 

segments sequence between the start and target points. 

This waypoints sequence depends mainly on the nature 

of mission and the environment in which the aerial 

vehicle is moving. 

B. Dubins curves 

 In this section we present briefly the Dubins principle 

[14] in the optimal trajectory generation with a limited 

curvature for a vehicle moving in a plan [6], [8], [16]. A 

direct application of this principle is possible in the case 

a flight at constant altitude with a constant airspeed. If 

we suppose that the yaw angle is controlled by a 

stability augmentation system. Thus, the kinematics 

equations can be reduced as : 
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With V the airspeed,  the yaw angle, x and y are 

respectively the north and east UAV positions. These 

parameters are represented in  Fig. 5. 

Fig. 1 The directions and orientation used in the case of flight in the 

horizontal plan. 

We assume also a trajectory curvature constraint 

corresponding to a turn minimal radius minR . The 

approach minimizes the trajectory length to go from an 

initial point 
ip  to a final point fp : 

2 2

0

( , , ) ( ) ( )

ft

i fJ p p u x t y t dt           (7) 

 Dubins[14] shows that between any two 

configurations, it is possible to construct the shortest 

path with a combination of a maximum of three 

primitives. In each primitive we apply a constant action 

during a time interval. The primitives and their symbols 

are represented in Table 2. S indicates a straight line, 

R and L indicate respectively, the right and left level 

(sharpest) turn. 

Table 1 Dubins primitives and their symbols. 

Primitive type Symbol Yaw rate 
Straight line S 0 

Right level turn R max
Left level turn L max

 Any extremal trajectory can be indicated by a 

sequence of three symbols. This sequence corresponds 

to the order of which the primitives are applied. It is not 

necessary to have two symbols of a same type 

consecutively, because they can be reduced to one 

symbol. Dubins proved that among all the possible 

sequences only six can be optimal: 

 LSRLSLRSLRSRLRLRLR ;;;;; (8) 

The shortest path between two any configurations can be 

characterized by one of these sequences. They are called 



the Dubins curves. We can allot to each primitive an 

index which indicates the execution time. In the case of 

a level turn the index ( ,  or ) indicates the rotation 

carried out during the application of the primitive. In the 

case of a straight line the index d indicates the total 

covered distance during the application of the primitive. 

With these indexes the sequences will be presented as 

follows: 

; ; ;

; ;
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Fig. 2 shows these six curves. We note that the index 

 must be greater than  .

Fig. 2 The six  sequences of Dubins. 

With these definitions the problem is formulated as 

follows: being given the points ip and fp , which among 

the sequences in eq. (8) is the shortest?  And which are 

the values of indices of this sequence? 

A simple algorithm can answer these two questions, by 

evaluating for the six sequences, than by choosing the 

shortest among them,  for each segment between two 

waypoints. 

C. Pontryaguin Minimum Principle  

We consider the dynamical system state equation 

))(),(( tutXfX  (9) 
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a final point fp of fP in finite time )(ut . In addition we 
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RT 0:(.) Lagrange multipliers. 

Necessary optimality conditions are: 

UuttuXHtuXH  ,),,,,(),,,,( *******  (10) 





H

tX )( (11) 

X

H
t




)( (12) 

Transversality conditions: 

If the final point is not fixed, we have the following 

transversality condition: 

 ).()( T
X

g
T




       (13) 

With  real. Moreover, if the final instant is free, Then 

0),,,,( **** tuXH      (14) 

Extremal Trajectoires 

Let’s define the way path by three points 1ip ,
ip

and 1ip , see Fig. 3. The projection of segments 

 ii pp 1 and  1ii pp in the horizontal plan gives 

respectively the segments  ii pp 1 and  1ii pp . Let’s 

define C  the circle tangent with the two 

segments  ii pp 1 and  1ii pp of radius

maxmin /VR  of which the centre belongs to the 

bisector of the angle formed by the three waypoints. 

Fig. 3 Trajectory projection in the horizontal plan (x,y). 

The trajectory between the points 1ip and 1ip is 

constructed as follows: 

1- The segment  ii pp 1 is followed until 1tp  the 

intersection point with the circle C . 

2- Then the arc of circle C  from 1tp to 2tp the 



intersection point with the segment  1ii pp . 

3- Finally, the segment  2 1t ip p   is followed until the 

point 1ip . 

The circle C is in fact the projection of the vertical 

helix with constant rate of climb z .

Fig. 4 Time optimal control problem in the new coordinates. 

Proposition:: The helicoidally trajectory defined 

previously in fig. 4 is time optimal and allows the 

transition between the segments  ii pp 1
and  1ii pp . 

Proof: Without loss of generality, we can realise 

coordinate transformation such as the segment  1ii pp

is aligned with the axis OY as shown in fig. 4. Let’s 
consider the system: 
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sin.cos.

u

uVz

ABy

BAx











         (15) 

With the initial conditions 
TT zyxzyx ),,,())0(),0(),0(),0(( 0000   and the 

terminal constraint: 

0))())(()((
2

1
),,,( 222  TzTzTxzyxg T   (16) 

This constraint ensures that at the final timeT , the 

projected point in the horizontal point is aligned with the 

straight line )( 1ii pp and the final altitude )(Tz is 

equal to Tz . The Hamiltonian of system is given by: 

1 2

1 .( .cos( ) .sin( ))

.( .cos( ) .sin( )) . .sin .

x

y z

H A B

B A V u u

  
    

  
    

 (17) 

According to the condition (10) the partial derivatives of 

H in the two controls should be equal to zero. The 

Hamiltonian has a linear form thus the minimization is 

ensured by the controls saturation taking account of the 

signs of the Lagrange multipliers z and  . The

condition (11) is easily verified. The condition (12) 

results in the following relations: 

2 2

0 constant

0 constant

0 constant

.( .sin .cos ) .( .sin .cos )

.( .cos .sin ) .( .cos .sin )

x x

y y

z z

x y

yx

H

x

H

y

H

z

H
A B B A

A B B A k
u u





 

 

 

      


    


    




    



    



       


       

The values of constants
x , y , z and k are determined

by the transversality conditions  (the final point is not 

fixed but it belongs to a subset of
n

R ):  
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  
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
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
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
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(18) 

We evaluate the Hamiltonian of the system: 

))(sin.)(cos..(..1 21 TBTAuuH xz   
Now, we discuss the dependency of the Hamiltonian of 

the controls ( 1u  and 2u ): 

If )0,0(),( z
 thus H is minimal for 

),(),( max2max121 uuuu   

If )0,0(),( z
 thus H is minimal for 

),(),( max2max121 uuuu   

If 0z  et 0  thus H is minimal for 

max11 uu  et max22 uu 
If 0z  et 0 thus H is minimal for 

max11 uu  et max22 uu 
It thus consists of Bang-Off-Bang control strategy: 








climb afor 

descent afor 

max1

max1




u

u






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 turnlevelleft  afor 

 trurnlevelright  afor 

max2

max2







u

u  

Now, we suppose that this control strategy is optimal 

and we find the existence of the Lagrange multipliers 



and the real numbers   such as the resultant system 

satisfies the conditions (10)-(14). Integrating eq. (15) we 

obtain: 

0max ).sin.( ztVz   (19) 

0max .   t
(20) 

In the same way for  :

)).cos(.).sin(..( 0max0max 

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To satisfy the condition (14): 

max 0

max 0 max max

1 .( .cos( . )

.sin( . )) . . 0

x

z

H A T

B T 

  
     

   
    

It is thus enough to choose: 

).sin(.).cos(./(1 0max0max   TBTAx


max/1  z max/1   . 

The existence of the Lagrange multipliers
i and the

reels i proves that the Bang-Off-Bang strategy satisfies 

the optimality conditions of Pontryaguin and 

consequently the generated trajectory is optimal.(end of 

proof) 

Algorithm description 

 The proposed algorithm allows computing the time 

parameterized optimal trajectory between two arbitrary 

points at the same altitude. The algorithm presented here 

is intended to generate a trajectory for a specified type 

of missions: monitoring or surveillance mission of 

geographic area, the area being represented by a point 

coordinates. We will not consider the constraints due to 

the traffic. The presence of possible obstacles prohibited 

areas between the start point (the runway) the target 

point (monitoring area), requires that the UAV passes by 

a number of waypoints before reaching the target.  The 

diagram of the algorithm is presented in Fig. 5. It 

comprises five steps: 

1. Initialisation: We introduce the UAV cruise speed

and altitude (constants), the runway data (coordinates, 

direction and altitude), the target and possible waypoints 

coordinates. We define also the maximal trajectory 

curvature and rate of climb (descent). 

2. Initial climb: One compute the horizontal distance

which the UAV must traverse before starting the 

manoeuvres, than one generates the initial climb 

trajectory. 

Fig. 5 Diagram of the trajectory planner. 

  3.a. To move towards the next waypoint: For each 

waypoint, one determines the direction of turn and the 

transition times straight/circle/straight, one repeats this 

operation as many times as the number of waypoints.  

3.b. To move towards the target point: in the case 

when there is no waypoint, one makes one turn to direct 

towards the target point. 

4. Flying over the target area: from the target point

coordinates one determines the transition times: straight 

line/right turn/left turn/right turn. The circle of which 

belongs the left turn will be traversed several times to 

allow the sensors in board to carry out the necessary 

measurements. 

5. Return to the landing/take-off area: while

leaving the target area, the UAV traverse the same 

generated trajectory in the opposite direction. 

During step 3 the algorithm determines the turn centre 

position and direction (left or right) from the position of 

the waypoint. In Fig. 6, the coordinate space is 

decomposed into four subspaces separated by the 

direction line of actual waypoint and the perpendicular 

line to this direction in the horizontal plan. Thus, we 

distinguish four possible cases. Here, we only present 

the two cases of a right level turn, the two left turn being 

symmetric with those.   

Fig. 6 The four (subspaces) types of turn. 



Case of backward right turn 

In the case when the next waypoint is rather behind 

the actual waypoint, the turn (circle) centre and the start 

point are determined by the actual waypoint coordinates, 

only the end point depends from the next waypoint 

coordinates. In fact, it consists to a constraint due to the 

actual point position. The UAV must approach enough 

the actual waypoint before starting a new turn. Indeed, 

the role of a waypoint is to allow the UAV to avoid an 

obstacle or a prohibited area. Without this constraint the 

UAV is likely to start a turn towards the next waypoint 

before reaching the neighbourhood of actual waypoint 

as we can see in Fig. 7.     

Fig. 7 The two possible cases of turn construction of which  the next 

waypoint is behind the actual one. 

Case of a forward right turn 

If the next waypoint is rather ahead the actual point, 

the algorithm computes the turn (circle) centre from the 

next waypoint coordinates, than it determines the start 

and end points of the arc of circle. 

III. Examples of Mission Profile

IV.1 Simple Profile (no waypoint)

In this section we present two examples of mission,

the first one represents a simple mission without any 

waypoint. The UAV must reach the target area and fly 

over it. In this case one has only one constraint due to 

the necessary minimal horizontal distance to be 

traversed before starting the navigation. The runway 

coordinates are specified at 0 meters North and 0 meters 

East with heading angle zero. The target point is chosen 

at 15 km North and 25 km East. In Fig. 8; the blue curve 

represents the UAV flight path. Table 3 recapitulates the 

different phases of the mission with the transitions times 

between the elementary trajectories.  

Fig. 8 Example of a simple mission profile (without any obstacle or prohibited area). 

Table 3 Different phases of the mission: a simple profile without any 

waypoint. 

Time interval Tracked trajectory 

00 t s ;

81 t s 

Initial climb with rate 10m/s and initial heading 0 

(initial). 

81 t s ; 

382 t s 

Right helix towards the target point. Rotation of 

60° with rate of yaw of 2 °/s and a rate of climb of 

10m/s. turn radius of 1432 m.  

382 t s ; 

5433 t s 

Climb with rate of 10m/s until a time 240ht s 

(corresponds to H=2400m) then a horizontal wings 

level flight. 

5433 t s ; 

5734 t s 

Horizontal right level turn. Rotation of 60° with 

yaw rate of 2°/s for surrounding the target point. 

5734 t s ; 

7235 t s 

A horizontal left level turn flight with at least 300° 

around the target (possibility to carry out several 

rotations). 

7235 t s ; 

7536 t s 

Right wings level turn. Rotation of 60° to align on 

the trajectory which carries out towards the take-

off/landing area. 



IV. 2 Mission with two waypoints

The second example is like the first one except that 

the UAV must pass by two waypoints before reaching 

the target area. The two waypoints are respectively 15 

km North and 5 km west (-5 km East) for the first and 5 

km North and 10 km East for the second. In Fig. 9, the 

blue curve represents the UAV flight path.  Table 4 

presents the different phases of the mission with the 

transitions times between the different elementary 

trajectories. 

Fig. 9 Example of profile with two waypoints. 

Table 4 Different phases of the mission: with two waypoints. 

Time interval Tracked trajectory  

00 t s ; 

191 t s 
Initial climb with rate of 10m/s and heading angle 0 

(initial). 

191 t s ; 

292 t s 

Vertical left helix towards the first waypoint. 

Rotation of 20°, rate of yaw of 2°/s and a rate of 

climb of 10m/s. the turn radius is 1432 meters.  

292 t s ; 

2903 t s 

Climb with a rate of 10m/s until the time 

240ht s (corresponds to H=2400m) than a

horizontal straight line. 

2903 t s 

3654 t s

A horizontal right level turn towards the second 

waypoint. The turn radius is 1432m and the yaw rate 

is 2°/s. 

3654 t s 

6605 t s 

Horizontal straight line towards the second waypoint 

(5 km north et 10 km East).  

6605 t s 

; 6976 t s 

Horizontal left level turn towards the target point 

6976 t s ; 

9937 t s 

Straight line towards the target point (15km North 

and 25km East). 

9937 t s ; 

10238 t s 

Horizontal Right level turn. Rotation of 60° with 

yaw rate of 2°/s. 

10238 t s 

11739 t s 

Horizontal left level turn of at least 300° around the 

target point (possibility of several rotations). 

11739 t s 

120310 t s 

Horizontal right level turn. Rotation of 60° to align 

on the trajectory which carries out towards the take-

off/landing area.   

IV. Conclusion

This paper presents an optimal trajectory planner 

algorithm for a fixed wing aerial vehicle, based on trim 

trajectories and Bang-Zero-Bang strategy. The trim 

trajectories particularity reduces significantly the 

complexity of the UAV dynamic model and thus the 

resolution of the trajectory tracking problem. The 

algorithm uses five trim trajectories as primitives: the 

horizontal, climb, descent wings-level flights, the level 

turn flight and the vertical helices with constant 

curvature and rate of climb. We demonstrate that the 

Bang-Zero-Bang strategy satisfies the optimality 

necessary condition of Pontryaguin. A numerical 

algorithm is presented for computing  state and control 

vectors for different trim trajectories. The limitation of 

this algorithm is that the UAV airspeed is considered 

constant and constant during all elementary trajectories. 

Future work will allow a specific speed for each phase 

of flight. We will also introduce the wind effect in 

trajectory planning. 
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NOMENCLATURE 

 = angle of attack 

 = sideslip angle 

e = elevator deflection angle 

a = ailerons deflection angle 

r = rudder deflection angle 

 = generic parameter 

 = generic parameter  

 = roll angle 

 = Flight path angle  

  = Lagrange multiplier 

 = pitch angle  

 = throttle control 

  = angular velocity vector 
Trqp )(

 = yaw (heading) angle. 

if = generic functions 

ip = i th waypoint 

H = Hamiltonian function

J = performance index 

R = the turn flight radius 

U = control vector
T

rae )( 

V


= linear velocity vector
Twvu )( . 

V = Vehicle airspeed. 

X = state vector T
rqpV )(  or 

Trqpwvu )(


