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Abstract

Ordinary Differential Equations (ODEs) provide a theoretical frame-
work for a mechanistic description of biological networks (e.g. signalling
pathway, gene regulatory network, metabolic pathway) as continuous time
dynamical systems. Relevant ODEs are often nonlinear because they are
derived from biochemical kinetics and based on law of mass action and its
generalizations or Hill kinetics. We present two approaches devoted to the
identification of parameters from time-series of the state variables in non-
linear ODEs. The first approach is based on a nonparametric estimation
of the trajectory of the variables involved in the ODE. The parameters
are learned in a second step by minimizing a distance between two esti-
mates of the derivatives. In the second approach, dedicated to Bayesian
estimation, we build a nonlinear state-space model from the ODEs and we
estimate both parameters and hidden variables by approximate nonlinear
filtering and smoothing (performed by the unscented transform).The two
approaches are illustrated on numerical examples and discussed.

1 Introduction

Reverse-modeling of biological networks such as gene regulatory networks, sig-
naling pathways or metabolic pathways has recently witnessed a surge of interest
due to the widespread availability of large scale measurement techniques. From
over 20 years now, many mathematical models including discrete-time mod-
els and continuous time ones, deterministic models and stochastic ones, have
been used to study and analyze the dynamical behavior of biological networks.
Among all these frameworks, Ordinary Differential Equations (ODEs) are cer-
tainly one of the most powerful ones, providing a theoretical framework for the

*Draft version of a chapter to appear in Learning and Inference in Computational Systems
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description of biological networks as continuous time dynamical systems. ODEs
are usually employed in systems biology to describe in a deterministic way how
components in the cell interact with each other, offering either a very precise
mechanistic view of the various components such as Michaelis-Menten equations
or a more general idea of regulation through some generic model of interaction
such as linear models proposed in D’Haeseleer et al. [14], generalized linear
models studied in [9] and S-systems introduced and studied by [39, 49]. Once
a given family of ODEs is chosen and when time series of state-variable obser-
vations are available, reverse-modeling of biological networks becomes possible.
This identification task then boils down to the estimation of the ODEs’ struc-
ture and parameters. In case of some simple models, such as linear ones, the
structure is explicitly encoded into the parameters and the estimation of all
parameters provides thus the graph of interactions, assuming that the model
complexity is controlled either by the use of appropriate penalizations such as
encountered in ¢; regularized criteria and AIC or BIC criteria. However, in
some cases, for instance for complex models like Michaelis-Menten or Hill equa-
tions, the graph of interactions has to be given before the definition of the ODE
because learning a semiparametric model that encompasses various structures
would be too difficult. In this case, structure inference and parameters esti-
mation can be solved by the use of two coupled methods: a structure learning
method and a parameter learning method. The structure learning method ex-
plores the space of graphs and selects good candidates with a score based on
the estimated parameter. Assuming that parameter estimation can be combined
to structure estimation algorithms like those developed in [4], we focus on the
sole problem of parameter estimation. Regarding this last issue, least-squares
methods developed so far provide solutions but require the solution of the ODEs
and face difficult global optimization problem depending on implicit definition
of the cost function. Meanwhile, the noisy nature of available data and their
limited number, as well as their potential incompleteness, leads us to explore
other learning paradigms that encompass these constraints. In this chapter,
we present two approaches inspired from two different views of the estimation
problem, each presenting their own advantages. The first approach is based on
a two-step estimation procedure of the parameters of the ODE. In a first step,
a nonparametric estimation of the trajectory of the variables involved in the
ODE is made. Then, parameters are learned in a second step by minimizing
the distance between the derivative of the approximation obtained in the first
step and the derivative estimated from the parametric vector field defining the
ODE.

In the second approach, assuming that the true biological process is not
fully observed, we build a nonlinear state-space model from the ODEs and we
estimate both parameters and hidden variables by nonlinear Bayesian filtering
and smoothing.

The first approach gives more importance to the nature of the ODE’s (ap-
proximated) solution, easily allowing us to incorporate some qualitative con-
straint on its shape whereas the second approach benefits from the probabilistic
framework of graphical models in which hidden variables can be easily modeled.



The chapter is structured as follows. First we introduce in Section 2 examples
of ODEs used in systems biology, taking the examples of gene regulatory net-
works and signaling pathways. Then we present the issues of statistical learning
of ODEs. This introduces the next part of the paper devoted to the two-step
estimation procedure (Section 3), and its properties. We show also some re-
finements for the use of prior qualitative knowledge. In Section 4, we describe
a class of state-space models defined from nonlinear ODEs. We then present
the estimation of parameters and hidden state in the framework of Bayesian
inference. In order to overcome the difficulty induced by the nonlinearity of
the studied process, filtering and smoothing algorithms based on the unscented
transform introduced in [21] are used to implement the Bayesian inference.
Then, we discuss in Section 5 the differences between the two estimation proce-
dures presented in 3 and 4, which rely on two points of view, each one bringing
its own advantages. Finally, we evocate further possible improvements for both
approaches.

2 Modeling biological systems with Ordinary Dif-
ferential equations

Ordinary Differential Equations (ODEs) have been mainly developed to rep-
resent biochemical networks that involve interactions between various chemical
species. First defined for metabolic reaction networks, ODEs have also been used
to describe gene interactions in gene regulatory networks. Biologically relevant
ODE:s reflect nonlinearities that occur in biological systems in which saturated
signals for instance are observed. Usually derived from biochemical kinetics,
they encompass models like laws of mass action, Hill kinetics as previously in-
troduced in ??7. When the graph of interactions is known, reverse-modeling of
the network boils down to the estimation of the parameters indexing the non-
linear ODEs. In this modeling framework, a biological system that involves p
species is described by a system of p coupled equations. In first-order differential
equations, the i*" equation expresses how some species concentrations affect the
evolution of the i*" species at any time t. Here, we do not consider delays and
we restrict ourselves to the study of first-order ODEs.

A system of p coupled differential equations can be written as follows:

Xt = f(Xt,t,6)7 Vt S [0, 1], (1)

where f is a time-dependent vector field from Px to P, p € and 6§ € O, O being
a subset of a ¢, where d is the number of parameters. Moreover, the vector field
f X x[0,1] x ©® =P (X CP) is a smooth function of class C™ w.r.t X and 6,
m > 1. This smoothness condition ensures then the existence and uniqueness of
a solution for given initial values Xy € & on a neighborhood of 0 for each . We
consider that the solution X; that represents the vector of the concentrations of
the p species at time ¢, exists on [0, 1] and is itself a smooth function of degree
m + 1 in 6 and Xy (the reader can refer to [19] for deeper details about these



assumptions). So, a solution X; is in fact indexed by a parameter vector, X(n),
where the parameter vector is given by n = (Xp,0) € © x X, but most of the
time, one is interested only in the parameters 8 which characterize the network
under study, and one is not so much interested in the initial value Xgy. The
latter can be considered as a nuisance parameter during the estimation, that
corresponds to the experimental conditions (possibly random).

2.1 Modeling transcriptional regulatory networks with Hill
equations

In transcriptional regulatory networks, variables of interest are mRNA and pro-
tein concentrations, denoted respectively by m; and p;,¢ = 1,...,d (p equals
2d in this case). Let us make the assumption here that one gene can only
produce one protein. We consider transcription and translation as dynamical
processes, in which the production of mRNAs depends on the concentrations
of protein transcription factors (TFs) and the production of proteins depends
on the concentrations of mRNAs. Hence, we have X; = (m(¢)",p(t)")" with
m(t) = (my(t),...,mq(t)) " and p(t) = (p1(t),...,pa(t))". Equation (1) can be
split into the following equations. Transcription is described as

dmi t
(50) g (p(0)) — k(1) 2
whilst translation may be modeled as
dp; (t
pdi ) — kamalt) — Kpa(t). (3)

where &k and k¥ are respectively the degradation rates of mRNA 7 and protein
t. The function g; describes how TFs regulate the transcription of gene ¢ and
equation (3) describes the production and the degradation of protein ¢ as linear
functions where k; is the translational constant for gene ¢ [9].

Various forms have been proposed for g;(p), like linear approaches as de-
scribed in [9] and nonlinear approaches presented in [16, 43, 13, 28, 11]. Exper-
imental evidence has suggested that the response of mRNA to TFs concentra-
tions has a Hill curve form [13, 16]. The reader may find a detailed presentation
of Michaelis-Menten kinetics as well as Hill kinetics in Chapter ??7. The regu-

lation function of transcription factor p; on its target gene ¢ can be described
by

ph
+ (o . _ J
v ki i h) = vi———r
g (pJ i Vi,j ) zkkj_i_p?
for the activation case and
h
ki

g~ (pj;vi, ki, h) :viw

for the inhibition case. Here v; is the maximum rate of transcription of gene
i, k; ; is the concentration of protein p; at which gene ¢ reaches half of its
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Figure 1: Left: Repressilator. The first repressor protein, Lacl inhibits the tran-
scription of the second repressor gene TetR whose protein product in turn in-
hibits the expression of a third gene cl. Finally, CI inhibits lacl expression, com-
pleting the cycle. Right: JAK-STAT signaling pathway. JAK protein binds to
the Erythropoietin Receptor (EpoR) and causes the phosphorylation of STAT5
protein. Phosphorylated STATS5 protein then forms a dimer and moves into the
nucleus. In the nucleus, phosphorylated STAT5 dimer is dephosphorylated and
forms a STAT5 monomer, which finally goes back to the cytoplasm.

maximum transcription rate and h is a steepness parameter describing the shape
of sigmoid responses. The parameter vector 0 = (v, k; j, k7, ki, k7, h) for i,j =
1,...,d is the set of kinetic constants to be estimated. Note that if a gene has
several regulators, the regulatory part of the equation (2) can be extended into a
product of functions g7 and g~ that expresses the combined effect of regulators.
However, we consider here examples where the genes have only one regulator.

The complexity of the dynamics that can be described by such equations is
highlighted in the example of the repressilator, a synthetic network based on
three transcriptional repressors that was implemented by Elowitz and Leibler in
2000 (see [16]) to implement some desired dynamical behavior (e.g. sustained
oscillations) as illustrated in Figure 1. This system was also built experimentally
by genetic engineering with mutated E. coli strains. Despite the simplicity of
the transcriptional regulation model, the negative feedback loop implemented
by the three genes that act as three inhibitors leads to oscillating concentrations
confirmed by experiments. The kinetics of the system can be described by six
coupled ODEs which exactly fit the framework previously described:

dmg (¢ _
d1t< ) - 91 (p2;v1, k12, h) — k{ma (t) (4)
dmeo(t _
Ti‘() = gy (p3;v2, k23, h) — kima(t) (5)
dmgs(t _
B0 g v ke ) — Km0 0
(7)
The equations for each protein concentration, for ¢ = 1,...,3 remain exactly

under the form of equation decsribed in 3.

2.2 Modeling signaling pathways: the JAK-STAT exam-
ple

Signaling pathways are other candidates for ODEs modeling. They usually in-
volve numerous and various intermediate products in a complex sequence of



transformations. Depending on the types of signals and intermediary compo-
nents, and the localization of the pathways, there exist several relevant types of
ODEs. Consequently, it seems rather difficult to give the same wide picture as
for transcriptional regulatory networks, but most of the time we can say that
the system of ODES involves nonlinear reaction rates derived from mass action
law and Michaelis-Menten (or Hill) kinetics. We provide here a description of
the JAK-STAT signaling pathway involved in the cellular response to cytokines
and growth factors, which involves Janus kinases (JAKs) and Signal Transducers
and Activators of Transcription (STATS), see the graph on the right of Figure 1.
This pathway transduces the signal carried by these extracellular polypeptides
to the cell nucleus, where activated STAT proteins modify gene expression. In
both cases, there may be some difficulties in observing the variables of the path-
way, and this gives rise to different observation functions from gene regulatory
networks. This is particularly emphasized in the JAK-STAT pathway, for which
it is difficult to discriminate between several intermediates in the pathway. In
[45], Swameye et al. suggested an ODE linking the Erythropoietin receptor
(EpoR) to the various forms of the STAT5 protein such as dephosphorylated
STAT5 monomer (1) and phosphorylated STAT5 dimer (z3) in the cytoplasm,
phosphorylated STAT5 dimer (z3) and STATS monomer (x4) in the nucleus.
Another variable of interest is the concentration of EpoR which is considered
as an exogenous variable of the system. Finally, as proposed by Zi and Klipp
[61], the evolution of this network can be described by the following system of
coupled differential equations with an input variable u(¢) (EpoR), which can be
considered as an adaptation of the system proposed by Swameye et al. [45] :

dxcit(t) = —ay@ (Hu(t) + 20424 () Lsny

d%(t) = aa(t)ult) — 2as03(t)

dxgt(t) = —agms(t) + 23(0)

dx;t(t) = azr3(t) — aawa(t)lsry ®)

where 1;>-} denotes the indicator function, equals to 0 for ¢ < 7 and equals
to 1 otherwise. The concentrations and constants a;,i = 1,3,4 in (8) stand
for normalized quantities as described in [50]. The vector 6 = (ai,as,as)’
contains the parameters to be estimated. As pointed out by Swameye2003, the
individual STATS5 population is difficult to access experimentally, and only the
following variables could be measured: y; = (x3 + 2z3), the concentration of
phosphorylated STATS5 in the cytoplasm and yo = (21 + 22 + 2z3), the total
amount of STAT5 in the cytoplasm. As we shall see in the section 77, the
estimation of such a system in the context of hidden variable fits the framework
of state-space models based on ODEs.



2.3 Statistical learning of ODEs with constraints and hid-
den variables

As previously noted, we focus on the estimation of 6 (and not of Xy, nor of
the structure). We now consider the problem of learning parameters 6 of the
equations in (1) from data. We can first make an simple assumption: the data
are simply noisy observations of the states, i.e. Y;,,..., Y, with

}/ti:Xti(n)'i_Eivi:Ov"'aTv (9)

and 0 <ty < ... <ty <1areT+1 observation times in [0, 1]. The random vari-
ables ¢;, 4 = 0,...,T are observation noise, and we suppose that they are simply
spherical Gaussian independent variables (0,021I,). The observation equation
(9) corresponds to the particular case where the states X; are observed, but in
some situations the system can only be partly observed as for the Repressilator
or the JAK-STAT pathway described previously. Hence, generally, we have the
following observation equation

where H :P—? is a smooth (possibly nonlinear) function with 1 < d < p.

From (9) or (10), it is clear that the estimation of 7 or € corresponds to a
classical problem of multivariate parametric nonlinear regression. We know that
the Maximum Likelihood Estimator (MLE) or Least Squares Estimator are good
statistical estimators in this case, with desirable properties such as consistency
and efficiency. Consequently, if we suppose that identifiability problems (due
to partial observation or over-parameterization of the model) are ruled out, the
estimation of 1 boils down to the following optimization problem :

T
1 = arg min Y, — X, 2 11
0= ars i, 3V, - X, o) (11)

In the remaining part of the chapter, n* = (X, 6*) denotes the “true” parameter
of the ODE and Xj the corresponding solution. There exists many variants of
this estimation problem. Examples include special boundary values instead of
the simple initial value problem (a function z(-) links the values at the boundary
i.e. z2(Xo,X1) = 0), random initial values or random parameters [15], or noisy
observation times [23]. Nevertheless, the fundamental difficulty of the estimation
of ODEs already appears in the simple setting we have just presented and lies in
the implicit definition of the model. Indeed, the least squares criterion in (11)
can be only computed by numerically solving the system of ODEs for a given
set of parameter 1, which can be computationally prohibitive. Moreover, the
Jacobian V, X; does not have a closed-form expression, and must be computed
by solving the first variational equations (or sensitivity equations).

In case of a large number of parameters such that it could be encountered
in mechanistic models, the corresponding optimization problem may be hard to
solve. The task becomes even harder because the least-squares criterion pos-
sesses numerous local minima, as it has been emphasized by [33]. As a matter



of fact, one of the best estimation methods proposed so far relies on more global
optimization algorithm, that enables a more efficient exploration of the param-
eter space for 7, see for instance Chapter ??, [27]. Despite their satisfactory
theoretical properties, the efficiency of the MLE may be dramatically degraded
in practice by computational problems that arise from the implicit and nonlin-
ear definition of the model. If regularization can help in solving the issue of
model complexity, the implicit definition of the model still makes the learning
task difficult.

Finally, the main difficulty of the estimation of 1, whatever the method, is
related to the notion of parameter identifiability. In a brief setting, a parameter
of a dynamical system is said to be identifiable given some data if only one
value of this parameter can produce the observed behavior. Although there
exist practical tools like sensitivity analysis to study parameters identifiability
given a dynamical system, to our knowledge very few estimation methods take
into account information about identifiability, within the learning process. A
recent work of De Pauw et al. [29] exploits such constraint in the parameters
space exploration using evolutionary algorithms.

Related to the issue of identifiability, the analysis of the qualitative behavior
of the dynamical system under study could surely be helpful in the estimation
process. Although models are usually built to be able to explain some particular
qualitative behavior (sustained oscillations or convergence to an equilibrium
point), the link between the parameters n and the shape of the functions X;(n)
is hard to decipher and thus never used in the estimation process. Classical tools
of dynamics analysis come from bifurcation theory (see for instance [11, 22]),
but they remain devoted to small systems.

The two methods we present respectively in Sections 3 and 4 can be consid-
ered as alternative solutions to the complex optimization task described previ-
ously. They both take into account explicitly the fact that X;(n) is the solution
of an ODE. The first one, called two-step estimation, uses a direct and global
reconstruction of the unobserved solution with nonparametric estimation. We
give a detailed account of the theoretical properties of two step estimators be-
cause they are relatively unknown and do not share the same properties as other
parametric estimators such as MLE. This will also motivate potential improve-
ments for practical implementation by using qualitative constraints. A second
estimation method is based on the incorporation of a system of ODEs in the
definition of a state-space model, enabling the estimation of both parameters
and hidden variables using recursive inference algorithms. These methods are
well-known in machine learning, but they are not commonly used in the context
of ODE estimation.

3 Learning with two-step estimators

As we have previously noted, the only difficulty with respect to the regression
setting is that the function X;(n) (solution of the ODE for parameter 1) needs
to be computed numerically, which causes important difficulties for exploring



the sets of (parametric) candidate functions. The idea is to replace the function
X:(n) by a function close to the data (and to the true solution), that can be
computed easily from the data. At the same time, we expect from the nonpara-
metric approach enough versatility for the incorporation of constraints.

3.1 Rationale and consistency

We present here the idea of the two-step estimator and we give also a relatively
detailed description of its statistical mechanism, as it relies on different ideas of
the Maximum Likelihood Estimator or Bayesian estimators. Whereas Bayesian
estimators are self-justified (they minimize the Bayesian risk), the quality of
frequentist estimators is usually assessed by controlling that they converge to the
true parameter as the number of observations T tends to infinity. In particular,
the MLE (éMLE) is a consistent estimator because it converges to the true
parameter 6* for a wide range of model as we get more and more observations [8].
Moreover, the rate of convergence of the MLE (and its asymptotic distribution)
is known and can be written on the following form

VT (Oarze —07) ~ (0.2(6%))

where Z(0*) is the so-called Fisher information of the model (9). This result is
central for the construction of confidence sets or for the testing of statistical hy-
pothesis. It also enables to quantify the rate at which the statistical procedure
extracts information on the parameter from the observations. For parametric es-
timators, the classical rate is ”in V7”7 and the MLE is usually considered as the
best (asymptotically) estimator because it has the best attainable constant (or
asymptotic variance) given by the Cramér-Rao bound. Nevertheless, the small
sample properties of the MLE are not easy to grasp in general, and the heavy
use of the MLE in applications comes partly of its simple definition. Another
reason is that the rationale of the MLE is rather satisfying, as the maximization
of the likelihood is equivalent to the minimization of the Kullback-Leibler dis-
tance between the estimated distribution and the true distribution. Since the
definition of the two-step estimator is distribution-free, we describe its mecha-
nism in order to explain why the two-step estimator remains consistent but can
have an asymptotic behavior slightly different from the MLE. This latter comes
from the fact that it uses functional estimators (which have different rates of
convergence than parametric estimators).

When all the system is observed (i.e. (9) is satisfied), we can build on the the-
ory of nonparametric regression and functional estimation to compute a proxy
X, for the solution of the ODE and its derivative X;. Based on Xt, we can look
for parameters ¢ such that X, is nearly solution of the ODE X, = f(Xe,t,0").

This is possible because we can compute the derivative X +, which is also an
estimator of the true derivative, X;. Obviously, there is room for defining sev-
eral notions of closeness to a solution of an ODE, but a rather straightforward



one is to use the Ly norm. More precisely, we propose the following two-step
procedure (estimator):

Functional Estimation Estimate the ODE solution

*

1. For j = 1,...,p, estimate ]
from observations ¥;0,..., Y1

(t) with a consistent estimator &;(t)

2. For j =1,...,p, estimate & (t) by differentiating Z;(t): ;(t) = ij (t)

Parameter Identification Solve the optimization problem
0= n X, — FXE 60|,
argmin ||X, — f(X{,1,0)|lL,

Such a procedure has already been proposed by [24], [48], [49, 10] essentially

with splines, but they can be replaced with ones preferred nonparametric esti-
mators to get a correct estimator. A detailed analysis of two-step procedures
and of their potential improvements are discussed in [6].
The two-step estimator 0 is a generalization of the maximum Likelihood esti-
mator: it is a M-estimator [46] i.e. a generalization of the maximum Likelihood
estimator. Instead of minimizing the sums of squared errors (or maximizing the
log-likelihood), we minimize

RQ,T(G) = HXt - f(Xt7t7 9)||%2
which is the empirical counterpart of the criterion
Ra(0) = || £(X7.¢,0) — X[ |12,

where .
2113, = / =(0)|2t.

This family of estimators do provide consistent statistical estimators under gen-
eral conditions, and it has been studied in this particular setting in [6]. Ob-
viously, the consistency of 6 relies heavily on the properties of X;:at least X

must be chosen such that X, and X, are consistent estimators of X; and X}
in the Ly norm. Moreover, a critical property needed for Rz () to be a good
contrast is the following appropriate identifiability condition, that ensures that
the minimum of the contrast is reached only for the true parameter 6*:

Ve > 0, Hg_IEI’I*HZER2( ) > Ra(6%), (12)

This criterion means roughly that there exists no other parameter 6’ such that
Xi(n) = f(X:(n),t,0"), but with the additional constraint that this equality
must not hold approximately for some ¢’ far from #*. This condition is a bit
more stringent than the classical identifiability that requires the map n — X;(n)

10



to be one-to-one [2]. Even if the solution to this problem is still open, we
can partially answer this problem by computing the Hessian of the asymptotic
criterion R() evaluated in 6*:

1
J*:/ Dof(X711,0%)T Do f (X7, 1,0%)dt,
0

where Dy f is the Jacobian of the vector field f with respect to 6. Hence, if
J* is nonsingular, one can derive a local identifiability criterion; indeed, R2(6)
behaves like a positive definite quadratic form on a neighborhood V(6*) of 6*, so
that condition (12) is true on V(6*). Obviously, this condition is hard to check
in practice, but it provides a hint for detecting possible identifiability problems.
We do not further address this aspect of the estimation problem and we shall
consider now only the computational estimation problem.

Note that the minimization of the discrepancy between estimates of the
derivatives has been exploited in another way by [34] in the functional data
approach. This is based on the fact that smoothing splines are obtained by
solving the trade-off between adequacy to data and smoothness of the solution
as measured by linear differential operators. It was extended more recently in
[33] to the case of nonlinear differential operators, and gives rise to a different
cost function and a pragmatic method for parameter estimation.

3.2 Computational advantages

Now, we briefly describe the computational advantage derived from this modi-
fication of the cost function with respect to (11). The first gain is that we do
not need now to solve the ODE for the computation of the criterion R 1 (6),
nor its minimization: this dramatically reduces the computational load of the
estimation algorithm. Another significant gain concerns the complexity of the
optimization task because we can decouple the estimation of p differential equa-
tions so that we reduce the size of the parameter space to explore. Indeed, let
us decompose the equation (1)

dl’i(t)
— (X )
dz fz( tatve[z])

where fj; € ©p; denotes the subset of the parameters effectively involved in
equation ¢ (6 = U_, 0};)). If the parameters 6[;) are non-overlapping, the effective
optimization takes place in small spaces

Vi=1,...,p,

0 = arg min R} ().

[4] geme@m 2,N( )
where R} 1.(0) = | f(X¢,t,0) — X,||2. Finally, as we do not estimate the initial
states, the size of the parameter set is dramatically decreased, as is the compu-
tation time. In this case we can easily compute the gradient in closed-form (for
each dimension):

1
Vi= 17 Ry 2) VQMR%’T(G) = / (fi(Xta tv 0[1]) - J&Z(t))v‘gm fi(Xtv ta 0[1]))dt
0

11



The two-step procedure gives then a consistent and computationally fast esti-
mation method for the parameters of an ODE. We provide then in the next
section an analysis of the rate of convergence.

3.3 Asymptotics

As we can see, the reason why a two-step procedure does work is different
from a likelihood-based procedure such as the MLE. In [6], a local study of
the criterion Ry 1 enables to derive an asymptotic expansion for the two-step
estimators similar to 3.1. Indeed, the criterion Ro r is linearized thanks to a
Taylor expansion of the vector field f around the true solution X; and the true
parameter 6% and gives

é—e*:/olA(t) (Xt—Xf>dt+a(X1—Xf)—ﬁ(XO—X5‘> (13)

where ¢t — A(t) is a smooth matrix-valued function (in P*?) that depends on f
and its derivatives (w.r.t. 8* and X*), and «, 8 are two matrices in P*P. The
rate of 6 depends on the rates of convergence of the linear functionals:

Evaluation functionals Ty(X;) = X(0) and T} (X;) = X,

Smooth functional I'(X;) with T'(Z(t)) = fol A(t)Z(t)dt (for any function
t— Z(t)).

It is well known that the pointwise evaluation of a regression function cannot be
s
done at a better rate than Op (T_ 25+1 ) , where [ is a measure of the smoothness

of the function X* [44] (in our case [ is the degree of differentiability). If the
function X* is reasonably smooth, it can be shown that the smooth functional
['(X;) converges to ['(X*) at a rate equals to v/T for wide families of nonpara-
metric estimators (the so-called plug-in property). In particular, this is possible
for Nadaraya-Watson estimators ([17]) or when the estimator is decomposed in
a basis of function ¢, p, i = 1,..., K¢ (with good approximation properties) i.e.
X = ZfiTl ci, v v [1]. In particular, (cubic) splines fulfil these requirements.
Moreover, it is possible to derive asymptotic normality of 6 at least for series-
estimators, using results of [1]. Finally this detailed decomposition of § — 6*
allows one to show that a two-step estimator has a rate of convergence lower
than the classical one (i.e. v/T) due to the presence of the (slow rate) evaluation
functionals. Nevertheless, this (relative) weakness of two-step procedures can be
corrected by modifying the definition of Ro r with a suitable weight function [6].
In general, the (asymptotic) confidence interval constructed from the two-step
estimator will be larger than the one constructed from the MLE. This indicates
that the statistical optimality has been sacrificed for computational simplicity.
This result concerning the possible slow rate of convergence indicates that some
care must be taken when using nonparametric estimators in parametric pro-
cedures. This puts emphasis on the necessity to construct reliable and close
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estimators X. Despite this potential limitation, empirical studies performed
with cubic splines by [48, 31, 6] show satisfying results, even on relatively small
samples. Moreover, nonparametric estimators are constructed in practice with
adaptive procedures for selecting the basis ¢, r,1 <k < Kp (or the number
Kr), or the bandwidth for Nadaraya-Watson. One can expect to construct
“relatively” close functional estimates of X™*, so that the pointwise distance be-
tween X and X* remains small even for finite sample size. An interesting family
of adaptive nonparametric estimators can be derived in the framework of the
so-called Support Vector Regression (SVR) [40, 42]. These estimators are func-
tions belonging to a Reproducing Kernel Hilbert Space (RKHS) H associated
to a kernel k(-,-). The estimator (for each dimension) is then characterized as
the solution of the following optimization problem

T
&(t) = arg min |l2(t)llx + C Y Le(yi — z(t:))
z(t)eH i—o
where Lc(-) = max(] - | — €,0) is the e-loss function, || - || is the RKHS norm

and C a regularization parameter. The solution exists and is unique, defined as

T
B(t) =b+ Y cik(ti,t)
=0

and the coefficients b,c¢;, ¢ = 0,...,T are computed by solving the constrained
quadratic program

T
1
{miHCi,b,f»E* §CTKC+CZ(§+§*)St { ((Kc)z+b_yl S E+£ly2_((KC)z + b) S 6+§z*€7 g* Z Oa 1= 07 cee 7T
=0

(14)

where K = (k(t;,t;)); ; is the kernel matrix. There is a great deal of choice for
the functional specification of the kernel matrix, but the usual ones in univari-
ate regression are the Gaussian or spline kernels [47]. We consider here only
Gaussian kernels,

(t,t) — k(t, 1) = exp <_,y(t2t’)2>

with a fixed scale parameter v, which possesses good approximation properties
(it is a universal kernel [26], i.e. the RKHS is dense for the uniform norm in the
set of continuous functions on [0,1]). Among other adaptive methods, we can

select the hyperparameters C' and € in (3.3) by minimizing the generalized cross
validation criterion

T—df
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where d}‘ is the effective degrees-of-freedom. dAf is a generalization of the number
of variables in linear regression, and it has been introduced in nonparametric
regression for the estimation of the prediction error. In the framework of SVR,
it can be approximated by counting the number of observations in the e-tube,
as proposed by [18]. Since only a subset of the coefficients of SVR are not
null, and since the Gaussian kernel is quite close to splines for particular values
of the scale parameter 7, the SVR estimator #(t) is quite close to a least-
squares splines estimator with an adaptive selection of the knots. The estimated
parameters do not seem to be sensitive to the family of the estimator, but rather
on the smoothness in z*(¢) and the underlying approximating power of the
estimator. As a result, one can ask for more adapted nonparametric estimators,
possibly using more information on z*. We propose in the next section a slight
modification of SVR to be able to use qualitative information for Z(¢).

3.4 Qualitative constraints and semiparametric estimator

We have seen in the linear expansion of § — 6 in equation (13) that the quality of
estimation is directly related to the quality of approximation of X*(¢) by X (1).
We therefore propose to use prior knowledge from the solution of the ODE, and
in particular qualitative knowledge, to have a better estimates £ and 6. To do
this, we suggest modifying the nonparametric estimation into a semiparametric
estimation.

Our first approach is to introduce prior knowledge about the qualitative
behavior of the solution. The idea is to decompose the solution in the following
manner:

X =5 +N;

where S; = (s1(t),...,sp(t)) represents the shape or the main pattern of the
solution X}, and Ny = (n1(t),...,np(t)) is a noise or at least an unknown part.
In that case, we identify the functions S; with the qualitative behavior of the
solution, and they serve to represent the information we have about the be-
havior of the system, such as the convergence to an equilibrium point, or to
periodic solution. This latter situation particularly motivates this decomposi-
tion when the function X; converge to a periodic solution Z; = (z1, ..., 2p) with
(componentwise) Fourier decomposition

zi(t) = Z by cos(2mkwt + ¢y,).
k=0

Hence, we can look for a decomposition

£

2} (t) = bjicos(2mjwit + ¢;i) + nit)
§=0

with finite ¢, and n might appear as the rest of the Fourier series plus a tran-
sient part. In all generality, we need to get a (precise) identifiability criterion
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for the couple (S;, N;). A possible one is that both parts belong to a RKHS
H generated by a universal kernel k(-,-) (and scalar product (-,-),,). We pro-
pose that s is in S, the vector space spanned by v;,j =1,...,¢ where ;s are
shape functions, i.e. s = ijl lsi1r. n belongs to the orthogonal of S. This
means that any continuous solution X} and shape function S; can be well ap-
proximated by a function in H (in the uniform norm). In that case, we search
a semiparametric estimator by using the so-called semiparametric SVR. The
representer theorem can be adapted in this setting ([40]), and the form of the
semiparametric estimator is:

T

¢

B(t) =Y _bibi(t) + > cik(ti,t) = 5(t) + n(t)
=1 i=0

where §(t) = Zf:() by (t) and n(t) = Z?zl ¢ik(t;,t) are the estimators of the

shape and “noise” parts. The coefficients b;, ] = 0,...,f and ¢;, i =1,...,N

are computed by solving the following optimization problem:

T
2(t) = arg iﬂiDCZLe(yi — 5(ts) — n(ts)) + [|(t) ||

ksCi

When we solve this problem, it shows up in the dual form that the parameters
b,l=1,....,0and ¢;, 1 =1,...,T are computed such that

VI=0,....0 (b, 7)y = 0.

This implies the decomposition of &(t) = 5(t) + 7(t) in two orthogonal parts
and only the norm of 7i(¢) is minimized while regularizing. It is possible to use
(nonlinear) parameters w in the parametric part by putting ¢;(-) = ¢ (-, @), I =
0,...,¢. For instance, in the case of sustained oscillations, the parameters (rep-
resenting a prior information) are the frequency w and the phases ¢x. Note that
the use of a semiparametric estimation for imposing shape constraints has been
used by [3] (by using regularization with linear operators), or [31] in the context
of the estimation of differential equations.

There is room for important improvements of two-step estimators by using a
well-adapted parametric part, which then highly depends on the context. Nev-
ertheless we can propose another general way of computing sensible parametric
priors. Indeed, in all the cases, we can try to describe X;* with the use of several
others solutions of the differential equation X;(no), ..., X¢(n¢). This means that
we consider that the parameters 7, ...,n¢ are reasonably close to n* such that
X:(n;) should behave approximately as X/, hence instead of using only the pa-
rameter values n;, ¢ = 0. ../ as initial values for the optimization of the criterion
Ra,n(n) in the second step, we use them also for a better approximation during
the first step. This approach can be partly justified by the generalization of
well-known properties of linear ODEs. Indeed, the set of solutions of a linear
ODE (with fixed and known parameter 6*) is a vector space generated by the
(linearly independent) solutions X, ([0*, X}]), ..., X;([0*, X§]) having p different
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initial conditions xé, 7 =1,...,p. In this very simple situation, the estimation
of 6 boils down to the estimation of the initial parameters X, i.e. of the linear
combination 22:1 b X (t, (6~, X(’f)), and the final estimate of initial condition
is simply X, = ZZ=1 bpX%. The nonparametric part s is here to account for
the fact that the differential equation is nonlinear and that we do not know 6*.
In practice, there is no particular constraint on the number ¢ of solutions that
are used in the parametric part.

Another piece of prior information that can be easily incorporated in the
first step is the knowledge of some values taken by the true solution X;. Typ-
ically, it is possible to know the initial value of the system X and one would
like to have a proxy X, such that Xy = X{§. This can be done straightforwardly
with SVR, because it suffices to add this constraint in the optimization pro-
gram (3.3), which can still be solved (it remains quadratic convex with linear
constraints); SVR enables a mix of approximation and interpolation. This can
be generalized to a series of known values th = d},, because this is equivalent to

have <X Lk (te, )> = d. A particularly interesting situation is the case where
H

we know the initial and final conditions X and X7. According to equation (13),
the contribution of the evaluation functionals X; — X 1) and Xo— X{) vanishes.
Hence, there are two practical consequences to this slight modification of Xt: on
one hand, X, is closer to the observations since we have the exact values at the
boundary; on the other hand, the slow rate part in the asymptotic expansion
has vanished, so the rate of 0 — 0% is governed only by the smooth functional
F(X — X*), so it has the parametric rate of convergence v/7T.

3.5 Experiments

We present experiments on data simulated from the repressilator model. The
situation that we consider here is more favorable than the one described in
Section 2.1 because we assume that all the states are observable, which means
that we observe simultaneously the mRNA and protein concentrations. It is then
possible to compute the 6 functions {561‘}?:1 that correspond to the estimation
of the 3 true concentrations of mRNAs my, ms, m3 and 3 true concentration of
proteins p1, p2, ps as well as the criterion Ry 7(#). The two-step procedure is
illustrated in Figure 3.5, which shows how well the concentration of protein p;
and its derivative have been approximated.

We consider observation noise € ~ (07012,) that is spherical with o2 = 4
and an ODE with initial conditions m4(0) = 100, m2(0) = 100, m3(0) = 150
and p1(0) = 1,p2(0) = 2,p3(0) = 3. The true parameter vector 6* is given
in Tables 1 and 2. These parameter values give sustained oscillations for the
concentrations. Below we describe how different kinds of prior knowledge can
be used for the construction of X;:

1. a completely nonparametric estimator X, (no prior knowledge),

. . . s beriod - L. .
2. a semiparametric estimator XP“"'°® with a periodic function

si(t) = bo + b1 cos(2mw;t + ¢;.1) + by cos(2m X 2w;t + ¢; 2),
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3. asemiparametric estimator X9 with S; = b1 X, ({zo, 01}))+b1 X ({5, 02})),

4. a nonparametric estimator X{’O“S constrained to be such that X cons(0) =
X*(0) and X°"s(1) = X*(1).

We compare the mean performances of the two-step estimators é, but we in-
sist on the fact that we essentially compare then our ability to estimate the
solution with an adaptive procedure. Indeed, the first step should be done by
an automatic and general method that adaptively selects the parameters C, €
and v from the data, hence a comparison of the two-step estimator will essen-
tially compare the adaptive procedure for computing the first step. When 7' is
large, these different estimators converge to give equivalent estimates. Hence,
we are interested in the size of the finite sample, and in particular in the case
of small T because one can expect to have a gain in using qualitative/prior
knowledge when observations are limited. As previously described, it is possible
to adapt X to the use of different prior knowledge in the system. In the case of
a periodic shape (situation 2), we take advantage of the convergence to a peri-
odic solution: we suppose that the first 3 components of the Fourier series are
known (i.e. w, ¢1,¢2). In the case of the repressilator, the frequency (common
to all the dimensions) is approximately equal to w = 0.55, but the phases are
different along the dimension and they are roughly estimated from the data.
The semiparametric estimator is computed by estimating first the parametric
part (by nonlinear regression), and then the semiparametric SVR with the es-
timated (fix) shape parameter. For X ode ' we use two parameters which are
close to the true value #* and having initial conditions equals to z*(0). The
parameters we used are 61 = 6* + 0.2 and 0, = 60* — 0.1. They give sustained
oscillations. One can see that Xt,dee,X cons(¢) gives roughly the same esti-
mators from Tables 1 and 2 but the behavior of these estimators are slightly
different, as it is shown in Table 3. From the comparison of the estimated mean
square error (MSE) and variance of the three estimators, it is clear that the
Xcons(t) gives the best estimator with a smaller bias and a smaller variance.
The second semiparametric estimator dec, gives intermediate results between
X, and X" (except for ks ;) (the same remarks can be done for parameters
kim, kom, k3m, k1p, k2p, ksp, R). This shows that the use of additional informa-
tion during the first step can ameliorate significantly the statistical performance
of the two-step estimators. Nevertheless, the results of XP®°? shows that the
use of prior knowledge must be done with care. Despite a reasonable fit in the
first step, the underlying parametric structure is too strong and causes then an
important bias in the estimation. In our experiment, it comes from the fact the
solution is transient in [0, 10] which induces an artefact in the estimation of the
parametric part, but we remark that better adaptive semiparametric methods
can be used, see for instance [37]).
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[Estimation of the true solution p; (hard line) by a Support Vector Regression
p1 (dashed-line), computed from 50 noisy observations (stars).]
[width=.9]chapters/BrunelDalcheBuc/2step/Estimation onctionspline.pdf [ Estimationo fthederivativep,
by p; (dashed-line) and by f(Xy,t,0) (dash-dot line) (true derivative is
hard-line). The two-step estimator 6 is the parameter that minimizes (locally)
the Ly distance between the dashed line and the dash-dot line.]
[width=.9]chapters/BrunelDalcheBuc/2step/Estimationgeriveespline2.pdf

Figure 2: Estimation of the protein p; concentration and its derivative for the
Repressilator model

Table 1: Mean of the two-step estimator computed with different estimators of
the true solution of the data when T' = 40 observations, computed with 100

Monte Carlo runs.

True Parameter ‘ X ‘ Xperiod ‘ Xode ‘ Xceons ‘
U1 150 150.0 113.2 149.1 | 149.17
() 80 79.99 87.6 78.2 78.4
U3 100 101.98 81.2 101.8 | 100.6
k12 50 50.5 66.6 50.4 50.5
ko3 40 40.4 53.2 40.1 40.5
k31 50 49.65 39.0 48.9 50.2
k1 1 0.98 1.24 1.23 0.99
ko 2 1.96 1.9 1.91 1.95
ks 3 2.85 3.21 3.18 2.8

Table 2: Comparison for different prior knowledge.
’ ‘ True Parameter ‘ X ‘ Xperiod ‘ Xode ‘ Xcons ‘

k1m 1 0.98 0.34 0.99 0.99
kom 1 0.97 0.84 0.96 0.96
k3m 1 0.99 0.85 0.98 0.99
kip 1 0.98 1.31 1 0.99
kap 1 0.98 1.11 0.98 0.98
ksp 1 0.99 1.0 0.98 0.93
h 3 2.89 2.81 2.88 2.92
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4 Learning state space models defined from ODEs

Another point of view for reverse-modeling of biological networks consists of
choosing the probabilistic framework of graphical models to represent the dy-
namical processes at work in the cell. Graphical models (GM) allows the repre-
sentation and factorization of a joint distribution of variables of interest, taking
into account conditional independences: they also benefit from the statistical
estimation linked to generative models, regardless of the framework being fre-
quentist or Bayesian. Dynamical Bayesian networks, and more specifically state-
space models, are good candidates to represent interactions between components
that occur through time as emphasized in Chapter ??. This choice gives rise
to several advantages: first, variables of interest, for instance the mRNA con-
centrations or the protein concentrations in the case of regulatory interactions,
are seen as random variables, allowing the representation of some stochasticity,
which could arise from either the measurement process or to the nature of the bi-
ological process. Second, in this framework, it is possible to treat some variables
as “hidden” and estimate them as parameters. Note that the incompletness of
the observations is quite realistic. For instance, when studying transcriptional
regulations, we usually do not observe proteins concentrations together with
mRNA concentrations because of the technical difficulty in performing such
joint measurements. So the available data often reduce to transcriptome data
measured through DNA chips or qPCR. In this case, we can consider that the
observations are noisy measurements of mRNA concentrations, whose dynamics
can be described by some hidden processes which involve protein concentrations
and mRNA concentrations.

4.1 Definition of state-space models based on ODEs

Motivated by these remarks, we focus on the rich framework of state-space
models [36, 7] that will also be considered in Chapter ?? in the form of linear
Gaussian models. Since 2003, several authors have proposed linear state-space
models mainly to represent gene regulatory networks [12, 30, 35]. One way to
define a model [12, 30] is to start from the definition of a linear ODE system,
discretize time and add noise to get a probabilistic model of dynamics that takes
into account intrinsic and extrinsic noises. All the true state-variables are rep-
resented as hidden processes while the observations are assumed to be produced
by these hidden processes with the addition of noise. In this case, biological rele-
vance and limits of technical measurement dictate the choice of hidden variables
and observed variables. First results with such linear models are encouraging
but regulations and interactions between macromolecules exhibit saturated be-
havior, so it is quite natural to turn to nonlinear models. Meanwhile, one can
argue that discretizing a continuous time-model requires a too big an assump-
tion about the time intervals between which measure. In this chapter [32, see
also], we propose a state-space model whose hidden process is defined through
an integration of the ODES, classically used to represent biological dynamical
systems, avoiding a too big dependency on the choice of the time interval used

19



to acquire data. The idea consists of building a nonlinear state-space model that
benefits from the two frameworks: that of ODEs which allows us to describe,
in a time-continuous setting, the dynamical behavior of the network [11, 13],
and the one of state-space models [7, 21, 41] that allows us to deal with hid-
den variables and is also associated with a large family of estimation methods.
We define a state-space model whose transition function for the hidden states
is based on the integration of the function f defining the ODEs as introduced
in Section 2. Moreover, the framework of Bayesian estimation allows for the
possibility of adding constraints by the use of prior distributions on parameters.

Our model is defined from the following assumptions: First, the state of the
network satisfies the following ODE:

Xt = f(Xt,ta 0) (15)

Second, the vector X; is not observed and we will now refer to it as the hidden
state of the network at time ¢, with ¢ varying from ¢y to t7. We assume that
the variables Y = (Y,,... ,Y}py) can only be observed through the observation
function H. Then, a state-space model can be defined with functions F; and
functions H and using the notation X;, = X for i > 0 (and similar for Y):

Xt = Fi(X40). (16)
Y = H(X%0)+e. (17)

with ¢; being a measurement noise chosen as a centered Gaussian noise and the
following definition of F;(-) based on ODEs [41, 32]:

Fi(X%0) = X"+ /ti+1 f( Xy, u, 0)du. (18)

t;

The state-space model defined by equations (16) and (17) is frequently en-
countered in engineering but had not yet been exploited in reverse-modeling of
biological networks . Let us discuss the properties of the model.

The variables X can have a stochastic evolution, so equation (16) may be
replaced by the more general one X'™! = F;(X%0)+,, with (;)’2° being a
white noise. This assumption also has a biological motivation; for instance, [25]
have shown the intrinsic stochasticity of gene regulatory networks, where X;
represents gene expression levels and concentrations of transcription factors in
the cell. However for sake of simplicity we will keep here a deterministic hidden
process. One of the most interesting feature of this model is its ability to
deal with irregular measurement time intervals, because the transition function
in the hidden process is based on an integration. Assuming the integrability
of function f is checked, a numerical integration is feasible (such as Runge-
Kutta integration ??) leading to a computationally efficient transition step. Let
us notice that we make a rather parsimonious use of ODE integration in our
model since the integration is processed between a restricted interval of time.
During the inference, we use the Markov property for the decomposition of the
global least-squares criterion. Indeed, we can propose recursive estimators where
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the quality of a given parameter is re-computed for each new observation and
can be abandoned then, whereas a classical least-squares integrates the ODE
for the interval [0,1] before evaluating the quality of the solution (for all the
observations).

The transition from X* to X**! is time-dependent: first, because of uneven
sampling times (even if the ODE (15) is autonomous) and second, because of
the presence of a time-dependent input variable. In the following, we show that
this framework encompasses both models of transcriptional regulatory networks
and models of signaling pathways, including the presence of an input signal.

4.2 Learning states and parameters with a recursive Bayesian
inference algorithm

Learning the parameters (and the initial state) of a state-space model can be
tackled using different points of view. As a probabilistic model, the parameters
can be estimated through a frequentist approach such as likelihood maximiza-
tion as well as Bayesian approaches such as Maximum a posteriori (that can be
seen as penalized likelihood maximization) or full Bayesian approaches. In the
case of Bayesian approaches, parameters are assumed to be random variables
and the estimation process aims at learning the posterior distribution of param-
eters and initial state, p(, X°|Y%T), given a prior distribution 7(, X°). The
major difficulties here come from the fact that the true state of the system is
hidden and moreover, that in our case, the model is assumed to be nonlinear.
As the true state of the system is hidden, it is not possible to estimate pos-
terior probability of parameters without estimating the conditional probability
distribution of states given the observations, also referred as posterior proba-
bility distribution of states. The probability distribution of states X, can take
two forms: the filtering probability p(X?|Y%%) if we consider only observations
until time ¢; and the smoothing probability p(X*|Y%T if we take into account
the full observed process Y;,.t,.. The theory of optimal filtering and smoothing
[see for instance [7]] defines recursive convergent algorithms to proceed to this
estimation. In each case, the method provides an approximation of the poste-
rior probability that also gives an approximation of the minimum mean squared
error estimator (MMSE).

In this framework, if one uses the so-called augmented state vector approach
that consists of assimilating parameters to an additional hidden variable, the
state and parameters estimation issue can be addressed through the same re-
cursive Bayesian inference algorithm applied to a new joint state variable. The
dynamics evolution of the new system can be described as follows:

Oiv1 = 0; (19)
X = F(X%0;) (20)
Y = H(X%6) +e, (21)

where the parameter is considered as a hidden state without any temporal evo-
lution. We shall notice that the fact that the parameters are constant in the
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dynamical system does not mean that during the recursive algorithm they will
not be affected by the corrections. This point will be highlighted when we will
recall the equations of filtering and smoothing.

Finally, the last difficulty is encountered when the function F; is nonlin-
ear which is exactly the case for most of the biological networks equations we
described in Section 2. In this case, the computations involved in filtering or
smoothing become intractable and adaptation of classical filtering or smoothing
well adpated to linear systems have to be derived. In this work, we have chosen
to focus on the use of unscented transform introduced in [20] to overcome these
difficulties.

Let us now recall the general principle of optimal filtering and smoothing,
then we describe the extension of the Kalman filter and smoother to the case
of nonlinear evolution equations, using the unscented transformation (UT). We
have chosen to use a Rauch-Tung-Striebel smoother that presents the advantage
of starting with a forward filtering pass and then using a separate backward
smoothing pass, as described by [7, 38, 5].

4.2.1 Filtering

Using the augmented state vector approach, we can now remove parameter 6 in
equations (16) and (17) and only describe the estimation of hidden (augmented)
states that include parameters 6 and noise parameters. Filtering is the sequential
computation of the posterior (or filtering) probability a;(X) = p(X¢|Y%) for
i=0,...,T [7]. Without loss of generality, the complete process X = {X*}
may be a Markov (nondeterministic) chain, with values in X’ (here X CP). The
computation of the filtering probability consists of the alternate and sequential
computation of the prediction probability p(X¢|Y%i=1) i > 0, in the so-called
prediction step:

POCIYO) = [ X s (X X! (22

and its “correction” into a;(-) (the so-called correction step) by:

p(Y'|X)p(X' Y1)
fX p(Yz |Xz)p(Xz ‘YO:z—l)dXz

i (X (23)

We can then derive the sequence of most likely current states characterized by
X = arg maxyex a;(X%),i=0,...,T. Note that at i = 0, the prediction step
is replaced by setting p(X°|Y %17 (X?), where 7(X?) is our prior distribution
on the initial state.

4.2.2 Smoothing

In smoothing, one wishes to benefit from the whole observed sequence Y7 and
thus the distribution of interest is p(X;|Y%7), called the smoothing distribution.
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Using the following decomposition of this smoothing distribution,

p(Xi-H ‘Xi)p(Xi-i-l |Y0:T)
p(Xi-&-l‘YO:i)

p(Xi|Y0:T) :p(Xi|Y0:i)/ dXi-H (24)
where p(X*|Y%?) is the filtering distribution of the time step i and p(X*T1|y1:%)
is the predicted distribution at time step ¢ + 1 which is estimated by optimal
filtering described in previous section, the recursive smoother proceeds backward
in time from last time step 1 = T.

There exist several ways to implement such a computation. We use here the
Rauch-Tung-Striebel smoother type, and a recent unscented version described
by [38], that can be decomposed into three steps:

e Using p(X*|Y"?), the filtering distribution of the current time step 4, com-
pute the joint distribution of the hidden states X* and X**! given the
sequence of observations Y :

p(Xi,Xi+1|Y0:i) — p(Xi+1‘Xi)p(Xi|Y1:T). (25)

e Then, condition the joint distribution of current hidden state X' and
X! to Y9 in order to compute the conditional distribution of the state
at current time step 4 given the next state X**! and the sequence Y%

p(XZ, Xi+l ‘YO'L)

Xi Xi—‘rl Yl:’i — ‘ i
p( | ) ) p(XZ+1‘YO:7’) )

where the denominator can be expressed as:
p(Xi+1 ‘Y07,) _ /p(Xi+1 |Xz)p(X7,|YOZ)dX1

e Using the Markov properties, p(X*| X! YOT) reduces to p(X*| X+, Y1)
and thus the joint distribution of X* and X**! given the sequence Y7
can finally be written as

p(Xi|Xi+1, YO:T) — p(Xi|Xi+1, YO:T)

4.3 Approximate Filtering and Smoothing

When X is a Gaussian and linear Markov process (F(-) and H(-) are linear), the
prediction-correction algorithm is the well-known Kalman filter which consists
of a recursive computation of the mean and covariance of the (Gaussian) distri-
bution «;(-) while the forward-backward smoothing corresponds to the Kalman
smoother. However, when these equations involve nonlinearities or when noise
is not Gaussian, the computations become intractable. Among several exten-
sions that have been proposed to tackle nonlinearities or non-Gaussianity, we
have here focused on the unscented transform that allows the approximation of
the filtering distribution and the smoothing distribution by Gaussian densities
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with the help of deterministic sampling. We denote p;, the mean of the Gaus-
sian approximation of «;(-) and ¥;, its covariance. Unscented Kalman filtering
(UKF) relies on small deterministic sets of appropriately chosen points used to
mimic the nonlinear evolution of the state variable: the so-called sigma points
£0,i5- -1 &2p,i- The key idea in UKF lies in the prediction step, where the “un-
scented transformation” allows one to compute an approximation of the mean
fi+1)i and covariance X, 1|; of the prediction probability. The mean and covari-
ance of the transformed variable F(X;) (when X; has the posterior distribution
a;(+)) can indeed be approximated simply by using the first empirical moments
of transformed sigma points chosen as

0, = i, §j,i = Wi + Qj,ia §i+p,i = Mz‘(x) - Qj,z',

where Q); is a square root matrix of (2p + 1/2)%;. Other interesting choices
of sigma points are given in [21]. Then, the correction step is carried out in a
way similar to Kalman filtering using the classical filtering equations and the
(approximate) covariance of the p.d.f p(Y#+1|Y%%). The sequence of estimates
(filtered process) X of the hidden variables is the sequence of means L

For the case of unscented RTS Smoothing (RTS-UKS), the same idea is used
to build an approximation to the optimal smoothing by estimating the mean
m;,; and the covariance 37, ; of the smoothing distribution, supposed here to
be Gaussian. Details of this approach can be found in [38].

In practice, we can use UKF (resp. RTS-UKS) in order to compute the
approximation of p(X*¢|Y%%) (resp. p(X¢|Y%T)) and hence derive a sequence of
estimates (X%, 6;).

The minimizer of the squared error is approximated by p;. Nevertheless, in
both cases these approximations can be spurious minimizers, and it is recom-
mended to perform several sweeps of the algorithm on the data.

For the filtering case, as described for hidden states, at ¢« = 0, the prediction
step is replaced by setting

p(X0700‘Y0:71) = ,/T(XOa 03 X)

We propose using the rather noninformative hierarchical prior 7(X°,0) = 7(6)7(X°),
where 7((X°);) = [[; N (pta,, 02.), with iz, ~ U([0,\;]), i.e. all of the compo-
nents of the vector are independent and Gaussian, with a mean drawn according

to a uniform distribution whose support is determined by an hyperparameter

A; computed from the data, and the variance azi is a fixed value (depending on

the data). However, if a certain constraint concerning the initial value is made
available, more informative prior could be used.

4.4 Results

We first illustrate our approach on artificial data generated from the repressilator
model and second, on experimental data of the JAK-STAT pathway. Other
simulation studies that provide useful insights into the strengths and weaknesses
of learning algorithms, such as robustness against numerous choices of settings,
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Table 3: Mean Square Error and Variance of two-step estimators with different
prior knowledge, computed with 100 Monte Carlo runs for 7" = 100.

X Xpe'r'z'od Xode X cons

MSE Var MSE Var MSE Var MSE Var

vy 10.62 10.45 | 2.11073 | 753.4 15.1 14.7 10.5 10.5

Vg 12.84 12.84 187 128.7 11.2 10.4 12.4 9.4

U3 19.83 17.68 726.5 374 15.8 11.8 14.9 14.8

k1o | 0.44 0.23 320 449 | 0.36 0.28 0.45 0.24
kas | 1.72 1.56 344 168.5 | 1.52 1.52 1.76 1.41
k3 1 1.8 1.71 219 99.3 2.6 1.41 1.48 1.44
k| 1.1072 | 1.10°3 0.1 0.04 [ 51074 ] 5107 | 4.107% ] 5.107*

ko | 3.1073 | 21073 0.1 0.08 [3.1073 [ 3.1073 | 41073 | 3.1073

ks | 3.1072 | 1.1072 0.2 0.18 [ 51073 | 41073 | 7.1072 | 3.10°3

including the quantity of observed data, the sampling interval for observing the
data, the number of time points in the observed time series, can be found in
[32] and its supplementary material.

For the simulation presented in this chapter, we made use of the code of
Sarkka08! [38]. The size of the systems used in the experiments are quite
representative of the size of the nonlinear models that the proposed method
can efficiently handle, without identifiability problems, i.e. around ten variables
and parameters. In higher dimensions, the recursive optimization using the un-
scented approximation can lead to spurious minimizers, but simulating more
initial values from the prior distribution could help to improve the algorithm.
One of the main limitations of the approach is closely related to the respective
sizes of the observed and hidden parts of the system.

4.4.1 Parameter and hidden state estimation of the Repressilator

We start from the equations given in (2.1) and fix the following values of the
parameters according to the stability study presented in [16]: k) = 1, kb = 2,
kg S 3, k{ = ]ﬂg S kg = 1,’[)1 = 50,1)2 = 80,'03 S 100,k1,2 = 50,k2,3 = 30,/€3’1 =
40 and h = 3. The components of the initial state are drawn independently from
a uniform distribution on [0, 100] (arbitrary units). Simulations are performed
using the MATLAB numerical integrator ode45 over the time interval [0, 7],
with T" = 20. The observation noises ¢; are added to three observed variables
to mimic gene expression data and the standard deviation of €; shown in the
experiments is chosen to be equal to 20% of the standard deviation of the states.
The robustness of the method has been tested with respect to a higher noise level
(30%, 40%), and similar results for the estimation for the states and parameters
have been obtained. The estimated predicted variance and the variance of the
estimators increase, although no systematic divergence of the method has been
detected.

LEKF /UK toolbox, V1.2, http://www.lce.hut.fi/research/mm /ekfukf/
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During the simulation, measurements are sampled at a fixed interval A;, so
that for each experiment a time series containing 7'/A; time points is collected.
We assume that the learning problem consists of identifying the following 6
parameters: vq, V2, U3, k1,2, k2.3, k3,1 while the degradation rates for proteins and
mRNAs are known. In order to learn the true parameters, we use a multi-start
approach by sampling I = 50 different initial states and parameters from our
prior w(xg,6), so that we compute 50 filters or smoothers in parallel. Our final
state and parameter estimates are simply the mean of the prediction of the 50
different filters or smoothers (an alternative way to combine the different filters
would be to select the filter with the lowest prediction error). The Gaussian
priors for the parameter are such that A\; = 2 x 8} and 09, = 0.2 x 6}, and for
the unobserved variables \; = 2 x X0% and o is set to 20% of the standard
deviation of the state ;. For the observed variables, the prior is also Gaussian
with mean pi = yy and the same formula as for the unobserved variables is used
for the standard deviation.

Evaluation of estimation The filtered protein concentrations as well as the
smoothed protein concentrations using the unscented transform are shown in
Figure 77 for Ay = 0.2. Among 50 runs started with different random initialisa-
tions, the sequence of hidden states that best fits the observations has been cho-
sen. It is quite difficult to distinguish the sequences of estimated state-variables
using the two approaches while in each case, the estimation is successful. To get
a more precise idea about the contribution of the smoothing compared to filter-
ing, the reader may have a look at Table ??. For 100 different samples, UKF
and UKS have been run from 50 random initialisations of the parameters. Each
result of the multi-start approach is an average of the final estimation of each
of the 50 runs. The obtained empirical mean and standard deviation computed
from this scheme is figured in the table. Smoothing performs generally slightly
better than filtering.

Additional simulations about the influence of the number of different exper-
iments (7.e. time series corresponding to the observation of the same system but
with different initial conditions) can be found in [32]: we showed that estimated
parameters tends to their true values with smaller standard deviations when the
number of observations increases.

4.4.2 Parameter estimation for the JAK-STAT pathway model using
experimental data

Experimental data of JAK-STAT pathways from [45] was used. Time series of
two observed variables y; (¢) (the total concentration of phosphorylated STAT5)
and ya(t) (the total concentration of STATS in the cytoplasm) are measurable.
Each time series contains 16 time points sampled at ¢t = [0, 2, 4, 6, 8,10, 12, 14, 16, 18, 20, 25, 30, 40, 50, 60]
minutes. Data for the input EPoR phosphorylation is also available. Here we
use a linear interpolation in order to obtain a continuous time input. We ini-
tialize the parameters described in Section 2 a1, as, a4 and the initial condition
Xo independently with a uniform distribution on [0, 5]. The reader can refer to

26



[32] to see the curve corresponding to normalized MSE between the predicted
time series and the data in Figure 4 of the Supplementary Material of [32].
The convergence of this curve shows the stability of the learning algorithm, and
ensures that a local minima has been reached. Eventually, the parameter es-
timates (with standard deviations) are a; = 0.0515 + 0.0055, a3 = 3.39 £+ 0.45
and a4 = 0.35 £ 0.047, and the prediction for the observed variables y;(¢) and
y2(t) are shown in Figure ??, which shows a good fit of the learned model. We
also check the coherence of the estimation by simulating the JAK-STAT path-
way with these estimates. A new time series is simulated from (8) with initial
conditions 1 = 0.2, xo = 3 = x4 = 0 and the estimated parameters. The
result in Figure 7?7 showed that the learned model is able to predict well the
four unobserved components of X*, so we may have a higher confidence in the
prediction of the unobserved variables.

5 Conclusion and perspectives

We have presented two approaches in order to learn parameters of nonlinear
ODEs devoted to biological networks modeling. These two approaches appear
as alternatives to classical least-squares method: a two-step estimator based
on functional estimation and a recursive Bayesian method applied on a state-
space model based on the integration of a system of ODEs. As we have seen,
the two-step estimator consists of a new kind of parametric estimator, which
constructs a functional proxy from the data. This particular feature limits the
method to completely observed systems, which might restrict its applicability
in practical situations with true data (even if some extensions can be considered
[6]), but this approach is highly related to the biological interpretation of the
models because it allows the visualization of the curves and the possibility of
imposing some constraints. On the other hand, the state-space formulation
of ODE models is well-adapted to partially observed systems or to repeated
measurements thanks to the versatile probabilistic interpretation of the state-
space framework. Moreover, some prior knowledge can be used by sampling
parameters from appropriate prior distributions, but the shape of the solution
here is not directly controllable. Both algorithms can be seen as a particular
formulation of the estimation problem for deriving fast algorithms, and they
rely fundamentally on the ODE model. Indeed, the two methods emphasize
the duality of the definition of a dynamical system or process which can be
described either as a function of time (solution of the differential equation) or
as a transition system. In other words, the two methods reflect respectively
a bottom-up and a local description of a system. One simulates the observed
system with the state equation and tries to fit a model with respect to the
data; whereas the two-step estimator is top-down approach: it starts from a
reconstructed global behavior and then identifies the corresponding transition
rules between the states from the smooth reconstructed function.

Several extensions can be drawn from this work. The idea of constraining
the shape of the ODE solution can also be implemented in the framework of
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state-space model by imposing that the estimated hidden states be decomposed
into a spline basis.

Another extension of this work could be the modification of the deterministic
ODE into a stochastic differential equation (by adding a noise in the ODE)
that would lead to the definition of a stochastic state process as it is usually
the case in state-space models. The previous notion of duality is well-known
in a probabilistic context, where one can describe a Markov continuous-time
stochastic process either with a transition kernel, or as a random variable in
function space (with some pathwise properties). This last interpretation is of
course related to Gaussian processes and their use in machine learning. This
can be related to the work described in Chapter ?77.

Another important direction is now to scale these approaches to larger net-
works. Simpler models such as generalized linear models can surely help here.
Decomposition into modules either by the way of a mixture (see for instance
Chapter ??) or by clustering and dimension reduction may also provide the key
to addressing this issue.

Finally, a complete and generic approach for reverse-engineering of biological
networks would consist in combining parameters estimation algorithms with
structure learning procedures even in the case of nonlinear models.
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