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Abstract—To make a decision under certainty, multicriteria Analysis (decomposition)

decision methods aims to choose, rank or sort alternativesno
the basis of quantitative or qualitative criteria and preferences
expressed by the decision-makers. However, decision is eft
done under uncertainty: choosing alternatives can have diérent
consequences depending on the external context (or state thfe
word). In this paper, a new methodology called Cautious Ordeed
Weighted Averaging with Evidential Reasoning (COWA-ER) is
proposed for decision making under uncertainty to take into
account imperfect evaluations of the alternatives and unkawn
beliefs about groups of the possible states of the world (saarii).
COWA-ER mixes cautiously the principle of Yager's Ordered
Weighted Averaging (OWA) approach with the efficient fusion
of belief functions proposed in Dezert-Smarandache Theory
(DSMT).

Keywords: fusion, Ordered Weighted Averaging (OWA),
DSmT, uncertainty, information imperfection, multi-

criteria decision making (MCDM)
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Figure 1. Principle of a multi-criteria decision method égson a total

I. INTRODUCTION aggregation principle.

A. Decisions under certainty, risk or uncertainty

Decision making in real-life situations are often difficult In the C|assica| framework Of decision theory under uncer-
multi-criteria problems. In the classical Multi-CriteriBe- tainty, Expected Utility Theory (EUT) states that a dedisio
cision Making (MCDM) framework, those decisions consishaker chooses between risky or uncertain alternatives or
mainly in choosing, ranking or sorting alternatives, sioiti$ actions by comparing their expected utilities [14]. Let us
or more generally potential actions [17] on the basis @bnsider an example of decision under uncertainty (or risk)
quantitative or qualitative criteria. Existing methodffetis on  re|ated to natural hazards management. On the lower parts of
aggregation principles (total or partial), preferencesgie torrent catchment basin or an avalanche path, risk analysis
ing, and so on. In total aggregation multicriteria decisiogonsists in evaluating potential damage caused due to the
methods such as Analytic Hierarchy Process (AHP) [19], th8fects of hazard (a phenomenon with an intensity and a
result fOI‘ an alternative iS a unique Value Ca”ed Synthesif%quency) on peop'e and assets at risk. Different Stmg|
criterion. Possible alternativesi;) belonging to a given set (4,) are possible to protect the exposed areas. For each of
A={A1,Az,..., Ay} are evaluated according to preferencegem, damage will depend on the different scenasij) (of
(represented by weights;) expressed by the decision-makerghenomenon which can be more or less uncertainagtion
on the different criterigC’;) (see figure 1). A; (e.g. building a protection device, a dam) is evaluated

Decisions are often taken on the basis of imperfect infohrough its potential effects, to which are associatadtilities
mation and knowledge (imprecise, uncertain, incomplete) p ,,(r,) (protection level of people, cost of protection, ...) and
vided by several more or less reliable sources and dependiigbabilitiesp(r,) (linked to natural events or states of nature
on the states of the world: decisions can be taken in certag%), The expected utilityl/ (o) of an actiona is estimated
risky or uncertain environment. In a MCDM context, decisioghrough the sum of products of utilities and probabilitids o
under certainty means that the evaluations of the altematy)| potential consequences of the actian
are independent from the states of the world. In other cases,
alternatives may be assessed differently depending on the U(4;) = Zu(m) -p(rk)
scenarii that are considered.

(1)



When probabilities are known, decision is done under risk.
When those probabilities becomes subjective, the prospect
theory (subjective expected utility theory - SEUT) [12] can

apply :
« the objective utility(e.g. cost)u(ry) is replaced by a
subjective function\alue denotedv(u(ry)) ;
« the objective weighting(r) is replaced by a subjective
function 7 (p(rg)).

v(+) is the felt subjective value in response of the expected

cost of the considered action, and-) is the felt weighting
face to the objective probability of the realisation of tlesult.

Prospect theory shows that the functiof) is asymmetric:
loss causes a negative reaction intensity stronger thapate
itive reaction caused by the equivalent gain. This corredpo

to an aversion to risky choices in the area of earnings and a

search of risky choices in the area of loss.

Hierachy Process (AHP) [19] to consider the imprecision
and the uncertainty in evaluation of several alternatives.
The idea is to consider criteria as sources [1], [3] and
derive weights as discounting factors in the fusion process
[5I;

o Dezert-Smarandache-based (DSmT-AHP) [8] takes into
account the partial uncertainty (disjunctions) between
possible alternatives and introduces new fusion rules,
based on Proportional Conflict Redistribution (PCR) prin-
ciple, which allow to consider differences between impor-
tance and reliability of sources [23];

« ER-MCDA [28], [29] is based on AHP, fuzzy sets theory,

possibility theory and belief functions theory too. This

method considers both imperfection of criteria evalua-
tions, importance and reliability of sources.

Introducing ignorance and uncertainty in a MCDM process

In a MCDM context, information imperfection concernsonsists in considering that consequences of actiohs
both the evaluation of the alternatives (in any context efepend of the state of nature represented by a finite set

certainty, risk or ignorance) and the uncertainty or lack &f = {5, 5,,..

.,Sn}. For each state, the MCDM method

knowledge about the possible states of the world. Uncéytairprovides an evaluatiod’;;. We assume that this evaluation
and imprecision in multi-criteria decision models has beefi;; done by the decision maker corresponds to the choice
early considered [16]. Different kinds of uncertainty ca@ bof A, when S; occurs with a given (possibly subjective)
considered: on the one hand the internal uncertainty istinkprobability. The evaluation matrix is defined a5 = [C;;]

to the structure of the model and the judgmental inputs reherei =1, ...

,gandj =1,...,n.

quired by the model, on the other hand the external uncéytain

refers to lack of knowledge about the consequences about a

particular choice.

B. Objectives and goals

Several decision support methods exist to consider both

information imperfection, sources heterogeneity, reliigh

conflict and the different states of the world when evaluatin

the alternatives as summarized on figure 2. A more complete
review can be found in [28]. Here we just remind some
recent examples of methods mixing MCDM approaches an

Evidential ReasoningER).
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dEXisting methods using evidential reasoning and MCDM
have, up to now, focused on the case of imperfect evaluation
of alternatives in a context of decision under certainty. In
this paper, we propose a new method for decision under
uncertainty that mixes MCDM principles, decision under
uncertainty principles and evidential reasoning. For this
purpose, we propose a framework that considers uncertainty
and imperfection for scenarii corresponding to the state of
the world.

This paper is organized as follows. In section I, we
briefly recall the basis of DSmT. Section Il presents two
existing methods for MCDM under uncertainty using belief
functions theory: DSmT-AHP as an extension of Saaty’s multi
criteria decision method H P, and Yager’s Ordered Weighted

« Dempster-Shafer-based AHP (DS-AHP) has introducdyeraging (OWA) approach for decision making with belief
a merging of Evidential Reasoning (ER) with Ana|yti§tructures. The contribution of this paper concerns thésec

1Evidential Reasoning refers to the use of belief functioastreeoretical
background, not to a specific theory of belief functions (Bffned for
combining, or conditioning BF. Actually, Dempster-Shaféreory (DST) [21],
Dezert-Smarandache Theory (DSmT) [22], and Smets’ TBM §28]different
approaches of Evidential Reasoning.

IV where we describe an alternative to the classical OWA,
called cautious OWA method, where evaluations of alteveati
depend on more or less uncertain scenarii. The flexibility
and advantages of this COWA method are also discussed.
Conclusions and perspectives are given in section V.



Il. BELIEF FUNCTIONS ANDDSMT mpers(X) = Y ma(X1)ma(Xs)+

Dempster-Shafer Theory (DST) [21] offers a powerful math- X%l
ematical formalism (the belief functions) to model our beéli ma(X)2ma(Xs) ma(X)2my (X2)
and uncertainty on the possible solutions of a given problem Z [ml(X) Fma(Xa) | ma(X) + ml(XQ)] (5)

One of the pillars of DST is Dempster-Shafer rule (DS) of Xo€2°
combination of belief functions. The purpose of the devel- Xanx=0
opment of Dezert-Smarandache Theory (DSmT) [22] is where all denominators in (5) are different from zero. If a
overcome the limitations of DST by proposing new underlyingenominator is zero, that fraction is discarded. Additlona
models for the frames of discernment in order to fit bettgroperties of PCR5 can be found in [9]. Extension of PCR5
with the nature of real problems, and new combination aridr combining qualitative bba’s can be found in [22], Vol. 2 &
conditioning rules for circumventing problems with DS rulé. All propositions/sets are in a canonical form. A variaht o
specially when the sources to combine are highly conflictingCRS5, called PCR6 has been proposed by Martin and Osswald
In DSMT, the element8;, i = 1,2,...,n of a given frame® in [22], Vol. 2, for combinings > 2 sources. The general
are not necessarily exclusive, and there is no restrictiol; 0 formulas for PCR5 and PCR6 rules are given in [22], Vol. 2
but their exhaustivity. Some integrity constraints (if aiwan  also. PCR6 coincides with PCRS5 for the fusion of two bba’s.
be include in the underlying model of the frame. Instead of ®« DSmP probabilistic transformation: DSmP is a serious
working in power-se2®, we classically work on hyper-poweralternative to the classical pignistic transformati®e P since
set D® (Dedekind’s lattice) - see [22], Vol.1 for details andt increases the probabilistic information content (PICg,
examples. A (generalized) basic belief assignment (bhangi it reduces Shannon entropy of the approximate subjective
by a source of evidence is a mapping: D® — [0, 1] such probability measure drawn from any bba — see [22], Vol. 3,
that Chap. 3 for details and the analytic expressiotD#fmP(.).
m(0) =0 and Z m(A) =1 3 When e > 0 and when the masses of all singletons are
zero,DSmP,(.) = BetP(.), where the well-known pignistic
) - - . transformationBet P(.) is defined by Smets in [26].
The generalizedcredibility and plausibility functions are de- |5 the Evidential Reasoning framework, the decisions are
fined in almost the same manner as within DST, i.e. usually achieved by computing the expected utilities ofattis
_ _ using either the subjective/pignistiget P{.} (usually adopted
Bel(4) = E;A m(B) and PlA)= > m(B) (4 in DST framework) orDSmP(.) (as suggested in DSmT
C BNA#) - .
BeD® BeD® framework) as the probability function needed to compute
expectations. Usually, one uses the maximum of the pignisti
robability as decision criterion. The maximumBétP{.} is
ften considered as a balanced strategy between the two othe

AeD®

In this paper, we will work with Shafer’'s model of the fram
0, i.e. all element®); of © are assumed truly exhaustive an

. L o 0o ;
exgluswe (d.'sjomt)' Therefor® — 2 and the generalized strategies for decision making: the max of plausibility tfop
belief funcfuc.ms reducgs to classical ones. DSMT Proposgstic strategy) or the max. of credibility (pessimisticast
a new efﬂgent c_:ombmatlon _rult_as based on propqrtlong y). The max ofDSmP(.) is considered as more efficient
conflict redistribution (PCR) principle for combining high ;"o ctical applications sinc®SmP(.) is more informative

conflicting sources of evidence. Also, the classical pigmis (it has a higher PIC value) thaBetP(.) transformation. The
transformationBet P(.) [26] is replaced by the by the more;

. : ) . “justification of DSmP as a fair and useful transformation for
effective DSmP(.) transformation to estimate the subjectlvé1

o . o ecision-making support can also be found in [10]. Note that
probabilities of hypotheses for classical decision-mgkWe i, tho pinary frame case, all the aforementioned decision
just recall briefly the PCR fusion rule # 5 (PCR5) and Dezeré'trategies yields same final decision.

Smarandache Probabilistic (DSmP) transformation. Akt

justifications with examples on PCR5 and DSmP can be found I1l. BELIEF FUNCTIONS ANDMCDM

freely from the web in [22], Vols. 2 & 3 and will not be
reported here.

e The Proportional Conflict Redistribution Rule no. 5:
PCRS5 is used generally to combine bba'’s in DSmT framewo
PCR5 transfers the conflicting mass only to the eleme
involved in the conflict and proportionally to their indiviel A pgmT-AHP approach

masses, so that the specificity of the information is emntirel ) o
preserved in this fusion process. Let;(.) and ma(.) be DSmT-AHP aimed to perform a similar purpose as AHP

two independeRtbba’s, then the PCRS5 rule is defined abl8ls [19], SMART [30] or DS/AHP [1], [3], etc. thatiis to find

follows (see [22], Vol. 2 for full justification and examples the preferences rankings of the decision alternatives (DA)
mpcrs(0) = 0 andvX € 29\ {0} groups of DA. DSmT-AHP approach consists in three steps:
« Step 1: we extend the construction of the matrix for taking

2j.e. each source provides its bba independently of the ctberces. into account the partial uncertainty (disjunctions) bedwe

Two simple methods for MCDM under uncertainty are
briefly presented: DSmT-AHP approach and Yager's OWA
&pproach. The new Cautious OWA approach that we propose
rngl be developed in the next section.



possible alternatives. If no comparison is available bé not responding to the discounting of sources towards the
tween elements, then the corresponding elements in #mpty set (see Theorem 1 in [23] for proof). The reliability
matrix is zero. Each bba related to each (sub-) criteriand importance of sources can be taken into account easily
is the normalized eigenvector associated with the largeéstthe fusion process and separately. The possibility t@ tak
eigenvalue of the "uncertain” knowledge matrix (as dorghem into account jointly is more difficult, because in gether

in standard AHP approach). the reliability and importance discounting approaches db n

o Step 2: we use the DSmT fusion rules, typically the PCR&®mmute, but whemy; = 3; = 1. In order to deal both with
rule, to combine bba’s drawn from step 1 to get a finakliabilities and importances factors and because of the no
MCDM priority ranking. This fusion step must take intocommutativity of these discountings, two methods have also
account the different importances (if any) of criteria as bheen proposed in [23] and not reported here.
will be explained in the sequel.

o Step 3: decision-making can be based either on tﬁse
maximum of belief, or on the maximum of the plausibility Let's introduce Yager's OWA approach [33] for decision
of DA, as well as on the maximum of the approximaté&aking with belief structures. One considers a collectibg o
subjective probability of DA obtained by different prob-alternatives belonging to a set = {A;, As,..., 4,} and
abilistic transformations. a finite setS = {S51,95s,...,S5,} of states of the nature.

é/Ve assume that the payoff/gadi; of the decision maker

in choosingA; whenS; occurs are given by positive (or null)

Yager's OWA approach

The MCDM problem deals with several criteria havin
different importances and the classical fusion rules cabeo s )
applied directly as in step 2. In AHP, the fusion is done frofiumbers. The payoffg x n matrix is defined by = [C;]
the product of the bba’s matrix with the weighting vector opherei = 1,...,q andj = 1,...,n as in eq. (2). The
criteria. Such AHP fusion is nothing but a simple componenq-ec's'on'm"’_‘kIng prqblgm consists in choosing thg altereat
wise weighted average of bba's and it doesn't actually psce’t € < Which maximizes the payoff to the decision maker
efficiently the conflicting information between the sources 91Ven the knciwledge on the state of the nature and the payoffs
doesn't preserve the neutrality of a full ignorant source ijalix ¢. A* € A'is called the best alternative or the

the fusion. To palliate these problems, we have propose(f%{u'[ion (if any) of the dgpision-making problem. Depengin
new solution for combining sources of different importemcethe knowledge the decision-maker has on the states of the

in [23]. Briefly, the reliability of a source is usually takrto "ature, he/she is face on different decision-making proble

account with Shafer's discounting method [21] defined by: 1 — Decision-making under certainty only one state of
the nature is known and certain to occur, s&y Then the

decision-making solution consists in choosiAg = A;- with

7* £ arg maxi{Cij}.

2 — Decision-making under risk the true state of the nature
wherea € [0;1] is the reliability discounting factorx = 1 js unknown but one knows all the probabilitips = P(5;),
when the source is fully reliable and = 0 if the source is ; — 1 ..  » of the possible states of the nature. In this
totally unreliable. We characterize the importance of a®®u case, we use the maximum of expected values for decision-
by an importance factog in [0,1]. 3 factor is usually not making. For each alternativel;, we compute its expected
related with the reliability of the source and can be chosgpyoff £[C;] = S° p; - Cyj, then we choosel* = A, with

to any value in[0, 1] by the designer for his/her own reason;. a argmaXi{E[d_]}_

By convention,f = 1 means the maximal importance of the; _ Decision-making under ignorance one assumes no

source andj = 0 means no importance granted to this SOUrCgy,  yjedge about the true state of the nature but that it lgslon
From this factor, we define the importance discounting bytO S. In this case, Yager proposes to use the OWA operator
{mB(X) — B8-m(X), for X #0 assuming a given decision attitude taken by the decision-

-m(X), for X #6©

ma(©) =a-m(0)+ (1—-a) ©

ma(0) = 8- m(0) + (1— B) (7) maker. Given a set of values/payoffs cz, ..., c,, OWA con-
sists in choosing a normalized set of weighting factidfs=

Here, we allow to deal with non-normal bba sineg () > 0 [w1,ws, ... w,] wherew; € [0,1] and}_; w; = 1 and for any
as suggested by Smets in [24]. This new discounting preserget of values:, ca, ..., ¢, compute OWAci, ca, ..., cy,) @S
the specificity of the primary information since all focakel
ments are discounted with same importance factor. Based on OWA(c1 €2, -5 ¢n) = ij b (8)
this importance discounting, one can adapt PCR5 (or PCR6) J
rule for N > 2 discounted bba'sng;(.), i = 1,2,...N to whereb; is the jth largest element in the collectien, c,, ...,
get with PCR% fusion rule (see details in [23]) a resultinge,. As seen in (8), the OWA operator is nothing but a simple
bba which is then normalized because in the AHP contextgighted average of ordered values of a variable.
the importance factors correspond to the components of thased on such OWA operators, the idea consists for each
normalized eigenvectow. It is important to note that suchalternative A;, i = 1,...,¢ to choose a weighting vector
importance discounting method cannot be used in DST whB8 = [w;1, wse, ... w;,] and compute its OWA valud; =
using Dempster-Shafer’s rule of combination because thés r OWA(C;1, Cia, ..., Cin) = Zj wi; - bi; where b;; is the



jth largest element in the collection of payoff$,, Ci2,..., 4 — Decision-making under uncertainty this corresponds
C;n. Then, as for decision-making under risk, we chooge the general case where the knowledge on the states of
A* = A;- with i* £ argmax;{V;}. The determination of¥; the nature is characterized by a belief structure. Clearig
depends on the decision attitude taken by the decisionimakessumes that a priori knowledge on the frashef the different

The pessimistic attitude considers for all= 1,2,...,q, states of the nature is given by a bid.) : 2% — [0, 1]. This

W, =10,0,...,0,1]. In this case, we assign td; the least case includes all previous cases depending on the choice of
payoff and we choose the best worst (the max of least payoffs)(.). Decision under certainty is characterizedrbysS;) = 1;

It is a Max-Min strategy since* = argmax;(min; C;;). Decision under risk is characterized by(s) > 0 for some

The optimistic attitude considers for all = 1,2,...,q, statess € S; Decision under full ignorance is characterized
W, = [1,0,...,0,0]. We commit to A; its best payoff and by m(S;US2U...US,) =1, etc. Yager's OWA for decision-

we select the best best. It is a Max-Max strategy sineceaking under uncertainty combines the schemes used for
i* = argmax;(max; C;;). Between these two extreme atti-decision making under risk and ignorance. It is based on the
tudes, we can define an infinity of intermediate attitudes lilderivation of ageneralized expected valug; of payoff for

the normative/neutral attitude (when or all= 1,2,...,q, each alternatived; as follows:

W, = [1/n,1/n,...,1/n,1/n]) which corresponds to the

simple arithmetic mean, or Hurwicz attitude (i.e. a weighte -

average of pessimistic and optimistic attitudes), etc.uBtify Ci = Z m(X) Vi (10)

the choice of OWA method, Yager defines an optimistic index k=1

a € [0,1] from the cqmponents OWi and Proposes to_wherer is the number of focal elements of the belief structure
compute (by mathematical programming) the best weighti gm(.))' m(Xy) is the mass of belief of the focal element
vector W; corresponding to a priori chosen optimistic inde%(]C € 25, and Vi, is the payoff we get when we select
and_ h_av_mg the maximal entropy (dispersion). df = 1 A; and the state of the nature lies iKi,. The derivation
(optlmlstlc att|tgd§) _then _Of coursd; = [1,0,...,0,0] and Vi is done similarly as for the decision making under
if a = 0 (pessimistic attitude) thel’; = [0,0,. ','3,0’ 1. 1 ignorance when restricting the states of the nature to theetu
theory, Yager's method doesn’t exclude the possibilitydopat of states belonging td; only. Therefore ford; and a focal
an hybrid attitude depending on the alternative we consider element X}, instead of using all payoff&;;, we consider
other words, we are not forced to consider the same Weighti&gly the payoffs in the sefi/; — {Cijlsj’ € X} and

vectors for all alternatives. Vi = OWA(M;) for some decision-making attitude chosen

~ Example 1Let's take statess = {.51, 52, 93, 54}, alterna- 3 priori. Once generalized expected val@gsi = 1,2, ..., g
tives A = {4, Ay, A3} and the payoffs matrix: are computed, we select the alternative which has its highes
C; as the best alternative (i.e. the final decision). The ppieci
S1 Se S3 Sy

of this method is very simple, but its implementation can be
quite greedy in computational resources specially if onetava

to adopt a particular attitude for a given level of optimism,
specially if the dimension of the franteis large: one needs to
compute by mathematical programming the weighting vectors

If one adopts the pessimistic attitude in choosing = . . ) :
W, — Ws — [0,0,0,1], then one gets for each alternageneratmgthe optimism level having the maximum of entropy
2 = 3 = s Uy Uy L]y =

tive A;, i = 1,2,3 the following values of OWAs:V;, — As illustrative example, we take Yager's examp[83] with
OWA(;O 0.20 230’) — 0, T, — OWA(L 10,20, 30) —'1land a pessimistic, optimistic and normative attitudes.

s Uy ) — Uy V2 — ) ) ) - - , . .
Vi = OWA(30,10,2,5) = 2. The final decision will be the ~EXample 2 Let’s take statess = {S1, S, 53, 94, 55} with
alternativel; since it offers the best expected payoff. associated bban(5; U 55 U S4) = 0.6, m(S52 U S5) = 0.3

If one adopts the optimistic attitude in choosifl; = andm(S1 U S, U S3 U 8, U S5) = 0.1. Let's also consider

Wy = W3 = [1,0,0,0], then one gets for each alterna-"’lltemaﬂveSA: {41, 42, A3, A4} and the payoffs matrix:

tive A;, i« = 1,2,3 the following values of OWAs:V; =

A /10 0 20 30
A, [ 1 10 20 30 9)
A;\30 10 2 5

OWA(10, 0,20, 30) = 30, Vo = OWA(1, 10, 20, 30) = 30 and 172 150 152 ﬁ’ g
V3 = OWA(30, 10,2, 5) = 30. All alternatives offer the same C = O 13 3 10 9 (11)
expected payoff and thus the final decision must be chosen 6 0 11 15 4

randomly or purely ad-hoc since there is no best alternative
If one adopts the normative attitude in choosifig =

Wo = Wy = [1/4,1/4,1/4,1/4] (i.e. one assumes that Ther = 3 focal elements ofn(.) are X; = S; U S U Sy,

all states of nature are equiprobable), then one gats= <2 = 92U Ss and Xz = 51 U S U S3 U Sy U S5. X1 and

OWA(10,0,20,30) = 60/4, Voa = OWA(L,10,20,30) = X5 are partial ignorances anils is the full ignorance. One

61/4 and V3 = OWA(30, 10, 2, 5) = 47/4. The final decision considers the following submatrix (called bags by Yager) fo

will be the alternativel, since it offers the best expected

payoff. 3There is a mistake/typo error in original Yager's examplg][3



the derivation ofV;, fori =1,2,3,4 andk = 1,2, 3. One gets the same values in this particular example for any
My 7 12 13 e>0 begaus_e we don't have singletons as focal elements of

Moy 12 5 11 m(.), which is normal. HereBetP(S1) = DSmP(S;) =

]\/[(Xl): M = 9 3 10 0.22, BetP(Sg) = DS’ITLP(SQ) = 0.17, BetP(S3) =

ot DSmP(S3) = 0.22, BetP(Sy) = DSmP(Sy) = 0.22

Ma 6 1115 and BetP(Ss) = DSmP(S2) = 0.17. Based on these
Mo 5 6 probabilities, we can compute the expected payoffs for each
M(Xs) = Moo _ (10 2 alternative as for decision making under risk (e.g. 4 we
2 Mso 13 9 get7-0.22+5-0.174+12-0.22+13-0.224+6-0.17 = 8.91).
Myo 9 4 For the4 alternatives, we finally get:
M3 7 5 12 13 6 EBeip|C] = Epsmp[C] = [8.91,8.20,8.58,9.25
Mos 12 10 5 11 2 . .
M(Xs3) = Mal= 190 13 3 10 9| = C According to these values, one sees that the best alteznativ
33 with this pignistic or DSm attitude isd, (same as with
Mys 6 9 11 15 4

Yager's optimistic or normative attitudes) since it offeére
e Using pessimistic attitude, and applying the OWA ophighest pignistic or DSm expected payoff. This much simpler
erator on each row ofM(X;) for k = 1 to r, one approach must be used with care however because there is a
gets finally: V(X)) = [Vi1,Var, Va1, V]' = [7,5,3,6]', loss of information through the approximation of the bb@)
V(Xa) = [Via, Vag, Vaa, Vaa)" = [5,2,9,4]" and V(X3). = into any subjective probability measure. Therefore, we db n
[V13,1/23,I/3~,3,IQ3]t = [5,2,3,4]". Applying formula (10) recommend to use it in general.
for ¢ = 1,2,3,4 one gets finally the following generalized
expected values using vectorial notation: IV. THE NEW COWA-ERAPPROACH
Yager's OWA approach is based on the choice of given
r—3 attitude measured by an optimistic index[ih 1] to get the
[C1,Ca, Cs,Cy]" = Zm(Xk) V(Xy) =[6.2,3.8,4.8,5.2] Weighting vectorlV. How is chosen such an index/attitude ?
—1 This choice is ad-hoc and very disputable for users. What to
do if we don’t know which attitude to adopt ? The rational

since it has the highest generalized expected payoff. answer to this question is to consider the results of the two

e Using optimistic attitude, one takes the max value of ea(fﬂdreme attitudes (pessimistic and optimistic ones) ppand

. . ry to develop a new method for decision under uncertainty
;ov(\;,nznge?sp.‘elglyg CiV\[/éuor;/zelac‘:glro‘g 1%”5([’{5)3?5 kl()_ 115]tto based on the imprecise valuation of alternatives. This és th

X)) — t_ 16.10.13. 9T AV (Xa) — approa(_:h deyeloped in _this paper and we call it Cgutious OWA
K/( 2‘3 ‘[/‘/12%/‘/2]215’ ng’ fo;, 1 [(15% (1);)]1&3’9(])r'1eanfir:{ojly3)gets with Evidential Reasoning (COWA-ER) because it adopts the
[0113’0223’033%4]%3: [1_0 0114 119 13 '2]t and the best al. cautious attitude (based on the possible extreme attifutes

ternative to take with optimistic attitude i4, since it has the EF\I)_' ‘::‘,S ?xslalgedkwlhthe seq_uel. | d take th
highest generalized expected payoff. LS take back the previous examplé and take the pes-

« Using normative attitude, one taked; = W, = simistic and optimistic valuations of the expected payoffs
’ 1 — 2 - . . .

Wy = Wy = [1/|Xe],1/|Xel. .., 1/|Xs|] where|Xy| is the Thg expected payoff&[C;]| are imprecise since they belopg

cardinality of the focal elemenk;, under consideration. ThetO interval [Ci. ) Cl ) whe-re-bpund.s are computed with

number of elements ifV; is equal to X4|. The generalized ex- extreme pessimistic and optimistic attitudes, and one has

According to these values, the best alternative to takd,is

pected values arf’;, Cs, Cs, C4]" = [8.91,8.20,8.58,9.25] E[CY] [6.2;10.9]
and the best alternative with the normative attitudd jsame E[C] = E[Cy] [3.8;11.4]
as with optimistic attitude) since it has the highest gelimrd ~ | E[Cs] [4.8;11.2]
expected payoff. E[C4y) [5.2;13.2]
C. Using expected utility theory Therefore, one has 4 sources of information about the

In this section, we propose to use a much simpler ag?ra;"et_ef asso<|:(|§1ted V(\;'th the best alternative to 2hoose.
proach than OWA Yager’s approach for decision making Ul’ldﬁpr ecision making under Imprecision, we propose 10 use
ere again the belief functions framework and to adopt the

uncertainty. The idea is to approximate the bb@) by a . .
subjective probability measure through a given probathilis follow!ng very simple COWA-ER methodology based on the
following four steps:

transformation. We suggest to use eith@etP or (better) T ] .
DSmP transformations for doing this as explained in [22] * Step 1: normalization of imprecise values[in1];
(Vol.3, Chap. 3). Let's take back the previous example and* Stép 2: conversion of each normalized imprecise value

compute the BetP(.) and DSmP.(.) values fromm(.). into elementary bban;(.); N o
« Step 3: fusion of bban;(.) with an efficient combination

4where X* denotes the transpose &f. rule (typically PCR5);



. Stepb{1: C:(E)ige of the final decision based on the resulting Focalfllemem mggfgé')
combined bba. Ao 0.1142
Let's describe in details each step of COWA-ER. In step 1, 2‘3 8'1600
. . 4 .1865
we divide each bound of intervals by the max of the bounds AL U Ay, 0.0045
to get a new normalized imprecise expected payoff vector A2 U Ay 0.0094
E™™?[C]. In our example, one gets: Aliﬁ;f“ 8'8(2;2
(6.2/13.2;10.9/13.2] [0.47;0.82] fl; 83282‘1 e
Elmp[C] _ [3.8/13.2; 11.4/13.2] ~ [0.29; 0.86] A1 UAsU A3 U Ay 0.1883
[4.8/13.2;11.2/13.2] [0.36; 0.85] Table I
[5.2/13.2;13.2/13.2] [0.39; 1.00] FUSION OF THE FOUR ELEMENTARY BBAS WITH PCR5

In step 2, we convert each imprecise value into its bba
according to a very natural and simple transformation [7].

Here, we need to consider as frame of discernment, the fmtlzg‘?plained at the end of section Il. Table Ill shows what are

set of alternativesd = {A;, A2, A3, A4} and the SOUrCes o \aiues of credibilities, plausibilitieget P and DSmP._q
of belief associated with them obtained from the normahzefgr each alternative in our example

imprecise expected payoff vecté’™?[C]. The modeling for

computing a bba associated to the hypothesisfrom any A; | Bel(A;) | BetP(A;) | DSmP(A;) | PU(A)
imprecise valuda; b] C [0;1] is very simple and is done as Ay | 0.2488 0.3126 0.3364 0.4850
follows: As | 0.1142 0.1863 0.1623 0.3729
: Az | 0.1600 0.2299 0.2242 0.4130
mi(A;) = a, Ay | 0.1865 0.2712 0.2771 0.4521

mz(Az) —1—b (12) Table Il

_ CREDIBITITY AND PLAUSIBILITY OF A;
7’)7,1(14.Z U Al) = ml(G) =b—a

where 4; is the complement of4; in ©. With such simple
conversion, one sees th#tel(A;) = a, PlI(A;) = b. The
uncertainty is represented by the length of the intefuab)
and it corresponds to the imprecision of the variable (hleee t
expected payoff) on which is defined the belief function f
A;. In the example, one gets:

Based on the results of Table lll, it is interesting to note
that, in this example, there is no ambiguity in the decision
making whatever the attitude is taken by the decision-maker
the max of Bel, the max of PI, the max of BetP or the max of

SmP), the decision to take will always blg. Such behavior
is probably not general in all problems, but at least it shows

Alternatives A; | mi(A;) | mi(A;) | mi(A; U A)) that_ ir_1 some cases like in Yager’s_ example, the am_biguity in
A7 0.47 0.18 0.35 decision can be removed when using COWA-PCRS instead of
2‘? g-gg 8-1‘5‘ 8-% OWA which is an advantage of our approach. It is worth to
Ai 0.39 0 0.61 note that Shannon entropy of BetPli&s..p = 1.9742 bits is
bigger than Shannon entropy of DSmPHS)g,,p = 1.9512
Table | . . . .
BASIC BELIEF ASSIGNMENTS OF THE ALTERNATIVES bits which is normal since DSmP has been developed for

increasing the PIC value.
Advantages and extension of COWA-ER:COWA-PCR5
In step 3, we need to combine bbais (.) by an efficient allows also to take easily a decision, not only on a singkeralt
rule of combination. Here, we suggest to use the PCRS5 ruiative, but also if one wants on a group/subset of alterestiv
proposed in DSmT framework since it has been proved vesgtisfying a min of credibility (or plausibility level) setted by
efficient to deal with possibly highly conflicting sources othe decision-maker. Using such approach, it is of coursg ver
evidence. PCR5 has been already applied successfully inedby to discount each bba;(.) entering in the fusion process
applications where it has been used so far [22]. We caibing reliability or importance discounting techniquesickh
this COWA-ER method based on PCR5 as COWA-PCRmakes this approach more appealing and flexible for the user
Obviously, we could replace PCRS5 rule by any other rule (DBan classical OWA. COWA-PCRS5 is simpler to implement
rule, Dubois& Prade, Yager's rule, etc and thus define easlygcause it doesn’t require the evaluation of all weighting
COWA-DS, COWA-DP, COWA-Y, etc variants of COWA- vectors for the bags by mathematical programming. Only
ER. This is not the purpose of this paper and this has eatreme and very simple weighting vectdiso,...,0] and
fundamental interest in this presentation. The result ef tH0,...,0, 1] are used in COWA-ER. Of course, COWA-ER can
combination of bba’s with PCR5 for our example is givemlso be extended directly for the fusion of several sourdes o
in of Table II. informations when each source can provide a payoffs matrix.
The last step 4 is the decision-making from the resulting bisaffices to apply COWA-ER on each matrix to get the bba’s of
of the fusion step 3. This problem is recurrent in the theostep 3, then combine them with PCR5 (or any other rule) and
of belief functions and several attitudes are also possible then apply step 4 of COWA-ER. We can also discount each
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