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2 LITIS, Université de Rouen, 76800 Saint Etienne du Rouvray

Abstract

Because of the distortions produced by the insertion of a mirror, catadioptric images can

not be processed similarly to classical perspective images. Now, although the equivalence

between such images and spherical images is well known, the use of spherical harmonic

analysis often leads to image processing methods which are more difficult to implement. In

this paper, we propose to define catadioptric image processing from the geodesic metric on

the unitary sphere. We show that this definition allows to adapt very simply classical im-

age processing methods. We focus more particularly on image gradient estimation, interest

point detection, and matching. More generally, the proposed approach extends traditional

image processing techniques based on Euclidean metric to central catadioptric images. We

show in this paper the efficiency of the approach through different experimental results and

quantitative evaluations.
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1 Introduction

More and more applications benefit from the use of large or panoramic field of view

cameras [1]. Indeed, a 360◦ view of the camera environment is a very rich source of

informations in order to perform tasks such as obstacle avoidance, occupancy map

estimation, or beacon tracking even for six degrees of freedom systems... Many

different solutions have been proposed in order to obtain panoramic images such as

rotating camera, camera network, or the association of a mirror and a classical cam-

era (fig 1). The latter option is often chosen because it provides an omnidirectional

image in a single shot and can then be used in dynamic environment. Consequently,

this kind of sensor is now ubiquitously used in mobile robotic for tasks such as navi-

gation, surveillance, visual simultaneous localization and mapping (SLAM) [2],[3].

However, because of the distortions observed in such catadioptric images (fig 1),

traditional image processing techniques are no longer appropriate and require to be

adapted to the new sensor geometry. As shown in figure (fig 2), the influence of a

pixel on its neighbours strongly depends on its position in the image. Thus, while

the distance between P1 and P2 and between P3 and P4 is equal, it appears that

pixel P2 does not have the same impact on P1 as P4 on P3 because of the dis-

tortions induced by the mirror. In this way, classical operators can not be directly

applied to this type of images.

In order to take into account the distortions implied by the sensor during the om-

nidirectional image processing, the intrinsic parameters have to be considered and

used for defining a new representation space. In [4], Bogdanova et al. propose to

Demonceaux1), Pascal.Vasseur@univ-rouen.fr (Pascal Vasseur2),
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Fig. 1. Catadioptric camera and catadioptric image

Fig. 2. d(P1, P2) = d(P3, P4) when P1 does not have physically the same influence on

P2 than P3 on P4.

perform the image processing directly in the image space by taking into account

the deformation due to the mirror thanks to the Jacobian induced by the mirror

geometry. While this approach corrects the image distortions during the gradient

estimation, it can not be extended to image filtering. Indeed, in this case, the metric

change equations allow to consider the new geometry of the space and consequently

to obtain the associated differential operator formula by the Jacobian. However, this

space change can not be applied to filtering operators which are defined by a con-

volution product. The unitary sphere represents an other space which is particularly

useful for omnidirectional image processing. As demonstrated in [5] and [6], there

exists an equivalence between the unitary sphere and single view point (SVP), also
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called central images and even some fisheye images [7]. However, this equivalence

is related to the knowledge of the intrinsic parameters of the sensor (fig 3) and can

be decomposed into a double projection as follows: 3D point Pw is projected on the

sphere surface according to the sphere center in Ps which is then projected on the

image plane into Pi from the projection center Op located between the center and

the north pole of the sphere. The position of Op depends on the type of sensor.

Fig. 3. Equivalence between the catadioptric projection and the two-step mapping via the

sphere.

This spherical space, which appears to be more natural for central images than Eu-

clidean space, has been considered either for the processing directly, as detailed in

the next section or as an intermediate space for a new representation. For example,

in [8], the authors proposed to project the central image onto a virtual cylinder in

order to avoid the spherical geometry constrains. By considering that this cylinder

is locally planar, they apply directly conventional filtering operators. Nevertheless,

even if this representation can be considered as a valid approximation, the geometry

on the cylinder is not appropriate to spherical images. Indeed, this cylindrical mod-

eling defines operators that are anisotropic on the spherical image and then leads

to different operations according to the pixel position in the catadioptric image. In

[9], Demonceaux and Vasseur developed a neighborhood based on the spherical
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dependency of each image pixel. They proposed to use this approach in order to

adapt Markovian methods to omnidirectional images. This representation shows a

significant improvement of the Markovian methods but can not be generalized to

image filtering since the number of neighbors of one pixel depends on its position

in the image. The approach proposed in this paper is based on a direct processing

on the sphere. We propose in the next section a presentation of the existing related

works in order to bring out the differences and the contributions of our approach.

2 Spherical Image Processing: an overview

In order to process central omnidirectional images, some authors ([10], [11], [12],

[4]) propose to consider them as spherical images and develop specifically dedi-

cated tools for such images. They used the spherical harmonic analysis in order to

define the convolution and the Fourier analysis. We develop such different methods

to provide clear comparison with our approach. Precisely, we describe the different

steps required to evaluate the spherical gradient and to filter such image.

2.1 Spherical Gradient

The unit sphere S2 can be parameterized by spherical coordinates:

∀x ∈ S2, x = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)), (1)

where φ ∈ [0, 2π[, θ ∈ [0, π].

With this parameterization, the spherical gradient is defined by:

∇S2I(θ, φ) =
∂I

∂θ
eθ(θ, φ) +

1

sin(θ)

∂I

∂φ
eφ(θ, φ). (2)
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Thus, if we adopt a regular sampling of the sphere based on θi and φj , the spherical

gradient can be computed thanks to finite differences [11] as:

‖∇S2I(θj, φk)‖2 = |I(θj+1, φk)− I(θj, φk)|2

+ 1
sin2(θj)

|I(θj, φk+1)− I(θj, φk)|2.

(3)

We can note that the formulation of the spherical gradient depends of the latitude θ

because the distance between the points (θj, φk) is not regular (fig. 4). This problem

more clearly appears when we want to compute a discrete Laplace operator:

4S2 =
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂2φ
. (4)

In order to avoid the computation of differential operators on the sphere, Bogdanova

et al. [4] proposed to consider the equivalent projection between the catadioptric

image plane and the spherical image proposed by [6]. For example, for a paracata-

dioptric image which is equivalent to a spherical image by stereographic projection,

the metric induced on the sphere is equivalent to:

dlS2 = dθ2 + sin2 θdφ2 =
4

(1 + x2 + y2)2
(dx2 + dy2). (5)

Thus, the spherical gradient can be computed thanks to the classical Euclidean

gradient by multiplying with a scaling factor:

∇S2 =
(1 + x2 + y2)2

4
∇R2 . (6)

The main advantage of this formulation is that we can compute the image gradient

directly in the planar image with cartesian coordinates while respecting the non pla-

nar geometry of the mirror. However, the equation (6) is valid only for a parabolic

miror and the formulation is different if we consider an hyperbolic mirror.
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2.2 Spherical Filtering and Harmonic Analysis

On the sphere, the classical convolution used in Euclidean metric is not valid.

Driscoll and Healy [13] have developed new tools based on spherical harmonics.

Let us note < ., . > the inner product on the sphere:

f, g ∈ L2(S2), < f, g >=

π∫
0

2π∫
0

f(θ, φ)g(θ, φ) sin θdθdφ. (7)

The spherical harmonics Y m
l (θ, φ), defined by Legendre polynomials, form an or-

thonormal basis of L2(S2), and a function f can be decomposed by (see [13]):

f =
∑
l>0

∑
|m|6l

f̂(l,m)Y m
l (θ, φ) , where f̂(l,m) =< f, Y m

l > . (8)

Driscoll and Healy define the spherical convolution as:

f, g ∈ L2(S2), (f ∗ g)(η) =
∫

SO(3)

f(Rn0)g(R
−1η)dR, (9)

where η ∈ S2, n0 = (0, 0, 1) is the North of the sphere. Similar definition can be

seen in [14] and [15].

This convolution can be computed in Fourier domain thanks to the convolution

theorem:

f, g ∈ L2(S2), (f̂ ∗ g)(l,m) = 2π

√
4π

2l + 1
f̂(l,m)ĝ(l, 0). (10)

With these notations, the spherical Gaussian functionG (which solves the spherical

diffusion equation4S2u = ∂tu) is given by:

Ĝ(., t)(l,m) =



√
2l+1
4π
e−l(l+1)t if m = 0

0 else

(11)
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Fig. 4. Sampling of the sphere. This irregular sampling is unappropriate for the matching

by Zero mean Normalized Cross-Correlation function (ZNCC).

So, we can smooth a spherical image using (11), (10), and (8). Nevertheless, we can

note that the spherical convolution is not commutative (f ∗ g 6= g ∗ f ) and does not

verify the derivative relation which is very useful for edge detection in perspective

image (f ∗g)′ = f ′ ∗g = f ∗g′ [11]. Thus, the image gradient can not be computed

by using a low-pass filter as it is commonly done in perspective image processing.

In this paper, we propose a new definition of the neighborhood between pixels of

a central catadioptric image. We show that this definition allows to use the same

operators than in classical image processing techniques. In the next section, we

examine the necessity of modifying the notion of neighborhood in catadioptric im-

ages and present the choice of the geodesic metric. The section 4 is dedicated to

the definition of the new convolution product and its use in catadioptric image fil-

tering. Different experimental results on edge detection and interest point detection

will be presented and evaluated. Point matching methods derived from the new

neighborhood definition will be proposed in Section 5 before a conclusion.
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3 Metric and Geodesic Neighborhood

3.1 Introduction

In perspective image processing, most methods are developed from Euclidean met-

ric:

∀x, y ∈ R2, dR2(x, y) = ||x− y||l2(R2). (12)

From this metric, a neighborhood can be derived to define pixels dependency be-

tween each other. Derivate computation, corner detection, or point matching by

correlation can then be performed thank this neighborhood definition. Theoreti-

cally, the neighborhood expresses the mutual 3D point influence into the image

plane. Practically, if we consider an orthographic camera, the Euclidean neigh-

borhood exactly represents 3D points placed on a fronto-parallel plane (fig 5(a)).

In the case of a perspective camera, this neighborhood is generally considered as

a sufficiently good approximation whatever the 3D point configuration (fig 5(b)).

Considering a central catadioptric image, the Euclidean neighborhood is no longer

relevant (fig 5(c)). However, a regular neighborhood according to θ and φ angles

(fig 5(d)) will translate exactly mutual 3D point influence if they are placed on a

concentric sphere of the unitary sphere. This is the kind of neighborhood that we

develop in the following.
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(a) (b)

(c) (d)

Fig. 5. Image formation and neighborhood dependency. (a) Orthographic image, Euclidean

metric, (b) perspective image, Euclidean metric, (c) omnidirectional image, Euclidean met-

ric, (d) omnidirectional image, geodesic metric.

3.2 Neighborhood Definition

Let note P the projection that transforms a central catadioptric image which belongs

to R2 into his equivalent spherical image on S2:

P :
R2 → S2

x 7→ xs = (θ, φ)

. (13)
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Fig. 6. Spherical coordinates and local basis.

In order to process spherical images, we propose to use the following geodesic

distance:

∀xs = (θ, φ), ys = (θ′, φ′) ∈ S2

dS2(x, y) = arcos





cos(φ) sin(θ)

sin(φ) sin(θ)

cos(θ)



T

.



cos(φ′) sin(θ′)

sin(φ′) sin(θ′)

cos(θ′)




.

Let note xs ∈ S2 the projection of an image pixel x onto the unitary sphere (xs =

P(x)). We then define the continuous neighborhood Vr(x) of pixel x in the image

as follows:

Vr(x) = {ys ∈ S2, dS2(xs, ys) 6 r |P(x) = xs}. (14)

This neighborhood results from the intersection between the cone with apex O,

direction Oxs, angle r, and the sphere S2. In order to use discrete convolution

filters with this neighborhood, it is then necessary to introduce a discrete version of
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(14). In this way, we consider the tangent plane π to S2 at xs. This plane has the

following equation xs + a~eθ + b~eφ, (a, b) ∈ R2, where (~eθ, ~eφ) are vectors of the

basis at xs = (θ, φ) (fig 6) :

~eθ =
∂ ~OM

∂θ
=



cosφ cos θ

sinφ cos θ

− sin θ


, ~eφ =

1

sin θ

∂ ~OM

∂φ
=



− sinφ

cosφ

0


.

Since we want a regular mesh with constant geodesic distance, we obtain (2N+1)2

points of π as follows :

xs + tan(nr)~eθ + tan(pr)~eφ, −N ≤ n, p ≤ N (15)

i.e. (2N + 1)2 points of S2 as:

VNr (x) = {xs(n, p) =
xs + tan(nr)~eθ + tan(pr)~eφ
‖xs + tan(nr)~eθ + tan(pr)~eφ‖

, −N ≤ n, p ≤ N, xs = P(x)}.(16)

In VNr (x), the points are all equidistant in term of geodesic metric:

∀y ∈ VNr (x), min
z∈VNr (x)\y

dS2(y, z) = r.

Note that this geodesic neighborhood depends on r. This value corresponds to the

distance between two points of the neighborhood. In order to compare our results

with conventional methods, we will set r such that the geodesic neighborhood is

equivalent to the Euclidean neighborhood in the center of the catadioptric image

where the distortions are negligible.
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3.3 Application to Catadioptric Image Processing

In order to demonstrate the validity of the approach, we propose to adapt some

conventional image processing methods by using the geodesic metric. We show that

this metric allows to apply the classical methods to catadioptric images very easily.

However, it is worth noting that practically, this new neighborhood requires that the

luminance of each point to be known. In order to avoid a computationally expensive

interpolation method for each point (xs(n, p)), we propose to use a simple nearest

neighbour approach. We show that our method significantly improves the results,

even with such rough interpolation.

First, we focus on linear catadioptric image filtering by defining the convolution

product from the geodesic metric. We propose to apply this filtering for derivates

computation and Harris corner detection. Then, we will see that feature matching

methods based on similarity can also be adapted to central catadioptric images.

4 Linear Catadioptric Image Filtering

Linear image filtering consists in applying a weighted mask in each image point

through convolution product. According to the previously mentioned reasons, the

conventional convolution product can not be applied to catadioptric images. Conse-

quently, the first step consists in defining the convolution product based on geodesic

metric in order to process every pixel of the catadioptric image. We show that this

new definition implies that the conventional operators remain valid.
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4.1 Convolution

Let consider an omnidirectional image I and let note IVNr (x) = I(P−1(VNr (x))),

where IVNr (x) represents the (2N +1)2 grey level values of the regular grid centered

at xs = P(x) (where P is defined by (13)).

IVNr (x)(n, p) = I(P−1(xs(n, p))) −N ≤ n, p ≤ N.

Let H be a filter with size (2N +1)× (2N +1), we define the convolution product

of image I by filter H on point x ∈ R2 as follows:

∀x ∈ R, IH(x) = IVNr (x) ∗H(x)

=
∑N
i=−N

∑N
j=−N IVNr (x)(i, j)H(i, j).

(17)

4.2 Geodesic Neighborhood vs Euclidean Neighborhood on the Tangent Plane

It is also possible to define a regular sampling at xs on the tangent plane π by using

the distance dR2(x, y). This neighborhood is given by:

VNr,R2(x) = {xs + tan(r)(n~eθ + p~eφ), −N ≤ n, p ≤ N}. (18)

In VNr,R2(x), points are equidistant in term of Euclidean distance:

∀yπ ∈ VNr,R2(x), min
zπ∈VN

r,R2
(x)\yπ

dR2(yπ, zπ) = tan r.

VNr,R2(x) and VNr (x) are obviously different because tannr 6= n tan r. Neverthe-

less, if we consider a viewing angle equal to r = 5◦, which corresponds to a sam-

pling of the sphere in 180/5 × 360/5 = 36 × 72 pixels and a neighborhood of
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Fig. 7. Synthetic catadioptric test image.

size 9 × 9, the both extreme points of π according to the neighorhoods VNr,R2(x)

and VNr (x) are less than 0.02 pixel distant. This is why the geodesic neighborhood

can be considered as a valid approximation of the spherical projection of the tan-

gent plane Euclidean neighborhood. Consequently, the classical filters used on the

tangent plane can be applied directly on the geodesic neighborhood.

4.3 Derivative Filter

According to the previous considerations, the derivative in xs can be computed by

a classical Sobel filter such as:

||∇I(xs)||2 ' |IV1
r (x)
∗ S|2 + |IV1

r (x)
∗ ST |2,
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where

S =



−1 −2 −1

0 0 0

1 2 1


.

In order to verify the behaviour of this geodesic filtering, we applied it to a synthetic

image (fig 7) and compared the results with the classical Sobel filter (fig 8) and with

the Bogdanova’s method (6). This synthetic image simulates a catadioptric camera

placed inside a rectangular parallelepiped. This configuration is not optimal for the

geodesic neighborhood. Indeed, as mentioned before, the geodesic neighborhood is

optimal for the case of a spherical scene captured from its center by a catadioptric

camera. However, we can note a slight qualitative improvement of the gradient

computation. We more clearly distinguish the edges in the center of the image and

their thickness is more regular along the radial lines in the geodesic approach (fig

8(f)). Note that Bogdanova’s approach globally improves the detection but reduces

the detection of lines near the image center Fig. 8(c)). This phenomenon is more

clearly visible in the real case image in (Fig. 9(a)). Figure 9 presents the gradient

computation in the case of a real image (fig 9(a)). In these results, we consider

only pixels with a gradient norm greater than half times the maximum gradient

value. It is important to note that the adapted gradient provides better results than

the classical method essentially on the periphery of the image where the edges are

qualitatively more precisely detected.

We have illustrated that the geodesic distance improves gradient computation for

catadioptric images and that the obtained results are comparable to Bogdanova’s

method which can not be directly adapted to other filtering techniques, whereas our
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Gradient norm results on synthetic image. (a),(b) Classical approach, (c) (d) Bog-

danova’s method [4], (e)(f) Geodesic approach
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(a) (b)

(c) (d)

Fig. 9. Gradient norm results on real image. (a) Initial image, (b) Classical approach, (c)

Geodesic approach, (d) Bogdanova’s method [4]

approach remains valid in a more general framework.

4.4 Gaussian and Laplacian Filters

Similarly to the previous case, Gaussian and Laplacian filters remain valid with

the geodesic neighborhood. Indeed, we can consider the Gaussian filtering as a

weighting of the points according to their distance with the central point. This leads

to substitute the Gaussian:

Gx(y, σ) =
1

2πσ2
e−
||x−y||2

2σ2 (x, y) ∈ R2,

18



by

Gx(y, σ) =
1

2πσ2
e−

dS2 (x,y)

2σ2 (x, y) ∈ S2. (19)

The Laplacian of Gaussian can also be defined as:

LoGx(y) = −
1

πσ4
[1− dS2(x, y)

2σ2
] exp−dS

2(x, y)

2σ2
. (20)

Thus, while the Gaussian or Laplacian of Gaussian definitions using spherical har-

monic analysis for spherical image processing needs their own rewording (11)

[14][15], our approach provides a straightforward adaptation to such conventional

filters. Indeed, thanks to (19, 20) and the convolution product defined in (17), the

masks used in perspective image processing remain valid.

In the following, we propose to verify the behaviour of these filters by the applica-

tion of the Harris corner detector [16]. Harris corner detector has been massively

used in computer vision applications. In perspective image processing, the corner

detection by Harris method consists in studying the eigenvalues of matrix M in

each point X:

M(X) =


L2
x(X, σ) LxLy(X, σ)

LxLy(X, σ) L2
y(X, σ)

 , (21)

where Li(X, σ) = ∂
∂i
GX(X, σ) ∗ I(X).

This matrix M has been computed with classical filter, with spherical convolution

(10), and spherical Gaussian function (11). Note that in the case of the spherical

convolution, since the formula (f ∗ g)′ = f ′ ∗ g no longer holds, we first have to
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perform the convolution of the spherical Gaussian with I , then derive the obtained

signal using (3) to obtain Li. With our approach, if we consider the relations defined

in (17) and (19), M can be easily computed. First, we compare the adapted Har-

ris corner detection with a classical Harris and a Harris computed on the sphere,

for the synthetic image proposed in figure (10). We report only the 100 best re-

sponses to the detectors. Figure 10(b) corresponds to the detection using classical

Harris. We observe some double corner detections whereas some other corners are

not detected (17 corners have been detected). Inversely, Harris detection through

spherical analysis detects 21 corners but more corners at the image center where

there is a blind spot in a real image (Fig 9(a)), but does not detect corners at the

periphery (Fig. 10(c)). The proposed method therefore seems being a good com-

promise (Fig 10(d)), 19 corners have been detected and the results show that the

geodesic distance seems capable to correctly detect corners with only slight modi-

fications of the traditional technique. We now verify the behavior of our approach

with real images.

Harris detector results are shown for two consecutive real images extracted from a

sequence in figure 11. Table 1 presents a comparison of the repeatability rate devel-

oped in [17] between both detectors. If we focus on the particular part in the image

which corresponds to the lockers, we can note that 50 corners were detected in l1

with the adapted Harris (figure 11(b)) while 55 were found with the conventional

approach (figure 11(d)). In the second image, 51 corners were detected with the

adapted method while the classical only detected 36 corners. In the classical Har-

ris results, only 29 corners are common between the two images, which represents

a repeatability equal to 80%. The geodesic Harris detector presents 43 common

corners between images, i.e. a repeatability rate of 86%.
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(a) (b)

(c) (d)

Fig. 10. Harris corner detection. (a) Test Image, (b) Classical Harris corner, (c) Spherical

Harris corner, (d) Adapted method.

5 Matching

Feature matching between consecutive images of a sequence is a very important

problem in computer vision for motion estimation for example. We are particularly

dealing with corner matching, but our approach can be applied to any method based

on a local similarity measure. Similarly to image filtering methods, matching tech-

niques must take into account the deformations of the image if they are based on the

neighborhood. Let consider the Zero mean Normalized Cross-Correlation function
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(a)

(b)

(c)

(d)

Fig. 11. Harris corner detection results. (a)-(b) Classical method, (c)-(d) Geodesic method.
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Adapted Harris method Classical Harris method

Image I1 I2 I1 I2

Corners 231 227 212 239

Corners on the lockers 50 51 55 36

Repeatability rate 43→86% 29→80%

Table 1

Comparison of Harris method

(ZNCC):

ZNCC(x, y) =

∑
i∈V(x)

∑
j∈V(y)(I1(i)− I1(x))(I2(j)− I2(y))√∑

i∈V(x)(I1(i)− I1(x))2
∑
j∈V(y)(I2(j)− I2(y))2

, (22)

where I1(x) and I2(y) are the grey level mean of image I1 and I2 in neighborhood

V(x) and V(y)), respectively.

For a perspective image, the neighborhood is once again defined from Euclidean

distance between points (12). However, for the same reasons previously exposed,

this neighborhood can not be applied in catadioptric images. Moreover, a neigh-

borhood on the unitary sphere defined from a regular sampling of the spherical

coordinates θ and φ is also not adapted. Indeed, such definition does not provide

the same neighborhood for each point on the grid (fig 4). Consequently, we also

propose to use the geodesic metric to define the neighborhood (16) for measuring

the similarity of the detected corners.

We then compare previous images using a classical neighborhood of size 7 × 7

and an geodesic neghborhood V3
r . If we consider the same corners in both cases

obtained by the classical Harris detector with the same thresholds, the use of the
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(a)

(b)

Fig. 12. Matching by ZNCC. (a) Classical method: 65 total matchings, 53 correct match-

ings, (b) Geodesic method: 71 total matchings, 63 correct matchings.

classical ZNCC allows to match totally 65 points with 53 correct matchings, which

represents a rate of outliers equal to 18.4%. Comparatively, the geodesic neighbor-

hood (16) provides 71 matchings including 63 positive matching, i.e. a rate equal

to 11.2% of outliers (figure 12).

Figure 13(c) compares results for corner detection and matching over an outdoor

sequence of 21 consecutive images (figures 13(a) and 13(b)). Contrary to the previ-

ous matching results obtained from the classical Harris corner detector, we propose

here to compare the conventional detection and matching with the adapted detec-
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tion and matching results. In this way, we want to exhibit more significantly the

benefits of the geodesic neighborhood. Green bars (respectively red) correspond

to the number of matched corners in each image while the blue bars (respectively

black) describe the number of outliers for each method. It is worth noting that the

geodesic approach provides a better matching since the number of matched corners

is greater while the number of outliers is less than for the classical method. Indeed,

over the 21 images, the geodesic method provides 152 matchings in average while

the classical methods gives 116 matchings. In the same time, the outlier rate is equal

to 3.5 in the geodesic case while the classical approach presents a rate of 14.5.
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(a) (b)

(c)

Fig. 13. Corner detection and matching. (a) (b) 2 images from the real sequence. (c) Match-

ing results.

6 Conclusion

In this paper, we deal with central catadioptric image processing. Because of the

distortions introduced by the mirror, these images can not be processed as classical

perspective images. In this way, we consider a geodesic metric rather the Euclidean

one in order to define the dependency neighborhood between pixels. We show that

this approach allows to directly adapt the classical perspective image processing
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techniques to central catadioptric images, and more generally to spherical images.

Indeed, this geodesic metric allows to apply filtering masks similarly to perspec-

tive images while taking into account the distortions of catadioptric images. Ex-

perimental results on gradient computation, corner detection, and point matching

show a significant improvement of the quality despite the use of the nearest neigh-

bour interpolation. Thanks to this formulation, every method based on pixel mu-

tual dependency can be straightly adapted to central catadioptric images (Markov

Random Fields, mathematical morphology, image segmentation...). Moreover, it is

worth noting that contrary to methods based on spherical harmonic analysis, we

process points only in the image plane. Consequently, pyramidal methods such as

proposed by Burt et Adelson [18] remain valid in our approach. It is also important

to note that our approach can be applied to any type of single view point sensor,

such as perspective camera, central catadioptric camera, but also fish-eye camera

[7], since they all provide images equivalent to spherical images. Perspectives will

then consist in applying these processing techniques to heterogeneous central sen-

sor network in order to improve their efficiency and interest.
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