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Abstract

One important problem in the multiple testing context is the estimation of the
proportion θ of true null hypotheses. This proportion appears in a semiparametric
mixture model with two components: a uniform distribution on the interval [0, 1] and
a nonparametric density f . A large number of estimators of this proportion exist
under different identifiability assumptions but their rate of convergence or asymptotic
efficiency has only been partly studied. We shall focus here on two different categories
of identifiability assumptions previously introduced in the literature: in the first case, f
vanishes on a set with positive Lebesgue measure (and a subcase is obtained when this
set is an interval) and in the second case, the set of points where f vanishes has a null
Lebesgue measure. We first compute a lower bound on the local asymptotic minimax
(LAM) quadratic risk of any estimator under the first case. To our knowledge, it has
not been investigated whether the parametric rate of convergence may be achieved
by a consistent estimator of the proportion θ in this semiparametric setup. Thus,
we study an estimator previously proposed by Celisse and Robin (2010), and improve
the results concerning its consistency by establishing its almost sure convergence as
well as

√
n-consistency, under the assumption that f vanishes on an interval. As a

consequence, it is natural to discuss the existence of asymptotically efficient estimators
of the proportion θ in the sense of a convolution theorem. In the first case, we conjecture
that no

√
n-consistent estimator is efficient. In the second case, we prove that the

efficient information matrix for estimating θ is zero. Hence in this case, the LAM
quadratic risk is not finite and there is no regular estimator of the proportion θ. These
results are illustrated on simulations.

Key words and phrases: Asymptotic efficiency; efficient score, false discovery rate; infor-
mation bound; multiple testing; p-values; semiparametric model.
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1 Introduction

The problem of estimating the proportion θ of true null hypotheses is of interest in situ-
ation where several thousands of (independent) hypotheses can be tested simultaneously.
One of the typical applications in which multiple testing problems occur is estimating the
proportion of genes that are not differentially expressed in deoxyribonucleic acid (DNA)
microarray experiments (see for instance Dudoit and van der Laan, 2008). Among other ap-
plication domains, we mention astrophysics (Meinshausen and Rice, 2006) or neuroimaging
(Turkheimer et al., 2001). A reliable estimate of θ is important when one wants to control
multiple error rates, such as the false discovery rate (FDR) introduced by Benjamini and
Hochberg (1995). In this work, we shall discuss asymptotic properties of estimators of the
true proportion of null hypotheses. We stress that the asymptotic framework is particularly
relevant in the above mentioned contexts where the number of tested hypotheses is huge.

In many recent articles (such as Broberg, 2005; Celisse and Robin, 2010; Efron, 2004;
Efron et al., 2001; Genovese and Wasserman, 2004, etc), a two-component mixture density
is used to model the behavior of p-values X1, X2, . . . , Xn associated with n independent
tested hypotheses. More precisely, assume the test statistics are independent and identically
distributed (iid) with a continuous distribution under the corresponding null hypotheses,
then the p-values X1, X2, . . . , Xn are iid and follow the uniform distribution U([0, 1]) on
interval [0, 1] under the null hypotheses. The density g of p-values is modeled by a two-
component mixture with following expression

∀x ∈ [0, 1], g(x) = θ + (1− θ)f(x), (1)

where θ ∈ [0, 1] is the unknown proportion of true null hypotheses and f denotes the density
function of p-values generated under the alternative (false null hypotheses).

Starting from this model, two different points of view may be adopted. The first one
consists in adding assumptions to the parameter set, so that the parameters (θ, f) become
identifiable. It is easy to see that the parameters (θ, f) of model (1) are identifiable if
and only if the infimum of density f on [0, 1] is zero. This is a rather strong assumption,
nonetheless it is unavoidable to ensure identifiability. Another point of view consists in not
requiring identifiability of the model parameters. In such a case, model (1) is equivalent to

∀x ∈ [0, 1], g(x) = θ̄ + (1− θ̄)f̄(x), where f̄ =
f − cf
1− cf

, cf = inf
[0,1]

f and θ̄ = θ + (1− θ)cf ,

(2)
where now (θ̄, f̄) is always identifiable from the distribution g. Thus, when it is not assumed
that f vanishes on the set [0, 1], we can only recover the parameter θ̄ instead of θ. In the
following, we discuss the best possible properties of any estimator of θ̄ in general, under
different assumptions on f (or equivalently f̄). With some abuse of notation, we may still
refer to θ̄ as the proportion of true null hypotheses, although it does not correspond exactly
to this quantity when the infimum of f is not assumed to be zero.

Let us come back to the different cases that may occur with respect to the behavior of
f and its infimum. First, one may assume the existence of x0 ∈ [0, 1] with f(x0) = inf [0,1] f
or equivalently f̄(x0) = 0. Put in other words, density f may or not attain its infimum
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on the set [0, 1]. Note that as soon as f is assumed to be continuous (a rather mild
assumption), such a point x0 will indeed exist. However, from an estimation perspective,
this assumption is very weak and it is hopeless to obtain a reliable estimate of θ̄ without
additional assumptions. Thus, in the following, we shall classify the setups in two different
categories: models assuming that f attains its infimum on a set of points with positive
measure and models where this set of points may have zero measure, and where regularity
or monotonicity assumptions are added on f .

One of the most common assumptions made on density f in the literature is that it
attains its infimum on an interval of the form [λ, 1]. This assumption underlies many esti-
mation procedures further discussed below, such as variants of Efron’s estimator. However,
the fact that on real data, density f may not be minimum in the neighborhood of x = 1 has
previously been noticed in the literature (see Pounds and Cheng, 2006, and the references
therein). As a consequence, authors such as Celisse and Robin (2010) propose a milder
identifiability assumption that f attains its infimum on an interval [λ?, µ?] with µ? ≤ 1.
This assumption is more general than the previous one and contains µ? = 1 as a particular
case. Nonetheless, we shall remark that when µ? < 1, such an assumption makes little sense
in the specific context of modeling the distribution of p-values. Indeed, the high values of g
(or f) near x = 1 that may be observed come from a misspecification of the distribution of
the test statistic under the null or the alternative hypotheses. For instance, the test statis-
tics may in fact be discrete, or the performed test is one-sided while some statistics follow
the untested alternative (Pounds and Cheng, 2006). In this case, rather than generalizing
assumptions on the semiparametric mixture model, one should reconsider the use of this
mixture model itself (in the context of modeling the distribution of p-values). Indeed, it is
then inappropriate to assume that the p-values corresponding to the null hypotheses follow
a uniform distribution.

Let us remark that when identifiability of (θ, f) in model (1) is required, assuming f
vanishes on a subset with positive measure is a rather strong assumption. Indeed, it implies
that the support density of the underlying statistic T under the alternative and the null
are different. More precisely, if the rejection region has the form {T ≥ c}, then it is easy
to see that the density f of the p-values under the alternative satisfies

∀x ∈ [0, 1], f(x) =
φ1

φ0

(
Φ−1

0 (1− x)
)
, (3)

where φε and Φε are the density and cumulative distribution function (cdf) of T under
hypothesis Hε, respectively, and ε ∈ {0, 1}. Then, assuming that the likelihood ratio φ1/φ0

is increasing (at least for x larger than some A ∈ R which is a reasonable assumption for a
rejection region of the form {T ≥ c}), density f vanishes on some interval if and only if the
support of density φ1 is strictly included in the support of φ0. In other words, the density
of T should vanish on some interval (−∞, a1] under the alternative and on some interval
(−∞, a0] under the null hypothesis, with a0, a1 ∈ R satisfying a0 < a1. However, when
identifiability of (θ, f) is not required and one aims only at estimating the less informative
parameter θ̄, assuming that f attains its minimum value on a subset with positive measure
is a milder assumption. Indeed, this happens for instance when testing the nullity of the
location parameter in a Laplace model (see for instance Donoho and Jin, 2004, Section
5.2). More precisely, assume that the tests statistics T1, T2, . . . , Tn are iid with density
φ0(t) = (1/2) exp{−|t|} under the null hypothesis and φ1(t) = (1/2) exp{−|t − µ|} under
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the alternative, so that we want to test H0 : µ = 0 versus a one-sided alternative H1 : µ > 0.
In this case, the rejection region has the form {T ≥ c} and according to (3), density f attains
its infimum on an interval of the form [µ, 1] if and only if the ratio φ1/φ0 does the same
on an interval of the form (−∞,M ]. In the Laplace location model we are considering,
this is exactly the case as for any t < 0 < µ we obtain that the ratio (φ1/φ0)(t) equals its
minimum value e−µ.

Nonetheless, to avoid assuming that f attains its minimum value on a whole interval
while preserving some hope to obtain a consistent estimator of θ̄, some authors proposed
to rather assume that density f attains its minimum value at point x = 1. They further
assume either that f is decreasing such as in the work of Langaas et al. (2005); or that f
is regular near x = 1, such as in the work of Neuvial (2010).

Let us now discuss the different estimators proposed in the literature, starting with
those assuming (implicitly or not) that f attains its minimum value on a whole interval.
In the following, we stress the fact that it is completely equivalent to estimate θ assuming
that f vanishes (at some point, or in some interval) or to estimate only θ̄ (and making
assumptions on the set of points where f attains its infimum). First, Schweder and Spjøtvoll
(1982) suggested a procedure to estimate θ̄, that has been later used by Storey (2002). This
estimator depends on an unspecified parameter λ ∈ [0, 1) and is equal to the proportion of
p-values larger than this threshold λ divided by 1−λ. It is thus consistent only if f attains
its minimum value on the interval [λ, 1] (an assumption not made in the article by Schweder
and Spjøtvoll (1982) nor the one by Storey (2002)). Note that even if such an assumption
were made, it would not solve the problem of choosing λ such that f attains its infimum
on [λ, 1]. Adapting this procedure in order to end up with an estimate of the positive
FDR (pFDR), Storey (2002) proposes a bootstrap strategy to pick λ. More precisely, his
procedure minimizes the mean-squared error for estimating the pFDR. Note that Genovese
and Wasserman (2004) established that, for fixed value λ such that the cdf F of f satisfies
F (λ) < 1, Storey’s estimator converges at parametric rate and is asymptotically normal,
but is also asymptotically biased (thus it does not converge to θ̄ at parametric rate). Some
other choices of λ are, for instance, based on break point estimation (Turkheimer et al.,
2001) or spline smoothing (Storey and Tibshirani, 2003). Recently, Celisse and Robin (2010)
proposed an estimator of θ, relying on a histogram estimate of g, under the assumption
that f vanishes on an interval [λ?, µ?]. This estimator is shown to converge in probability
to θ. We want to stress here an important difference between Storey’s and Celisse and
Robin’s estimators. Indeed, both are constructed using nonparametric estimates ĝ of the
density g and then estimate θ (or θ̄ in Storey’s case) relying on the value of ĝ on a specific
interval. However, contrarily to Storey’s procedure, the estimator proposed by Celisse and
Robin automatically selects an interval where g is identically equal to θ̄.

Other estimators of θ̄ are based on regularity or monotonicity assumptions made on
f or equivalently on g, combined with the assumption that the infimum of g is attained
at x = 1 (thus we have θ̄ = g(1)). These estimators rely on nonparametric estimates of
g and appear to inherit nonparametric rates of convergence. Langaas et al. (2005) derive
estimators based on nonparametric maximum likelihood estimation of the p-value density, in
two setups: decreasing and convex decreasing densities f . We mention that no theoretical
properties of these estimators are given. Hengartner and Stark (1995) propose a very
general finite sample confidence envelope for a monotone density. Relying on this result
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and assuming moreover that cdf G is concave and that g is Lipschitz in a neighborhood of
x = 1, Genovese and Wasserman (2004) construct an estimator converging to g(1) = θ̄ at
rate (log n)1/3n−1/3. Under some regularity assumptions on f near x = 1, Neuvial (2010)
established that by letting λ → 1, Storey’s estimator may be turned into a consistent
estimator of θ̄, with a nonparametric rate of convergence equal to n−k/(2k+1)ηn, where
ηn → +∞ and k controls the regularity of f near x = 1.

We mention that Meinshausen and Bühlmann (2005) discuss probabilistic upper bounds
for the proportion of true null hypotheses, which are valid under general and unknown
dependence structures between the test statistics. We also mention that, in a very general
and nonparametric setup, Swanepoel (1999) proposes a two-step estimator of the minimum
of an unknown density h based on the distribution of the spacings between observations.
Assuming that in some neighborhood of the value at which the density h achieves its
minimum, h has a bounded second derivative h′′ satisfying a Lipschitz condition, Swanepoel
establishes that for any δ > 0, there exists an estimator of this infimum converging at rate
(log n)δn−2/5 to the true minimum. However, this procedure assumes that the minimum is
achieved in the interior of the support of h. As discussed above, such an assumption is not
realistic in the context of estimation of the true proportion of null hypotheses, unless the
minimum is achieved in a whole interval of the form [λ, 1].

Finally, note that we do not discuss here estimators of the proportion of non null effects
in Gaussian mixtures such as in Cai and Jin (2010); Jin (2008); Jin and Cai (2007), a related
but although different problem as the one we study.

Despite a large number of different estimation procedures of the proportion of true null
hypotheses proposed in the literature, very few results on their convergence properties exist.
In particular, none of the above mentioned estimators is shown to achieve a parametric
rate of convergence towards θ̄. Thus, natural open questions are whether it is possible to
construct an estimator converging at parametric rate; whether there exists an asymptotically
efficient estimator and what is the value of an optimal variance. Here, asymptotic efficiency
stands in the sense of a convolution theorem (see van der Vaart, 1998, Chapter 25, for more
details on efficiency theory for semiparametric models). An estimator is said to be regular
if it converges in distribution at parametric rate. According to a convolution theorem
(see Theorem 25.20 in van der Vaart, 1998), regular estimators converge in distribution to
the convolution of a Gaussian random variable with some (minimal) variance and another
random variable. Thus, an estimator is asymptotically efficient if among regular estimators,
it achieves the best limit -namely the Gaussian distribution with minimal variance. In fact
in our context, at least two different cases occur, whether density f is assumed to attain
its infimum on a set with either positive or null Lebesgue measure. We thus consider the
following semi-parametric model

P =
{
pθ,f : [0, 1]→ R+; pθ,f := θ + (1− θ)f, θ ∈ (0, 1),

f : [0, 1]→ R+ density with inf
[0,1]

f = 0
}
,

and remind once again the reader about the fact that this model is completely equivalent to
model (2). In other words, when it is not assumed that f vanishes on [0, 1] then the following
discussion remains valid replacing (θ, f) with (θ̄, f̄). In this semiparametric setup, we aim
at estimating the finite-dimensional parameter θ and consider f as a nuisance parameter.
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The main aim of our work is discussing the existence of an asymptotically efficient estimator
of θ under the two categories of identifiability assumptions mentioned above.

We shall thus consider two semiparametric submodels of P, respectively denoted by Pδ
and P0 and defined in the following sections. Model Pδ assumes that the subset of points
where f is zero has a positive Lebesgue measure whereas in model P0, it has a null measure.
We first compute a lower bound for the local asymptotic minimax (LAM) quadratic risk for
estimating θ in model Pδ and then look for the existence of a

√
n-consistent estimator of θ

in this model. We prove that this
√
n-consistency is achieved by the estimator previously

proposed by Celisse and Robin (2010). By doing that, we improve the results known on the
convergence properties of this estimator. Indeed, we recall that Celisse and Robin (2010)
established only convergence in probability of their estimator and did not establish that it
achieves a parametric rate of convergence. Then, looking for an efficient estimator among
the regular ones (namely among those converging at parametric rate), we conjecture that
no
√
n-consistent estimator is efficient in this model. In a second part, we prove that the

efficient information matrix for estimating θ in model P0 is zero. This implies both that the
LAM quadratic risk at parametric rate is not finite and that if there exists a

√
n-consistent

estimator in this model, it can not have finite asymptotic variance. We stress that this does
not necessarily imply that

√
n-consistent estimators do not exist in model P0. However,

the only rates of convergence obtained until now in this case are nonparametric ones.

The article is organized as follows. Section 2 is devoted to the easiest case (from an
estimation perspective) where it is assumed that f vanishes on a set with positive Lebesgue
measure. In Section 2.1, we compute a lower bound of the LAM quadratic risk for estimating
θ in model Pδ and give conditions under which an estimator is asymptotically efficient in the
sense of a convolution theorem. Since the former lower bound for the LAM quadratic risk
is positive, it is natural to look for an estimator converging at parametric rate, and then for
an efficient one. Thus in Section 2.2, we establish the consistency properties (almost sure
convergence and

√
n-consistency) of the estimator previously proposed by Celisse and Robin

(2010). In Section 2.3, we recall a general method (one-step estimators) of construction of
efficient estimators relying on first step

√
n-consistent ones. Section 2.4 further discusses

the implications of semiparametric theory on the existence of efficient estimators of θ in
model Pδ. In particular, it is conjectured that no efficient estimator exists in this setup.
In a second part (Section 3), we turn to the more difficult case where f is only assumed
to vanish on a set with null Lebesgue measure. In this case, we prove that the efficient
information matrix for estimating θ is zero. Hence in this case, the LAM quadratic risk
is not finite and there is no regular estimator of the proportion θ. Some simulations are
given as an illustration in Section 4. Finally, some technical proofs have been postponed to
Appendix A.

2 Asymptotically efficient estimators of θ when f vanishes
on a set with positive Lebesgue measure

2.1 A lower bound on the LAM quadratic risk

For any fixed unknown positive parameter δ > 0, we introduce the set of densities Fδ =
{densities f on [0, 1];µ(If ) = δ}, where µ denotes Lebesgue measure and If = {x ∈
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[0, 1]; f(x) = 0}. We now consider a semiparametric submodel of P defined by

Pδ =
{
pθ,f ∈ P; pθ,f =

dPθ,f
dµ

= θ + (1− θ)f, θ ∈ (0, 1), f ∈ Fδ
}
.

In this model, we assume that the density f vanishes on a set whose Lebesgue measure
is exactly δ > 0. We aim at estimating the parameter ψ(Pθ,f ) = θ and consider f as a
nuisance parameter. We shall calculate a lower bound on the LAM quadratic risk of any
estimator of θ and we also present conditions under which an estimator is asymptotically
efficient in the sense of a convolution theorem.

Let us start by recalling some results from semiparametric theory (we refer to Chapter
25 in van der Vaart, 1998, for more details on this subject). We consider a tangent set,
denoted by Ṗδ, of the model Pδ at Pθ,f (with respect to the two parameters (θ, f)) while
l̇θ,f is the ordinary score function for θ in the model in which f is fixed and Ṗf,δ is a tangent
set for the nuisance parameter f in the model where θ is fixed. We consider the efficient
score function l̃θ,f for estimating θ and let ψ̃θ,f be the efficient influence function relative
to the tangent set Ṗδ. For any function h, let us denote Pθ,fh =

∫
hdPθ,f . We now consider

the path

ft(x) =
k(th0(x))f(x)∫
k(th0(u))f(u)du

= c(t)k(th0(x))f(x), (4)

where k(u) = 2(1 + e−2u)−1 and [c(t)]−1 =
∫
k(th0(u))f(u)du. By using Lemma 1.8 in

van der Vaart (2002), we obtain a tangent set for f given by

Ṗf,δ =
{
h ∈ L2(Pθ,f );∃h0 ∈ L1(Pθ,f ), h =

(1− θ)fh0

θ + (1− θ)f
and

∫
fh0 = 0

}
.

We remark that if l̇θ,f is the ordinary score function for θ in the model in which f is fixed,
then for every a ∈ R and for every h ∈ Ṗf,δ, we have al̇θ,f + h is a score function for (θ, f)
corresponding to the path t 7→ Pθ+ta,ft . Hence, the linear span

Ṗδ = lin
(
l̇θ,f + Ṗf,δ

)
= {αl̇θ,f + βh; (α, β) ∈ R2, h ∈ Ṗf,δ}

is a tangent set for (θ, f) at Pθ,f . This set is a linear subspace of Hilbert space L2(Pθ,f )
with infinite dimension. For every score function g in the tangent set Ṗδ, we write Pt,g for
a submodel with score function g along which the function ψ : Pθ,f → θ is differentiable.
An estimator sequence Tn is called regular at Pθ,f for estimating ψ(Pθ,f ) (relative to the
tangent set Ṗδ) if there exists a probability measure L such that

√
n
(
Tn − ψ(P1/

√
n,g)
) d−−−−−→
P1/

√
n,g

L, for every g ∈ Ṗδ.

According to a convolution theorem (Theorem 25.20 in van der Vaart, 1998), this limit
distribution writes as the convolution between the Gaussian distribution N(0, P (ψ̃2

P )) and
another distribution. Thus we shall say that an estimator sequence is asymptotically ef-
ficient at P (relative to the tangent set Ṗδ) if it is regular at P with limit distribution
L = N(0, P (ψ̃2

P )), in other words it is the best regular estimator. We shall call LAM
quadratic risk of an estimator sequence Tn (relative to the tangent set Ṗδ) the quantity

sup
E

lim inf
n→∞

sup
g∈E

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2

,
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where the first supremum is taken over all finite subsets E of the tangent set Ṗδ. According
to LAM theorem (see Theorem 25.21 in van der Vaart, 1998), this quantity is lower bounded
by the minimal variance P (ψ̃2

P ).

In the following lemma, we shall calculate the efficient information matrix and the
efficient influence function in order to establish conditions under which an estimator is
asymptotically efficient.

Lemma 1. The efficient information matrix Ĩθ,f for θ and the efficient influence function
ψ̃θ,f relative to the tangent set Ṗδ are respectively given by

Ĩθ,f =
δ

θ(1− θδ)
and ψ̃θ,f (x) =

1

δ
1{f(x)=0} − θ.

By using Theorem 25.21 and Lemma 25.23 in van der Vaart (1998), an immediate
consequence of this lemma is expressed (without any proof) in the following theorem.

Theorem 1. i) For any estimator sequence Tn we have,

sup
E

lim inf
n→∞

sup
g∈E

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2 ≥ θ(1

δ
− θ
)
,

where the first supremum is taken over all finite subsets E of the tangent set Ṗδ.
ii) A sequence of estimators θ̂n is asymptotically efficient in the sense of a convolution

theorem (best regular estimator) if and only if it satisfies

θ̂n =
1

n

n∑
i=1

1

δ
1{f(Xi)=0} + oPθ,f (n−1/2). (5)

Remark 1. i) Note that for fixed parameter value λ such that G(λ) < 1, Storey’s estimator
θ̂Storey(λ) satisfies

√
n

(
θ̂Storey(λ)− 1−G(λ)

1− λ

)
d−−−→

n→∞
N
(

0,
G(λ)(1−G(λ))

(1− λ)2

)
(see for instance Genovese and Wasserman, 2004). In particular, if we assume that f van-
ishes on [λ, 1] then we obtain that G(λ) = 1−θ(1−λ) and θ̂Storey(λ) becomes a

√
n-consistent

estimate of θ, which is moreover asymptotically distributed, with asymptotic variance

θ

(
1

1− λ
− θ
)
.

In this sense, the oracle version of Storey’s estimator that picks λ = 1−δ (namely choosing
λ as the smallest value such that f vanishes on [λ, 1]) is asymptotically efficient. Note also
that θ̂Storey(λ) automatically satisfies (5).

ii) In the same way, an oracle version of Celisse and Robin’s estimator that would
know the true interval Λ? and include the partition I = (N,λ?, µ?) in the collection of
possible partitions I would have asymptotically minimal variance and thus be efficient (see
Section 2.2 and Remark 3 for more details).
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Proof of Lemma 1. First, we can easily compute the ordinary score function l̇θ,f for θ in
the model in which f is fixed:

l̇θ,f (x) =
∂

∂θ
log[θ + (1− θ)f(x)] =

1− f(x)

θ + (1− θ)f(x)
. (6)

Define Πθ,f as the orthogonal projection onto the closure of the linear span of Ṗf,δ in
L2(Pθ,f ). We write

l̇θ,f =
( 1− f
θ + (1− θ)f

+
δ

1− θδ

)
1{f>0} +

1

θ
1{f=0} −

δ

1− θδ
1{f>0}.

We shall prove that

Πθ,f l̇θ,f (x) =
( 1− f(x)

θ + (1− θ)f(x)
+

δ

1− θδ

)
1{f(x)>0}, (7)

and then the efficient score function for θ is

l̃θ,f (x) = l̇θ,f (x)−Πθ,f l̇θ,f (x) =
1

θ
1{f(x)=0} −

δ

1− θδ
1{f(x)>0}.

In fact, we can write ( 1− f
θ + (1− θ)f

+
δ

1− θδ

)
1{f>0} =

(1− θ)fh0

θ + (1− θ)f
,

where

h0(x) =
( 1− f(x)

(1− θ)f(x)
+

δ

1− θδ
× θ + (1− θ)f(x)

(1− θ)f(x)

)
1{f(x)>0}.

Let us denote by Icf the complement of If in [0, 1]. It is not difficult to examine the condition∫
fh0 = 0. Indeed,∫ 1

0
f(x)h0(x)dx =

∫
Icf

(1− f(x)

(1− θ)
+

δ

1− θδ
× θ + (1− θ)f(x)

(1− θ)

)
dx

=
1

1− θ

[ ∫
Icf

dx−
∫
Icf

f(x)dx+
δ

1− θδ

∫
Icf

(θ + (1− θ)f(x))dx
]

=
1

1− θ

[
1−

∫
If

dx−
∫ 1

0
f(x)dx+

δ

1− θδ
(
1−

∫
If

θdx
)]

=
1

1− θ

[
− δ +

δ

1− θδ
(1− θδ)

]
= 0,

and hence ( 1− f
θ + (1− θ)f

+
δ

1− θδ

)
1{f>0} ∈ Ṗf,δ.

Therefore, it is necessary to prove that

1

θ
1{f=0} −

δ

1− θδ
1{f>0} =

1

θ(1− θδ)
1{f=0} −

δ

1− θδ
⊥ Ṗf,δ,
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where ⊥ means orthogonality in L2(Pθ,f ). In fact, for every score function

h =
(1− θ)fh0

θ + (1− θ)f
∈ Ṗf,δ with

∫
fh0 = 0,

we have ∫ 1

0

[ 1

θ(1− θδ)
1{f(x)=0} −

δ

1− θδ
]
h(x)dPθ,f (x)

=

∫ 1

0

[ 1

θ(1− θδ)
1{f(x)=0} −

δ

1− θδ
](1− θ)f(x)h0(x)

θ + (1− θ)f(x)
(θ + (1− θ)f(x))dx

=
1− θ

θ(1− θδ)

∫ 1

0
f(x)h0(x)1{f(x)=0}dx−

(1− θ)δ
1− θδ

∫ 1

0
f(x)h0(x)dx = 0.

This establishes (7). Let us now calculate the efficient information matrix

Ĩθ,f = Pθ,f (l̃2θ,f )

=

∫ 1

0

( 1

θ2
1{f(x)=0} +

δ2

(1− θδ)2
1{f(x)>0}

)
(θ + (1− θ)f(x))dx

=
δ

θ
+

δ2

(1− θδ)2
(1− θδ) =

δ

θ(1− θδ)
> 0.

Using Lemma 25.25 in van der Vaart (1998), we remark that the functional ψ(Pθ,f ) = θ is
differentiable at Pθ,f relative to the tangent set Ṗδ with efficient influence function given by

ψ̃θ,f (x) = Ĩ−1
θ,f l̃θ,f (x)

=
θ(1− θδ)

δ

(1

θ
1{f(x)=0} −

δ

1− θδ
1{f(x)>0}

)
=

1− θδ
δ

1{f(x)=0} − θ1{f(x)>0}

=
1

δ
1{f(x)=0} − θ.

We can thus conclude that a lower bound on the minimax quadratic risk for estimating θ
is Pθ,f (ψ̃2

θ,f ) = Ĩ−1
θ,f = θ(δ−1 − θ).

2.2 A
√
n-consistent estimator of θ

In this section, we shall introduce the estimator of the parameter θ proposed by Celisse and
Robin (2010). In particular, we specify some assumptions that establish its almost sure
convergence and

√
n-consistency. Throughout this section, we shall always assume that the

density f belongs to L2([0, 1]).

Assumption 1. Density f is null on an interval [λ?, µ?] ⊂ (0, 1] (with unknown values λ?

and µ?) and f is monotone outside the interval [λ?, µ?].

For example, f is decreasing on [0, λ?] and increasing on [µ?, 1]. This assumption is
stronger than Assumption A’ in Celisse and Robin (2010), the latter not being sufficient to
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establish the result they claim (see the proof of Lemma 4 for more details). The monotonicity
part of our assumption is not necessary and we shall explain what is exactly required and
how we use the previous assumption in the proof of Lemma 4. Under Assumption 1, the
true parameter θ is equal to g(x) for all x in [λ?, µ?]. Note that the case where we impose
µ? = 1 is included in this setting. The general idea underlying the estimator’s construction
is the following one. Let us consider a nonparametric density estimator of g. For example,
let ĝI be a histogram estimator corresponding to a partition I = (Ik)1,...,D of [0, 1], defined
by

ĝI(x) =
D∑
k=1

nk
n|Ik|

1Ik(x),

where nk = card{i : Xi ∈ Ik} is the number of observations in Ik, 1Ik is the indicator
function of Ik and |Ik| is the width of interval Ik. We estimate θ by the value of ĝI on an
interval Î which is the closest as possible to the interval [λ?, µ?].

Let us now recall more precisely the procedure for estimating θ that is presented in
Celisse and Robin (2010). For a given integer N , define IN as the set of partitions of [0, 1]
such that for some integers k, l with 2 ≤ k + 2 ≤ l ≤ N , the first k intervals and the last
N − l ones are regular of width 1/N , namely

IN =
{
I = (Ii)i : ∀i 6= k + 1, |Ii| =

1

N
, |Ik+1| =

l − k
N

, 2 ≤ k + 2 ≤ l ≤ N
}
.

Then for two given integers mmin < mmax, denote by I the collection of considered parti-
tions, defined by

I =
⋃

mmin≤m≤mmax

I2m . (8)

Every partition I in I is characterized by a triplet (N = 2m, λ = k/N, µ = l/N) and the
quality of the histogram estimator ĝI is measured by its quadratic risk. So in this sense,
the oracle estimator ĝÎ is obtained through

Î = argmin
I∈I

E[||g − ĝI ||22] = argmin
I∈I

R(I), where R(I) = E
[
||ĝI ||22 − 2

∫ 1

0
ĝI(x)g(x)dx

]
.

However, for every partition I, the quantity R(I) depends on g which is unknown. Thus Î
is an oracle and not an estimator. It is then natural to replace R(I) by an estimator. In
Celisse and Robin (2008, 2010), the authors use leave-p-out (LPO) estimator of R(I) with
p ∈ {1, . . . , n−1}, whose expression is given by (see Celisse and Robin, 2008, Theorem 2.1)

R̂p(I) =
2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
. (9)

The best theoretical value of p is the one that minimizes the mean-square error (MSE) of
R̂p(I), namely

p?(I) = argmin
p∈{1,...,n−1}

MSE(p, I) = argmin
p∈{1,...,n−1}

E
[(
R̂p(I)−R(I)

)2]
.

It clearly appears that MSE(p, I) has the form of a function Φ(p, I, α) (see Celisse and
Robin, 2008, Proposition 2.1) depending on the unknown vector α = (α1, α2, . . . , αD) with
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αk = P(X1 ∈ Ik). A natural idea would be to replace the αks in Φ(p, I, α) by their empirical
counterparts α̂k = nk/n and an estimator of p?(I) is therefore given by

p̂(I) = argmin
p∈{1,...,n−1}

M̂SE(p, I) = argmin
p∈{1,...,n−1}

Φ(p, I, α̂).

The exact calculation of p̂(I) may be found in Theorem 3.1 from Celisse and Robin (2008).
Hence, the procedure for estimating θ is the following one

1. For each partition I ∈ I, define p̂(I) = argmin
p∈{1,...,n−1}

M̂SE(p, I),

2. Choose Î = (N̂ , λ̂, µ̂) ∈ argmin
I∈I

R̂p̂(I)(I) such that the width of the interval [λ̂, µ̂] is

maximum,

3. Estimate θ by θ̂n = card{i : Xi ∈ [λ̂, µ̂]}/[n(µ̂− λ̂)].

Remark 2. In our procedure, we consider the set of natural partitions defined by (8), while
Celisse and Robin (2010) use the one defined by

I =
⋃

Nmin≤N≤Nmax

IN .

This change is natural for lowering the complexity of the algorithm and has no consequences
on the theoretical properties of the estimator. In particular, if we assume the function f
vanishes on an interval [1 − δ, 1], then the complexity of the algorithm is simpler when we
consider the following set of partitions

I =
⋃

mmin≤m≤mmax

I2m ,

where

IN =
{
I(k) = (Ii)i=1,...,k+1 : ∀i ≤ k, |Ii| =

1

N
, |Ik+1| =

N − k
N

, 1 ≤ k ≤ N − 2
}
.

Let us now study the almost sure convergence and
√
n-consistency of this estimator.

First, we present some lemmas whose proofs have been postponed to Appendix A. The two
first ones are proved for all partitions of [0, 1] without relying on Assumption 1, while in
Lemma 4 we assume that the function f satisfies Assumption 1. This hypothesis is stronger
than Assumption A’ in Celisse and Robin (2010), the latter not being sufficient to establish
their result (see discussion in the proof of Lemma 4). We mention that in their simulations,
Celisse and Robin (2010) use a function f satisfying our assumption. In Lemma 3, we im-
prove the results of convergence on LPO risk estimator established in Proposition 2.1 and
Corollary2.1 from Celisse and Robin (2010). Indeed, we prove its almost sure convergence
and asymptotic normality.

For each partition I, let us denote by FI the vector space of piecewise constant functions
built from the partition I and gI the orthogonal projection of g ∈ L2([0, 1]) onto FI . The
mean square error of a histogram estimator ĝI can be written as the sum of a bias term
and a variance term

E[||g − ĝI ||22] = ||g − gI ||22 + E[||gI − ĝI ||22].
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Lemma 2. Let I = (Ik)
D
k=1 be an arbitrary partition of [0, 1]. Then the variance term of

the mean square error of a histogram estimator ĝI is bounded by C/n, where C is a positive
constant. In other words,

E[||gI − ĝI ||22] = O
( 1

n

)
.

Lemma 3. Let I = (Ik)1,...,D be an arbitrary partition of [0, 1]. Define L(I) = ||gI−g||22 the

bias term of the mean square error of a histogram estimator ĝI and L̂p(I) = R̂p(I) + ||g||22.
Let p ∈ {1, 2, . . . , n− 1} such that lim

n→∞
p/n < 1. Then we have the following results

i) L̂p(I)
as−−−→

n→∞
L(I)

ii)
√
n
(
L̂p(I)− L(I)

)
=
√
n
(
R̂p(I)−R(I)

)
+ 1√

n
(s11 − s21)

d−−−→
n→∞

N (0, 4σ2
I ),

where
d−→ means convergence in distribution and

as−→ is almost sure convergence and

σ2
I = s32 − s2

21 with sij =
∑
k

αik
|Ik|j

,∀(i, j) ∈ N2.

Lemma 4. Let I, J be two partitions in I, then I is called a subdivision of J and we denote
I E J , if FJ ⊂ FI . Suppose that function f satisfies Assumption 1, let us consider mmax

large enough such that µ?− λ? > 21−mmax. Define N = 2mmax and I(N) = (N,λN , µN ) ∈ I
with λN = dNλ?e/N , µN = bNµ?c/N . Then for every partition I ∈ I, we have
i) If I is a subdivision of I(N), then L(I) = L(I(N)).
ii) If I is not a subdivision of I(N), then L(I) > L(I(N)).

In the two following theorems, we shall improve the properties of estimator θ̂n with
respect to those obtained in Theorem 2.1 in Celisse and Robin (2010). Indeed, the latter
establish only a convergence in probability, while we shall prove the almost sure convergence
and
√
n-consistency of θ̂n.

Theorem 2. (Almost sure convergence of θ̂n). Suppose that density f satisfies Assump-
tion 1 and furthermore,

∀I ∈ I, 8s11s21 − 2s2
11 + 8s32 − 10s2

21 − 4s22 6= 0, s21 − s22 − s32 + 3s11 6= 0. (10)

Then for mmax large enough, we have θ̂n
as−−−→

n→∞
θ.

Proof. First, we remark that under conditions (10), Celisse and Robin prove in their Propo-
sition 2.1 that

p̂(I)

n

as−−−→
n→∞

l∞(I) ∈ [0, 1).

Denoting by Λ? = [λ?, µ?] and Λ̂ = [λ̂, µ̂], we may write

θ̂n = θ + (θ̂n − θ)1Λ̂⊆Λ? + (θ̂n − θ)1Λ̂*Λ?

= θ +
∑

I=(2m,λ,µ):[λ,µ]⊆Λ?

[
1

n(µ− λ)

n∑
i=1

1{Xi ∈ [λ, µ]} − θ

]
1{λ̂ = λ, µ̂ = µ}

+(θ̂n − θ)1Λ̂*Λ? . (11)
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For each partition I = (2m, λ, µ) such that [λ, µ] ⊆ Λ?, applying the strong law of large
numbers we get that

1

n(µ− λ)

n∑
i=1

1{Xi ∈ [λ, µ]} as−−−→
n→∞

P(Xi ∈ [λ, µ])

µ− λ
= θ.

Since the cardinality card(I) of I is finite and does not depend on n, in order to finish the
proof, it is sufficient to establish that

(θ̂n − θ)1Λ̂*Λ?
as−−−→

n→∞
0.

In fact, if Λ̂ * Λ? then Î is not a subdivision of I(N). Using Lemma 4, we have L(Î) >
L(I(N)). Let

γ = min
I5I(N)

L(I)− L(I(N)) > 0, (12)

where I 5 I(N) means that I is not a subdivision of I(N). We obtain that

|θ̂n − θ|1Λ̂*Λ? ≤ (N + θ)1{L(Î)− L(I(N)) ≥ γ} ≤

(N + θ)1{|L̂p̂(Î)(Î)− L(Î)|+ |L̂p̂(IN )(I
N )− L(IN )|+ L̂p̂(Î)(Î)− L̂p̂(I(N))(I

(N)) ≥ γ}

≤ (N + θ)1{2sup
I∈I
|L̂p̂(I)(I)− L(I)|+ L̂p̂(Î)(Î)− L̂p̂(I(N))(I

(N)) ≥ γ}.

By definition of Î, we have L̂p̂(Î)(Î)− L̂p̂(I(N))(I
(N)) ≤ 0, so that

|θ̂n − θ|1Λ̂*Λ? ≤ (N + θ)1{sup
I∈I
|L̂p̂(I)(I)− L(I)| ≥ γ

2
} (13)

≤ (N + θ)
∑
I∈I

1{|L̂p̂(I)(I)− L(I)| ≥ γ

2
}.

Since ∀I ∈ I, we both have L̂p(I)
as−−−→

n→∞
L(I) and p̂(I)/n

as−−−→
n→∞

l∞(I) ∈ [0, 1) as well as the

fact that R̂p(I) (given by (9)) is a continuous function of p/n, we obtain L̂p̂(I)(I)
as−−−→

n→∞
L(I).

Therefore,

1{|L̂p̂(I)(I)− L(I)| ≥ γ

2
} as−−−→

n→∞
0.

Indeed, if Xn
as−→ X then ∀ε > 0, we have 1{|Xn − X| ≥ ε} as−→ 0. It thus follows that

(θ̂n − θ)1Λ̂*Λ?
as−→ 0. We finally get that θ̂n

as−→ θ.

Remark 3. As previously noted in ii) from Remark 1, an oracle version of Celisse and
Robin’s estimator relying on the true interval Λ? would have asymptotically minimal vari-
ance and thus be efficient. However, from an expression such as (11), it is not possible to
ensure in general that

√
nθ̂n has asymptotic variance equal to θ(|Λ?|−1 − θ).

In the following, the expression OP(1) denotes a sequence that is bounded in probability.
A sequence estimator Tn of θ is said to be

√
n-consistent if

√
n(Tn − θ) = OP(1). We

remark that if Tn is asymptotically normal then Tn is
√
n-consistent but the converse of
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this statement is not true. In the following theorem, we shall prove the
√
n-consistency

of θn but we were not able to prove its asymptotically normality. However, according
to Prohorov’s theorem, there exists a subsequence of {

√
n(θ̂n − θ)}n that converges in

distribution to some random variable Z.

Theorem 3. (
√
n-consistency of θ̂n). Suppose that density f satisfies the hypotheses of

Theorem 2, then for mmax large enough, θ̂n is
√
n-consistent.

Proof. We may write as in the proof of Theorem 2,

√
n(θ̂n − θ) =

∑
I=(2m,λ,µ):[λ,µ]⊆Λ?

√
n
[ 1

n(µ− λ)

n∑
i=1

1{Xi ∈ [λ, µ]} − θ
]
1{λ̂=λ,µ̂=µ}

+
√
n(θ̂n − θ)1{Λ̂*Λ?}.

For each partition I = (2m, λ, µ) such that [λ, µ] ⊂ Λ?, by applying the central limit
theorem, we get that

√
n
[ 1

n(µ− λ)

n∑
i=1

1Xi∈[λ,µ] − θ
] d−−−→
n→∞

N
(

0, θ
( 1

µ− λ
− θ
))
.

Hence, using again that card(I) is finite,

∑
I=(2m,λ,µ):[λ,µ]⊆Λ?

√
n
[ 1

n(µ− λ)

n∑
i=1

1Xi∈[λ,µ] − θ
]
1λ̂=λ,µ̂=µ = OP(1). (14)

We shall now prove that
√
n(θ̂n− θ)1Λ̂*Λ?

P−−−→
n→∞

0. In fact, according to (13), for all ε > 0,

we have

P(
√
n|θ̂n − θ|1Λ̂*Λ? > ε) ≤ P(Λ̂ * Λ?)

≤ P(sup
I∈I
|L̂p̂(I)(I)− L(I)| ≥ γ

2
)

≤
∑
I∈I

P(|L̂p̂(I)(I)− L(I)| ≥ γ

2
) −−−→
n→∞

0,

where γ is defined by (12). Therefore,
√
n(θ̂n − θ)1Λ̂*Λ? = oP(1). We finally conclude that

√
n(θ̂n − θ) = OP(1).

Note that the difficulty in establishing asymptotic normality of θ̂n comes from the fact
that there are many different terms in the left-hand side of equation (14) and we did not
succeed in proving that Î = I(N) a.s for large enough n.

2.3 General overview of one-step estimators

In this section, we introduce the one-step method to construct an asymptotically efficient
estimator, relying on a

√
n-consistent one (see van der Vaart, 1998, Section 25.8). Let

θ̂n be a
√
n-consistent estimator of θ, then θ̂n can be discretized on grids of mesh width
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n−1/2. Suppose that we are given a sequence of estimators l̂n,θ(·) = l̂n,θ(·;X1, . . . , Xn) of
the efficient score function l̃θ,f . Define with m = bn/2c,

l̂n,θ,i(·) =

{
l̂m,θ(·;X1, . . . , Xm) if i > m,

l̂n−m,θ(·;Xm+1, . . . , Xn) if i ≤ m.

Thus, for Xi ranging through each of the two halves of the sample, we use an estimator l̂n,θ,i
based on the other half of the sample. We assume that, for every deterministic sequence
θn = θ +O(n−1/2), we have

√
nPθn,f l̂n,θn

Pθ,f−−−→
n→∞

0, (15)

Pθn,f‖l̂n,θn − l̃θn,f‖2
Pθ,f−−−→
n→∞

0, (16)∫
‖l̃θn,fdP

1/2
θn,f
− l̃θ,fdP

1/2
θ,f ‖

2 −−−→
n→∞

0. (17)

Then, the one-step estimator defined as

θ̃n = θ̂n −
( n∑
i=1

l̂2
n,θ̂n,i

(Xi)
)−1

n∑
i=1

l̂n,θ̂n,i(Xi),

is asymptotically efficient at (θ, f) (see van der Vaart, 1998, Section 25.8). This estimator
θ̃n can be considered a one-step iteration of the Newton-Raphson algorithm for solving an
approximation of the equation

∑
i l̃θ,f (Xi) = 0 with respect to θ, starting at the initial

guess θ̂n.

In the next section, we discuss a converse result on necessary conditions for existence
of an asymptotically efficient estimator of θ and its implications in model Pδ.

2.4 Existence of efficient estimators of θ in model Pδ

Under condition (17), it is shown in Theorem 7.4 from van der Vaart (2002) that the
existence of an asymptotically efficient sequence of estimators of θ implies the existence of
a sequence of estimators l̂n,θ of l̃θ,f satisfying (15) and (16). In our case, it is not difficult
to prove that condition (17) holds. As a consequence, we obtain the following proposition.

Proposition 1. The existence of an asymptotically efficient sequence of estimators of θ in
model Pδ is equivalent to the existence of a sequence of estimators l̂n,θ of the efficient score
function l̃θ,f satisfying (15) and (16).

Proof. Let us first establish that condition (17) holds. In fact, with the notation pθ,f =
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θ + (1− θ)f , we have∫
‖l̃θn,fdP

1/2
θn,f
− l̃θ,fdP

1/2
θ,f ‖

2 =

∫ 1

0

(
l̃θn,f (x)

√
pθn,f (x)− l̃θ,f (x)

√
pθ,f (x)

)2
dx

≤ 2

∫ 1

0

(
l̃θn,f (x)− l̃θ,f (x)

)2
pθn,f (x)dx+ 2

∫ 1

0
l̃2θ,f (x)

(√
pθn,f (x)−

√
pθ,f (x)

)2
dx

≤ 2

∫ 1

0

[ 1

θn
− 1

θ
+
( 1

θ(1− θδ)
− 1

θn(1− θnδ)

)
1{f(x)>0}

]2
pθn,f (x)dx

+2

∫ 1

0

[1

θ
− 1

θ(1− θδ)
1{f(x)>0}

]2 (θn − θ)2(1− f(x))2(√
pθn,f (x) +

√
pθ,f (x)

)2dx

≤ 2

∫ 1

0
(θn − θ)2

[ 1

θθn
+

δ(θ + θn) + 1

θθn(1− θδ)(1− θnδ)
1{f(x)>0}

]2
pθn,f (x)dx

+2

∫ 1

0
(θn − θ)22

[ 1

θ2
+

1

θ2(1− θ)2

] (1− f(x))2(√
θn +

√
θ
)2dx

≤ (θn − θ)2
[C
θ2

+
C(1 + 2Cθ

θ2(1− θ)2

]2
+ C(θn − θ)2

[ 1

θ3
+

1

θ3(1− θ)2

]
= O

( 1

n

)
,

where C is some positive constant. Thus, according to Theorem 7.4 from van der Vaart
(2002), the existence of an asymptotically efficient sequence of estimators of θ is equivalent
to the existence of a sequence of estimators l̂n,θ satisfying (15) and (16).

The estimator l̂n,θ of the efficient score function l̃θ,f must satisfy both a ”no-bias” (15)
and a consistency (16) condition. The consistency is usually easy to arrange, but the ”no-
bias” condition requires a convergence to zero of the bias at a rate faster than 1/

√
n. In

our model, the efficient score function l̃θ,f is given by

l̃θ,f (x) =
1

θ
− 1

θ(1− θδ)
1{f(x)>0},

so that we must estimate the set If and its measure δ in order to estimate l̃θ,f . To our
knowledge, the rate of convergence of (the bias of) such level-sets estimators is nonpara-
metric (see Báıllo et al., 2001; Cadre, 2006; Mason and Polonik, 2009). Thus, it is likely
that there does not exist an asymptotically efficient sequence of estimators of θ in model
Pδ.

3 Asymptotically efficient estimators of θ when f vanishes
on a set with null Lebesgue measure

We now consider a second submodel of P given by P0 =
{
pθ,f ∈ P : θ ∈ (0, 1), f ∈ F0

}
,

where F0 = {density f on [0, 1] such that µ(If ) = 0}. This model is a limiting case of
model Pδ when δ → 0. It corresponds to a difficult case with respect to estimation in
model (1), where density f vanishes only on a subset of null Lebesgue measure. We recall
that estimators constructed under this setup (and assuming moreover either regularity or
monotonicity properties on f) exhibit nonparametric rates of convergence. Besides, the
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results of Theorem 1 suggest that no estimator of θ can have finite asymptotic variance at
rate

√
n in this case. By using for instance the path given by Equation (4), we obtain a

tangent set for f ,

Ṗf,0 =
{
h ∈ L2(Pθ,f );∃h0 ∈ L1(Pθ,f ), h =

(1− θ)fh0

θ + (1− θ)f
with

∫ 1

0
fh0 = 0

}
.

In the following lemma, we shall prove that the ordinary score l̇θ,f belongs to this tangent
set Ṗf,0. So the efficient information matrix Ĩθ,f for θ is equal to 0 and we can prove that
relative to the tangent set Ṗ0 = lin

(
l̇θ,f + Ṗf,0

)
, there is no regular estimator sequence for

θ or equivalently, the minimax quadratic risk is not finite.

Lemma 5. The efficient information matrix Ĩθ,f for θ relative to the tangent set Ṗ0 is
equal to 0. Moreover, the functional ψ(Pθ,f ) = θ is not differentiable at Pθ,f relative to the
tangent set Ṗ0.

Proof. First, we prove that the ordinary score function l̇θ,f for the parameter θ belongs to
this tangent set Ṗf,0. Indeed, let the function

h0 =
1− f

(1− θ)f
1{f>0}.

Since µ(If ) = 0, we have
∫
fh0 = 0 and according to (6), we obtain

l̇θ,f =
(1− θ)fh0

θ + (1− θ)f
, µ− almost everywhere,

so that l̇θ,f ∈ Ṗf,0. Then, the efficient information matrix Ĩθ,f is equal to 0. Now, we
show that the functional ψ(Pθ,f ) = θ is not differentiable at Pθ,f relative to the tangent set
Ṗ0 = lin

(
l̇θ,f + Ṗf,0

)
= Ṗf,0. In fact, if this were true, there would exist a function ψ̃θ,f

such that

a =
∂

∂t
ψ(Pθ+ta,ft)

∣∣∣∣
t=0

= 〈ψ̃θ,f , al̇θ,f + h〉, ∀a ∈ R, h ∈ Ṗf,0,

where 〈·, ·〉 denotes scalar product in L2(Pθ,f ). Choosing h = l̇θ,f , we obtain a = (a +
1)〈ψ̃θ,f , l̇θ,f 〉 for every value a ∈ R, which is impossible.

Theorem 4. For any estimator sequence Tn we have,

sup
E

lim inf
n→∞

sup
g∈E

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2

= +∞,

where the first supremum is taken over all finite subsets E of the tangent set Ṗ0.

Proof. We first remark that the tangent set Ṗ0 is a linear subspace of L2(Pθ,f ) with infinite
dimension. So we can choose an orthonormal basis {hi}∞i=1 of Ṗ0 such that for every m,
l̇θ,f /∈ Ṗ0,m := lin(h1, h2, . . . , hm). We thus have

sup
E

lim inf
n→∞

sup
g∈E

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2

≥ sup
F

lim inf
n→∞

sup
g∈F

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2

,
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where E and F range through all finite subsets of the tangent sets Ṗ0 and lin
(
l̇θ,f + Ṗ0,m

)
,

respectively. The efficient score function for θ corresponding to the tangent set lin
(
l̇θ,f +

Ṗ0,m

)
is

l̃θ,f,m = l̇θ,f −
m∑
i=1

< l̇θ,f , hi > hi 6= 0,

where < ·, · > stands for the scalar product in L2(Pθ,f ). Moreover, the efficient information
matrix Ĩθ,f,m = Pθ,f (l̃2θ,f,m) is nonsingular. Using Lemma 25.25 from van der Vaart (1998),
we remark that the functional ψ(Pθ,f ) = θ is differentiable at Pθ,f relative to the tangent
set lin

(
l̇θ,f + Ṗ0,m

)
with efficient influence function ψ̃θ,f,m = Ĩ−1

θ,f,m l̃θ,f,m. So we can apply
Theorem 25.21 from van der Vaart (1998) to obtain that

sup
F

lim inf
n→∞

sup
g∈F

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2 ≥ Ĩ−1

θ,f,m.

Since Ĩθ,f,m −−−−→
m→∞

0, we have

sup
E

lim inf
n→∞

sup
g∈E

EP1/
√
n,g

[√
n
(
Tn − ψ(P1/

√
n,g)
)]2 ≥ Ĩ−1

θ,f,m −−−−→m→∞
+∞.

Remark 4. Using Theorem 2 in Chamberlain (1986), we can conclude that there is no reg-
ular estimator sequence for θ relative to the tangent set Ṗ0. This result implies that if there
exists a

√
n-consistent estimator in model P0, it can not have finite asymptotic variance.

It does not imply that
√
n-consistent estimators do not exist in model P0, namely, we could

have
√
n(θ̂ − θ) = OP(1) for some estimator θ̂ but then Var(

√
nθ̂) → +∞. However, we

note that the only rates of convergence obtained until now in this case are nonparametric
ones.

4 Simulations

In this section, we give some illustrations of the previous results on some simulated experi-
ments and explore the non asymptotic performances of the estimators previously discussed.
We choose to study the rates of convergence of Celisse and Robin (2010)’s estimator and a
one-step estimator of θ̄, the latter being constructed from the former. For each estimator
θ̂n of θ̄, we compare the quantity nE[(θ̂n − θ̄)2] with the optimal variance θ̄(δ−1 − θ̄) when
this bound exists. Equivalently, we compare the logarithm of mean squared error (MSE)
of each estimator θ̂n with − log(n) + log

(
θ̄(δ−1 − θ̄)

)
. When the alternative density f is

constant on a set with null Lebesgue measure, we only compare the slope of the line induced
by log(MSE) with the parametric rate −1. We choose to investigate the behaviour of these
two different estimators of θ̄ under two different models. The first one corresponds to the
double exponential model already mentioned in the introduction. The second model we
consider was introduced in Celisse and Robin (2010). In each case, we simulated data with
sample size n ∈ {1000; 2000; 3000; 3500; 4000; 4500; 5000} and perform R = 100 repetitions.
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In the first model, the p-value corresponding to the statistic T is defined by p-value(T ) =
1− Φ0(T ), where

Φ0(t) =

{
1
2 exp(t) if t ≤ 0,

1− 1
2 exp(−t) if t > 0,

and the density function of the p-values under the alternative is given by

f(x) =


exp(µ) if 0 ≤ x ≤ 1

2 exp(−µ),

exp(−µ)/(4x2) if 1
2 exp(−µ) ≤ x ≤ 1

2 ,

exp(−µ) if 1
2 ≤ x ≤ 1.

As already mentioned in the introduction, in this case we can only estimate θ̄ = θ + (1 −
θ)e−µ. In the second model, we simulate p-values under the alternative with distribution

f(x) =
s

λ

(
1− x

λ

)s−1
1[0,λ](x),

where λ ∈ (0, 1) and s > 1. In this case, the infimum of f is zero and we exactly recover θ.
Note that density f is always decreasing, convex when s ≥ 2 and concave when s ∈ (1, 2].
As an illustration, we represent the densities of the statistics and corresponding p-values
in Figure 1 for the first model and of the p-values in Figure 2 for the second model. The
parameter values chosen for the experiments are described in Table 1.
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Figure 1: Density functions of the statistics and p-values of the first model with θ = 0.7
and µ = 2.

In order to obtain a one-step estimator of θ̄, starting from Celisse and Robin (2010)’s
preliminary estimator, we estimate the efficient score function l̃θ,f by

l̂n,θ(x;X1, . . . , Xn) =
1

θ̄
− 1

θ̄(1− θ̄δ̂n(θ̄))
1{ĝn(x)>θ̄},

where ĝn is a kernel density estimator of the function g and δ̂n(θ̄) = 1−µ({x : ĝn(x) > θ̄}).
This may be done only when the alternative density f is constant (or vanishes) on an
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

density of p−values

pv

mixture
null
alternative 

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

density of p−values

pv

mixture
null
alternative 

Figure 2: Density function of the p-values of the second model. Left: s = 1.3, λ = 0.45 and
θ = 0.86; Right: s = 4, λ = 1 and θ = 0.7.

Model 1 Model 2
(µ, θ) (s, λ, θ)

(a) (2, 0.7) (4, 0.75, 0.9)
(b) (2, 0.85) (1.3, 0.45, 0.86)

(c) (
√

13, 0.7) (4, 1, 0.7)
(d) (5, 0.87) (1.4, 1, 0.86)

Table 1: Parameter values in each model.

interval. Thus, in cases (c) and (d) from model 2, we do not have a one-step estimator.
The results are presented in Figures 3 (first model) and 4 (second model).

According to Figures 3 and 4, the rates of convergence of the estimators are both
non-parametric. In some cases, the rate of Celisse and Robin (2010)’s estimator is nearly
parametric (green line with approximately the same slope as the red line) but with a vari-
ance always larger than the optimal bound (y-intercept larger for the green line than for
the red one). Moreover, the rate of convergence of the one-step estimator is always slower.
This may be due to the non-parametric rate of convergence of the kernel density estimator
of g used in the estimation of the efficient score function. Thus, it seems that in these
cases, the one-step method does not even keep the parametric rate of convergence of the
preliminary estimator it relies on.

Acknowledgments The authors are grateful to Cyril Dalmasso, Elisabeth Gassiat and
Pierre Neuvial for fruitful discussions concerning this work.
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Figure 3: Logarithm of the mean squared error as a function of log(n) and corresponding
linear regression for Celisse and Robin (2010)’s estimator (• and green line, respectively)
and the one-step estimator (◦ and blue line, respectively) in the first model, for different
parameter values ((a) top left; (b) top right; (c) bottom left; (d) bottom right). Red line
represents the line y = − log(n) + log

(
θ̄(δ−1 − θ̄)

)
.
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Figure 4: Logarithm of the mean squared error as a function of log(n) and corresponding
linear regression for Celisse and Robin (2010)’s estimator (• and green line, respectively)
and the one-step estimator (◦ and blue line, respectively, upper cases only) in the second
model, for different parameter values ((a) top left; (b) top right; (c) bottom left; (d) bottom
right). Red line represents the line y = − log(n) + log

(
θ(δ−1 − θ)

)
(upper cases) and the

line y = − log(n) + c for some well chosen constant c (bottom cases).
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A Appendix. Proofs of technical lemmas

A.1 Proof of Lemma 1

Note that Celisse and Robin (2010) prove that E[||g − ĝI ||22] −−−→
n→∞

0, while we further

establish that it is O(1/n). By a simple bias-variance decomposition, we may write

E[||gI − ĝI ||22] = E[||g − ĝI ||22]− ||gI − g||22.

As for the bias term, it is easy to show that

||g − gI ||22 = inf
h∈FI
||g − h||22

= inf
(ak)k∈R

[
||g||22 − 2

∫ 1

0

(∑
k

ak1Ik(x)
)
g(x)dx+

∫ 1

0

(∑
k

ak1Ik(x)
)2
dx
]

= inf
(ak)k∈R

[
||g||22 − 2

∑
k

akαk +
∑
k

a2
k|Ik|

]
= ||g||22 −

∑
k

α2
k

|Ik|
= ||g||22 − s21. (18)

Let us now calculate the mean square error of ĝI

E[||g − ĝI ||22] = ||g||22 + E
[
||ĝI ||22 − 2

∫ 1

0
ĝI(x)g(x)dx

]
= ||g||22 + E

[ ∫ 1

0

(∑
k

nk
n|Ik|

1Ik(x)
)2
dx− 2

∫ 1

0

∑
k

nk
n|Ik|

1Ik(x)g(x)dx
]

= ||g||22 + E
[∑

k

n2
k

n2|Ik|
− 2

∑
k

nkαk
n|Ik|

]
.

Since nk follows a Binomial distribution B(n, αk), we have

E[nk] = nαk and E[n2
k] = n2α2

k + nαk(1− αk).

Therefore,

E[||g − ĝI ||22] = ||g||22 +
∑
k

n2α2
k + nαk(1− αk)

n2|Ik|
− 2

∑
k

nα2
k

n|Ik|

= ||g||22 − s21 +
1

n
(s11 − s21). (19)

Using (18) and (19), we obtain the desired result, namely

E[||gI − ĝI ||22] = E[||g − ĝI ||22]− ||gI − g||22 =
1

n
(s11 − s21) = O

( 1

n

)
.
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A.2 Proof of Lemma 2

i) Since

lim
n→∞

p

n
< 1 and

nk
n

as−−−→
n→∞

αk, for all k,

we obtain that

L̂p(I) = ||g||22 +
2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
as−−−→

n→∞
||g||22 −

∑
k

α2
k

|Ik|
= ||g||22 − s21 = ||gI − g||22 = L(I).

ii) By definition of R(I) and using (19), we have

R(I) = E[||g − ĝI ||22]− ||g||22 = −s21 +
1

n
(s11 − s21).

This gives that

√
n[R̂p(I)−R(I)] =

√
n
[ 2n− p

(n− 1)(n− p)
∑
k

nk
n|Ik|

− n(n− p+ 1)

(n− 1)(n− p)
∑
k

1

|Ik|
(nk
n

)2
+s21 −

1

n
(s11 − s21)

]
=

2n− p
(n− 1)(n− p)

∑
k

1

|Ik|
[√
n
(nk
n
− αk

)]
+

(2n− p)
√
n

(n− 1)(n− p)
s11

− n(n− p+ 1)√
n(n− 1)(n− p)

∑
k

1

|Ik|
[√
n
(nk
n
− αk

)]2 − (2n− p)
√
n

(n− 1)(n− p)
s21

− 2n(n− p+ 1)

(n− 1)(n− p)
∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)]
− 1√

n
(s11 − s21)

= T1 −
2n(n− p+ 1)

(n− 1)(n− p)
∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)]
. (20)

Then, using the central limit theorem and the continuity of the function x 7→ x2, we have

√
n
(nk
n
− αk

) d−−−→
n→∞

N (0, αk(1− αk)),[√
n
(nk
n
− αk

)]2 d−−−→
n→∞

Z2
k with Zk ∼ N (0, αk(1− αk)).

It thus follows that T1 = oP(1). We now consider the remaining term in (20). We have∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)]
=

1√
n

∑
k

αk
|Ik|

nk −
√
n
∑
k

α2
k

|Ik|

=
1√
n

∑
k

αk
|Ik|
( n∑
i=1

1Xi∈Ik
)
−
√
n s21

=
1√
n

n∑
i=1

(∑
k

αk
|Ik|

1Xi∈Ik − s21

)
.
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Let us denote
Yi =

∑
k

αk
|Ik|

1Xi∈Ik − s21.

Then the random variables Y1, Y2, . . . , Yn are iid centered with variance

σ2
I = E(Y 2

1 ) = E
(∑

k

α2
k

|Ik|2
1X1∈Ik − 2s21

∑
k

αk
|Ik|

1X1∈Ik + s2
21

)
= s32 − s2

21.

By the central limit theorem, we obtain∑
k

αk
|Ik|
[√
n
(nk
n
− αk

)] d−−−→
n→∞

N (0, σ2
I ).

Combining this with (20) implies that

√
n[R̂p(I)−R(I)]

d−−−→
n→∞

N (0, 4σ2
I ).

It is easy to calculate that

√
n
(
L̂p(I)− L(I)

)
=
√
n
(
R̂p(I)−R(I)

)
+

1√
n

(s11 − s21).

Hence, we have
√
n[L̂p(I)− L(I)]

d−−−→
n→∞

N (0, 4σ2
I ),

which completes the proof.

A.3 Proof of Lemma 3

i) If I is a subdivision of I(N), then I = (N,λ, µ) with [λ, µ] ⊂ [λ?, µ?]. For example, we
may have the following situation

r r0 λN µNλ? µ? 1
IN

r r0 λN µNλ µλ? µ? 1
I

Since g is constant on the interval [λ?, µ?] ⊃ [λN , µN ] ⊃ [λ, µ], we have gI = gI(N) = g
on the interval [λN , µN ]. This implies that ||gI − g||22 = ||gI(N) − g||22.
ii) If I = (2m, λ, µ) is not a subdivision of I(N), then there are two cases to consider:
If m = mmax then [λ, µ] * [λN , µN ]. For example, we may have

r r0 λN µNλ? µ? 1
IN

r r r0 λN µNλ µλ? µ? 1
I
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Since gI = gI(N) = g on the interval [λN , µN ] and the two partitions I and I(N) restricted
to the interval [λ, µ]c ∩ [λN , µN ]c are the same, we thus have

||gI − g||22,[λ,µ]c = ||gI(N) − g||22,[λ,µ]c ,

so that

||gI − g||22 − ||gI(N) − g||22 = ||gI − g||22,[λ,µ] − ||gI(N) − g||22,[λ,µ].

Using the monotonicity of f on the intervals [0, λ?] and [µ?, 1], we get that

||gI − g||22,[λ,µ] > ||gI(N) − g||22,[λ,µ], which implies that L(I) > L(I(N)).

If m < mmax, we may have for example

r r0 λN µNλ? µ? 1
IN

r r r0 λN µNλ µλ? µ? 1
I

As before, we may show that

||gI − g||22 − ||gI(N) − g||22 ≥ ||gI − g||22,[λ,µ]c − ||gI(N) − g||22,[λ,µ]c > 0,

which completes the proof.

We remark that the assumptions in Lemma 2.1 or Theorem 2.1 in Celisse and Robin
(2010) are not sufficient to show these results. In fact, the assumption ”g is non-constant
outside Λ?” is not sufficient to imply that ‖g − gI(N)‖22 < ‖g − gÎ‖

2
2 in the case where Î is

not a subdivision of I(N). For example, let us consider the following situation

r r0 λN µN µ?λ? 1
I(N)

a bc

r r0 λN µN µ?λ? 1
Î

Λ̂
?

a b

We may then calculate that

‖g − gÎ‖
2
2 − ‖g − gI(N)‖22 = (c− a)(α1 − α)2 + (b− c)(α2 − α)2,

where

α =
1

b− a

∫ b

a
g(x)dx, α1 =

1

c− a

∫ c

a
g(x)dx, α2 =

1

b− c

∫ b

c
g(x)dx.

So that if the function g satisfies α = α1 = α2 (and g is non-constant outside Λ?) then
‖g − gI(N)‖22 = ‖g − gÎ‖

2
2.
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