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FAST NIELSEN-THURSTON CLASSIFICATION OF BRAIDS

MATTHIEU CALVEZ

Abstract. We prove the existence of an algorithm which solves the reducibil-
ity problem in braid groups and runs in cubic time with respect to the braid
length for any fixed braid index.

1. Introduction and statements of the main results

One of the main algorithmic decision problems regarding braids is the problem to
determine the Nielsen-Thurston type of a given braid: reducible, periodic or pseudo-
Anosov [18],[12],[17]. This problem is called the reducibility problem because it
amounts to determining whether a given non-periodic braid is reducible or not,
i.e. whether it is reducible or pseudo-Anosov. Indeed, the case of periodic braids
can be easily discarded: a braid x is periodic if and only if its nth power or its
(n − 1)st power is a power of the half-twist ∆ (see [6]); and this is easy to decide
algorithmically.

To solve the reducibility problem, two kinds of techniques were used and several
algorithms were written; however none of them works in polynomial time with
respect to the braid length for the general braid group Bn.

Firstly, the Bestvina-Handel algorithm [3] uses the theory of train-tracks and it is
valid for any mapping class group. Although this algorithm works fast in practice,
its theoretical complexity remains unknown.

Secondly, connections between the reducibility problem and the Garside structures
of braid groups have also been used for detecting reducibility (see [14] for the
definition of a Garside group, see [19], [15], [20] for an introduction to the classical
Garside structure of Bn, and [7] for the dual structure).

Benardete, Gutierrez and Nitecki initiated the Garside-theoretical approach in [1]
and [2]. Using the classical Garside structure, they showed that the reducibility of
a braid x is detectable if one knows all the elements of the super summit set of x.
Indeed, it suffices to check whether some element of the super summit set preserves
a family of round curves. The same can be done with the dual Garside structure
and standard curves replacing round curves [9]. Unfortunately, both algorithms are
exponential because they demand computing the whole super summit sets, which in
both structures have in general exponential size with respect to both braid length
and braid index (see [26], [22]).

2010 Mathematics Subject Classification. 20F36, 20F10, 20F65.
The author’s doctoral studies are supported by a grant ARED from Région Bretagne. This

work was also partially supported by the Spanish Project MTM2010-19355.

1



2 MATTHIEU CALVEZ

In [24], Lee and Lee replaced the above condition about some element of the super
summit set of a reducible braid x by the condition that every element of the ultra
summit set of x preserves a family of round curves. However this was shown at the
cost of a technical hypothesis about the external and internal components of x.

In the special case of the four-strand braid group B4, a polynomial-time algorithm
for solving the reducibility problem was constructed in [11]. This is achieved by
showing that every element of the (classical) super summit set of a given reducible
4-braid with a reduction curve surrounding three punctures preserves a round or
an almost-round curve.

The recent paper by González-Meneses and Wiest [23] presents a new algorithm
for solving the reducibility problem in arbitrary braid groups, whose complexity is
polynomial, both in braid length and braid index, modulo a conjecture regarding
the speed of convergence of the cyclic sliding operation s ([20]).

In the present paper we will partially prove this conjecture (see Theorem 2 below)
and obtain our algorithm as a modification of the algorithm by González-Meneses
and Wiest. Therefore we will always make use of the classical Garside structure
since the work in [23] fits in the classical context. We refer to [23] for any definition
regarding Garside-theoretical notions needed below.

In the braid group Bn endowed with the classical Garside structure, we define the
length |x| of a braid x as the minimal possible length of a word representing x
whose letters are divisors of ∆ and their inverses. We notice that for any braid x,
the canonical length ℓ(x) (in the sense of [15]) satisfies the inequality ℓ(x) 6 |x|.

We can now state our main result:

Theorem 1. Let n be a positive integer. There exists an algorithm which decides
the Nielsen-Thurston type of any given braid x with n strands and runs in time
O(|x|3).

We warn the reader that Theorem 1 is only an existence result. We will actually
describe an algorithm which is not well-defined because we do not know explicitly
the constant C(n) in Theorem 2, which comes from Masur-Minsky’s conjugacy
bound [25]. Nevertheless, the existence of this constant is one of the keys for
proving Theorem 1:

Theorem 2. There exists a constant C(n) (depending only on n) such that for
any pseudo-Anosov n-strand braid x ∈ SSS(x), the following holds: x has a rigid
conjugate if and only if sC(n)·|x|(x) is rigid.

Theorem 2 gives a partial solution to a long-standing problem (see Conjecture 3.5
in [23]): in the pseudo-Anosov rigid case, starting from a super summit element,
Theorem 2 guarantees that a rigid conjugate (or equivalently an element of the
sliding circuits set) is found after only C(n) · |x| iterations of cyclic sliding (in other
words, if a pA super summit braid has rigid conjugates, then the cyclic sliding
operation converges towards one of them in linear time with respect to braid length).

The importance of the rigid case comes from the following result, which will play
a crucial role in our proof of Theorem 1. It is due to Birman, Gebhardt and
González-Meneses:



FAST NIELSEN-THURSTON CLASSIFICATION OF BRAIDS 3

Theorem 3. [4]. Let x ∈ Bn be a pseudo-Anosov braid. There exists a positive

integer m < (n(n−1)
2 )3 such that xm is conjugate to a rigid braid.

In order to prepare the description of the algorithm promised in Theorem 1, we
now recall the two following results from [23]:

Theorem 4. ([23], Theorem 5.16). Let x ∈ Bn be a non-periodic, reducible braid
which is rigid. Then some essential reduction curve of x is round or almost-round.
More precisely, there is some positive integer k 6 n such that one of the following
holds:

(1) xk preserves a round essential curve,

(2) inf(xk) and sup(xk) are even and either ∆− inf(xk)xk or x−k∆sup(xk) is a
positive braid preserving an almost-round essential reduction curve whose
interior strands do not cross.

Theorem 5. ([23], Theorem 2.9). There is an algorithm which decides whether a
given positive braid x preserves an almost-round curve whose interior strands do
not cross. Its complexity is O(ℓ(x)n4).

We are now ready to describe the algorithm promised in Theorem 1. It takes as
input an n-braid x. The output is “periodic”, “reducible” or “pseudo-Anosov”.

1. If xn−1 or xn is a power of ∆, return “periodic” and stop.

2. For i = 1, . . . , (n(n−1)
2 )3 − 1 compute xi. Iteratively apply cyclic sliding

to xi until the canonical length has not decreased during the n(n−1)
2 −1 last

iterations. This computes yi ∈ SSS(xi). Then compute zi = sC(n)·|yi|(yi).
If none of the zi’s is rigid return “reducible” and stop. Else let j be such
that zj is rigid.

3. For k = 1, . . . , n, apply the algorithm in [1] to the braid zkj to test whether
it preserves a round curve; apply the algorithm in Theorem 5 to both braids

∆− inf(zk
j )zkj and z−k

j ∆sup(zk
j ). If a round or an almost-round reduction curve

is found, then return “reducible” and stop.
4. Return “pseudo-Anosov”.

As mentioned above, we remark that this algorithm, and specifically Step 2, is not
well-defined because the constant C(n) is not explicitly known. In the next section,
we will prove Theorem 2, show the correctness of the above algorithm and study
its complexity.

2. Proofs of our results

We start with some more words about the braid length | · | defined above. Let us
consider the length of n-braid words on the set of divisors of ∆ and their inverses.
By [16] and [14], there exists a unique decomposition of any braid of the form a−1b,
with a, b in B+

n and a ∧ b = 1. This is called the mixed canonical form. Moreover,
if a = a1 . . . ak and b = b1 . . . bl are the left normal forms of a and b respectively
(with possibly some factors equal to ∆), it is shown in [13] Lemma 3.1 that the
word a−1

k . . . a−1
1 b1 . . . bl is a geodesic in the Cayley graph of Bn with respect to the
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set of divisors of ∆. Therefore, the length |x| of a braid x is the length of its mixed
canonical form.

In order to prove Theorem 2, we need to combine two important results. The first
one is a general fact due to Masur and Minsky about the length of conjugators in
mapping class groups. Although the range of surfaces considered by Masur and
Minsky is much broader, only the (n + 1)-times punctured sphere Sn+1 (n > 2) is
relevant for our purposes, so we state their result in this special case:

Theorem 6. ([25], Theorem 7.2). Let G be any generating set of the modular
group MCG(Sn+1). There exists a constant γ(G), depending only on G, such that
any pair of conjugate pseudo-Anosov mapping classes can be related by a conjugating
element w satisfying

|w|G 6 γ(G)(|x|G + |y|G),

(where | · |G denotes the word length with respect to the chosen generating set G).

We aim at an analogous result for braids, namely we want to show:

Proposition 7. There exists a constant c(n), depending only on n such that any
pair of conjugate pseudo-Anosov n-braids can be related by a conjugating element w
satisfying

|w| 6 c(n)(|x|+ |y|).

Proof. We recall that Bn/
〈

∆2
〉

can be seen as the mapping class group of an n-
times punctured closed disk (with boundary fixed setwise). For a braid x in Bn, let
us denote by x̂ its image in the quotientBn/

〈

∆2
〉

. The set of simples in the classical

Garside structure of Bn induces a word length on the quotient Bn/
〈

∆2
〉

which we
denote by || · || (notice that for any braid x, ||x̂|| 6 |x|). Collapsing the boundary
of the n-times punctured closed disk to a puncture in the sphere Sn+1, we can view
Bn/

〈

∆2
〉

as the finite index subgroup of MCG(Sn+1) consisting of the mapping
classes which fix the (n+1)st puncture. The groupMCG(Sn+1) is equipped with the
generating set Gn consisting of the Garside generators of Bn (or more precisely their
image in the quotient Bn/

〈

∆2
〉

) together with a rotation by an angle of 2π
n+1 (notice

that for any u ∈ Bn/
〈

∆2
〉

, we have |u|Gn
6 ||u||). In this setting, the inclusion

of the finite index subgroup Bn/
〈

∆2
〉

→֒ MCG(Sn+1) is a Lipschitz embedding,

i.e. there exists a constant κ(n) such that for any u ∈ Bn/
〈

∆2
〉

, the inequality
||u|| 6 κ(n)|u|Gn

holds.

Now, given a pair of conjugate pseudo-Anosov n-braids x and y, we know a conju-
gating element between x̂ and ŷ, say υ in the quotient Bn/

〈

∆2
〉

. Masur-Minsky’s
proof of Theorem 6 constructs a “short” conjugating element υ′ between x̂ and ŷ
in MCG(Sn+1). The mapping class υ′ is the product x̂mυ, for some integer m and
therefore υ′ actually belongs to the subgroup Bn/

〈

∆2
〉

of MCG(Sn+1). Moreover,

|υ′|Gn
6 γ(Gn)(|x̂|Gn

+ |ŷ|Gn
) 6 γ(Gn)(||x̂||+ ||ŷ||)

and we get

||υ′|| 6 κ(n)γ(Gn)(||x̂||+ ||ŷ||).

Finally, as
〈

∆2
〉

is the center of Bn, and because a braid x conjugate to y cannot

be conjugate to ∆2ky for k 6= 0, any lifting of υ′ in Bn conjugates x to y and we
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can choose one, say w, so that |w| = ||υ′||. Therefore, taking c(n) = κ(n)γ(Gn)
achieves the proof of Proposition 7. �

The next step towards Theorem 2 is a general fact about Garside groups. It explains
that if a super summit element has a rigid conjugate, then iterated cyclic sliding is
the shortest way of obtaining such a rigid conjugate.

Theorem 8. [20]. Let x ∈ Bn and assume that x is conjugate to a rigid braid.

(1) There exists a unique positive braid f(x) such that xf(x) is rigid and f(x) 6 g
for any positive braid g such that xg is rigid.

(2) If y ∈ SSS(x), then (unless y is already rigid) there exists some positive

integer k such that f(y) =
∏k

i=1 p(s
i−1(y)). That is, f(y) is the product

of the k conjugating simple elements involved when applying k iterations of
cyclic sliding to y.

Now, the proof of Theorem 2 is just a combination of both of the previous results.

Proof of Theorem 2. Let x be a pseudo-Anosov n-strand braid such that x ∈ SSS(x).
Let us assume that x has a rigid conjugate z. By Proposition 7, there exists w ∈ Bn

such that z = xw and |w| 6 c(n)(|x|+ |z|). Since x, z ∈ SSS(x), we have |x| = |z|.
Let r be the number of negative factors in the mixed canonical form of w. If r
is even, then w′ = ∆rw is a positive braid conjugating x to z (recall that ∆2 is
central). Otherwise r is odd and w′ = ∆r+1w does the same job. In either case,
we get a positive braid w′ conjugating x to z with |w′| 6 |w| + 1 6 (2c(n) + 1)|x|
(we may assume that |x| > 1).

Let k and f(x) =
∏k

i=1 p(s
i−1(x)) be as in Theorem 8. Then f(x) 6 w′. It follows

that |f(x)| 6 |w′|. Let q = n(n−1)
2 be the length of ∆ with respect to the atoms.

As the braid f(x) is a product of k simple elements, we have k
q
6 |f(x)|. It finally

follows that k 6 q · (2c(n) + 1)|x|. Thus taking C(n) = n(n−1)
2 · (2c(n) + 1) (which

depends only on n), we have shown the following: x has a rigid conjugate if and
only if sC(n)·|x|(x) is a rigid braid (notice that sm(z) = z for any rigid braid z and
any integer m ∈ N). 2

We notice that Theorem 2 can be shown as well in the dual setting but we will not
need this. We now turn to the proof of Theorem 1, showing the correctness of the
algorithm in the Introduction and studying the complexity of each step.

Proof of Theorem 1. The correctness of Step 1 is shown in [6]. This step just
consists in a computation of left normal form; therefore it takes time O(ℓ(x)2) for
any fixed n, according to [16].

Let us prove that Step 2 is correct. First, it follows from the results in [8] and [20]
that starting from any n-braid x, then either x is an element of SSS(x) or iteratively

applying the cyclic sliding operation (n(n−1)
2 −1) times to x decreases the canonical

length. Therefore for each i, the braid yi is an element of SSS(xi). Then if x is a
pseudo-Anosov braid, by Theorem 3, at least one of the braids xi (and therefore yi)
is pseudo-Anosov with a rigid conjugate and by Theorem 2 at least one of the
braids zi is rigid.
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Let us calculate the complexity of Step 2. We recall that each instance of cyclic
sliding has quadratic complexity with respect to the braid length for any given

braid index (see [21], Theorem 4.4). Therefore for any i = 1, . . . , (n(n−1)
2 )3 − 1, the

complexity of computing yi (which requires at most (ℓ(xi)−1)·(n(n−1)
2 −1) iterations

of cyclic sliding) is cubic with respect to the braid length whenever n is fixed. The
same is true for the computation of zi from yi which requires C(n)|yi| 6 C(n)i|x|
iterations of cyclic sliding.

The validity of Step 3 follows from Theorem 4. This step consists in applying the
algorithm in [1] to at most n braids of length at most nj|x| and the algorithm of
Theorem 5 to at most 2n braids of length at most nj|x|. Both of these algorithms
work in linear time with respect to the length so that Step 3 is linear with respect
to |x|. 2

We notice that the present algorithm does not always yield the knowledge of reduc-
tion curves for reducible elements (actually this failure happens when reducibility
is detected at Step 2). Thus, in view of the program in [4], [5], [6], writing an
algorithm for solving the conjugacy problem in braid groups in polynomial time
requires the following:

(i) find explicitly the constant C(n) to make the algorithm in Theorem 1 ex-
plicit. This amounts to bounding explicitly the required number of cyclic
slidings to obtain (if it exists) a rigid conjugate from a pseudo-Anosov super
summit element (see Theorem 2); alternatively this rests on the knowledge
of an explicit value for Masur-Minsky’s constant c(n) (see Proposition 7),

(ii) find reduction curves of a braid, in polynomial time, whenever the braid is
known to be reducible,

(iii) find a polynomial bound on the number of rigid braids in a given pA con-
jugacy class.

We finish with a discussion of the special case of the four-strand braid group B4. If
we want to decide the Nielsen-Thurston type of a given 4-braid, the algorithm in [11]
should rather be used instead of the present one because it is implementable and
it finds explicitly the reduction curves whenever they exist (in polynomial time).
Using the Birman-Ko-Lee structure of B4, the author together with Bert Wiest
show in a forthcoming paper [10] the existence of a bound as in (iii) (which depends
on Masur-Minsky’s constant c(4), see Proposition 7). Unfortunately, they do not
know yet how to make explicit the constant c(4) (nor C(4)), so that the cardinality
of the ultra summit set of a pseudo-Anosov rigid 4-braid is not explicitly known.
Nevertheless [10] presents a polynomial-time algorithm for solving the conjugacy
problem in B4.
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