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Abstract

The sdf-induced magnetic field has an important role in therma plasma
configurations generated by electric arcs as it generates velocity through Lorentz forces. In
the models a good representation of the magnetic field is thus necessary. Several approaches
exist to calculate the self-induced magnetic field such as the Maxwell — Ampere formulation,
the vector potential approach combined with different kinds of boundary conditions or the
Biot & Savart formulation. The calculation of the self-induced magnetic field is aone a
difficult problem and only few articles of the thermal plasma community speak on this
subject. In the present study different approaches with different boundary conditions are
applied on two geometries to compare the methods and their limitations. The calculation time
is aso one of the criteria for the choice of the method and a compromise must be found
between method precision and computation time. The study shows the importance of the
current carrying path representation in the electrode on the deduced magnetic field. The best
compromise consists of using the Biot & Savart formulation on the walls and/or edges of the
calculation domain to determine the boundary conditions and to solve the vector potentia in a
2D system. This approach provides results identical to those obtained using the Biot & Savart

formulation over the entire domain but with a considerable decrease of cal culation time.
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| Introduction

The aim of this study is to asses various methods used to determine the contribution of
the self-induced magnetic field created by the presence of the electric arc in thermal plasma
modelling.

Numerous formulations have been proposed over the years to estimate the self-
induced magnetic field in DC or AC thermal plasma configurations. Chronologically, the first
formulation, in the eighties, was the Maxwell — Ampere (M.A.) form which has been used in
two-dimensiona (2D) modelling in numerous articles such as Hsu [1] or Lowke [2]. It isvery
convenient in 2D on a structured grid but not really suited to an unstructured one. Moreover,
it cannot be used in three dimensional (3D) modelling and due to the evolution of the models
from 2D to 3D, alternatives formulations have been chosen in the nineties.

In order to estimate the self-induced magnetic field in 3D cases, the best way should
be to use the Biot & Savart (B&S) equation. Some authors have chosen this formulation [3-5].
Nevertheless, for each point of the calculation domain it requires volume integration which
can consume more than 90% of the computational time. Instead of using the B&S
formulation, almost all authors use the potential vector (PV) approach ([6-11] for example).
The advantage of this formulation is that each vector potential component can be written as
one equation having the same form as the generalized equation used as for the fluid
description.

Nevertheless, the use of the PV formulation implies that care should be taken in the
choice of boundary conditions. Indeed, the potentia vector should be equal to zero at infinity.
This specific condition cannot be reached in al models (problems in constricted parts and
necessity to assume a large calculation domain). This point has been studied by some authors
in RF plasmas configurations where people propose to calculate the magnetic field in an
extended domain [12][13] or by B&S equations [12]. In AC/DC, in order to overcome this
problem, the authors very often consider a null flux as boundary condition for vector potential
components at the modelled geometry edges [9-10] or avalue equal to zero if the boundary is
far from the arc [6-8]. Very few authors, as He-Ping Li [11], propose, only for three
dimensional DC configurations the use of Biot & Savart equation as a boundary condition for
potential vector.

In this article, we want to point out that the MA formulation can be used only in the
event of zero axia gradient of the current density. We would show that the use of the

potential vectors without good boundary conditions can lead to wrong results and also to



conclude on an aternative solution by studying a mixed method based on B&S and P.V.
formulations.

In order to present the study and the developments, a simple 2D configuration of a
transferred arc burning in argon at atmospheric pressure has been chosen. A fluid model is
used. For the electromagnetic part, the three “classical” formulations presented above (MA,
PV and B&S) and the “mixed approach” are used to estimate the self-induced magnetic field.
A comparison is made on the results obtained with a current intensity value equal to 600A and
we conclude on the importance of correctly taking into account the formulation for the self-
induced magnetic field description.

In the first section, we present the model and we detail various formulations to
estimate the self-induced magnetic field and particularly the mixed solution. The first results
obtained for an academic case corresponding to a cylinder crossed by a constant current
intensity will be presented to validate our approach. Then the methods are applied to two
geometries to test the method validity. The limits of the method are given in the conclusion.

[1/ The model
1/ Fluid model

In order to describe the arc, we used a stationary fluid model. The Navier - Stokes
equation is solved coupled with the mass and energy conservation equations. All these

equations are written in the form of the generalised conservation equation (1) where @ is the
variable solved, p the mass density, V the vel ocity vector, Iy the diffusion coefficient and S

the source term. In our case, we consider this equation in a 2D axisymetrical stationary

configuration. All the equations solved for the fluid model are summarized in table 1.
ﬁ(p(/qo): ﬁ(r¢ﬁ¢)+ S, Q)

In tablel, v, and v, represent the radial and axia velocity components respectively, h is the
enthalpy, kK and p the thermal conductivity and the viscosity. P is the pressure, j, and j, the
radial and axial current density components, o and C, the electrical conductivity and the heat

capacity, €, the net emission coefficient.



2/ Electric and el ectromagnetic model

a) Electric potentia equation

In order to describe the electrical properties of the arc, we solved the potential scalar
equations designated by the variable V presented in table 2.

From this potential, the axia and radial current density components j, and j, (equations (7-8))
are calculated.

j=-0%
’ 0z )
=02
' or 8

b) Electromagnetic models

In this study, we used four different formulations to estimate the self-induced
magnetic field:

— The Maxwell — Ampere equation (MA)

— TheBiot & Savart equation (B&S)

— The potential vector with null flux boundary conditions (PVNF)

— The potentia vector with null value boundary conditions (PVNV)

— Themixed formulation: Potential vector with B& S boundary conditions (MF)

- Maxwell Ampere equation
In the eighties and nineties some authors (for example [1-2]) proposed to calculate the
self-induced magnetic field by using the equation:

R
Lo
=—|rjdr 9
R{Jz ©)

In this equation (9), R is the integrated radius where the axial component of the current
density exists, and o the vacuum permittivity. From this equation the azimuthal magnetic
field induced by the arc current is calcul ated.

This equation comes from the Maxwell-Ampere equation:



O0B= 4, | (10)

Nevertheless, equation (10) is avectoria equation and must be verified for each component of
the magnetic field vector. So, in case of an axisymetrical system, two equations must be
satisfied for the azimuthal magnetic field:
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Assuming only equation (9) to deduce the azimuthal component ignores equation (12) and
considers Bg invariant with the axial coordinate. Moreover, this formulation is only suitablein

structured 2D cases.

- Biot & Savart formulation

It is possible to obtain the magnetic field using the B& S equation:

—

(13)

To use this equation integration over the whole volume must be done for each point. This
formulation isvalid in 2D as well asin 3D geometries. Some authors have proposed the self-
induced magnetic field be calculated by using this approach [3-5]. Nevertheless, the B&S
formulation uses alarge part of the computational time as integration over the volume must be

done for each point of the mesh.

- Potential vector formulation with null flux boundary condition or null value boundary
condtion
Nowadays, in order to estimate the magnetic field amost all authors use the potential vector

formulation:



B=0O0OA (14)
Where A is the potential vector which must verify equation (15), under the Poisson Gauge
condition.

ATA= gy ] (15)

In 2D axisymetrical configuration this leads to the three following equations:
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Thisformulation is very useful as equations (16) and (17) can be written in the general
form of equation (1) giving a correct estimation of the self-induced magnetic field, taking into
account all the components of the current density. Nevertheless, with this formulation a

problem remains concerning the choice of the boundary conditions. Indeed, it is generaly

considered that the components of potential vector A tend to zero at an infinite distance. As
infinity cannot be reached in the calculation domain, amost al authors consider a null flux
for the boundary conditions of equations (16) and (17) or a null value far from the arc [6-10].
In this study, we will call this approach potential vector formulation with null flux boundary
condition (PVNF) and the approach with a null value of the potential vector (PVNV)

- Potential vector formulation with B & S boundary condition
Another way to obtain the values of the potentia vector components consists in using
the B& S formulation:

At fff ] @9

T volume [ — r



Obvioudy, the resolution of equation (19), like that of equation (13), is time consuming.
Nevertheless, it can only be used in boundary conditions, whereas within the computational
domain equations (16-18) should be used to obtain the self-induced magnetic field. We call
this the mixed formulation (MF)

The development of equation (15) in axisymetrical cases requires the use of elliptical
integrals. The mathematical approach used is presented in annex A.

11/ Validation of the electromagnetic models

To validate the magnetic field formulations presented above, we defined a theoretical
case consisting of, a constant current density, crossing a cylinder as presented in figure 1. The
cylinder has a radius of 2mm and is 40mm long. We assumed that it is crossed by a constant
current density of 4.10°A/m? resulting to a current of 50A. The current is uniformly
distributed in the central part (r<R). R isthe radius of the part where the axial current density
isnot equal to zero.

The length of the cylinder is ten-fold its diameter. For this geometry, it is possible to

assume analytical equationsfor A, and Be:

H 2
Ba(r):M if r>R

g (20)
Ba(r):#"—zer if r<R

A )= A 0)- 25 Zen L] i >

Z (21)
A(r)= Az(o)—% if r<R

These equations correspond to the case of an infinite cylinder but, in the present case,
arevalid in the center plane of the cylinder (central linein figure 1)
Calculations were made for the PVNF, PYNV and the MF models. A comparison of the
results obtained for the three approaches and the theoretical data given by equation (20) for
the azimuthal value of the magnetic field are compared in figure 2.

In the cylinder (r<R=2mm), a good agreement was found between the theoretical
result and the magnetic field calculated with the three approaches (MF, PVNV and PVNF).



Outside the cylinder, where there is no current, the MF and PVNV approaches give a better
estimation of the magnetic field than PVNF. This is clearly due to the null flux boundary
condition in the PVNF calculation. However, at the same time, this ssmple case does not
consider a current density variation in axial or radial directions and only the axial component
was considered. It is known that the distance of the boundary condition from the conducting
zone can affect the accuracy of the results [12-13]. This point will be studied further in the
geometry involving the electric arc.

IV/ Study of PVNF and M F approachesin thermal plasmas

1/ Geometries studied

In order to study the influence of various magnetic field formulations on the arc
behaviour, we compared two academic configurations, presented in figure 3. In both cases we
consider atransferred arc.

The first geometry (Geoml), consists of a cathode (AA'BB') (radius 2mm , length
5mm) and an anode (YY'ZZ") (3.5mm; 4mm). Near the cathode, an inlet (BC) is assumed.
Segment (CDW) is awall located 15mm from the axis. Segment (WXY) is a pressure outlet
enabling plasma flow out of the domain. This first geometry was chosen large enough for the
arc to be able to expand freely within the volume. It is intended to be representative of a kind
of free burning arc.

The second geometry Geom2 was constructed to be representative of cases where the
plasma is more constricted (like in plasma torches or circuit breaker configurations).
Moreover, with this geometry we can observe the influence of the distance between the arc
fringes and the radial boundary conditions. Also, we can study if ignoring the radial current
density component in some formulations leads to a poor estimation of the self-induced
magnetic field. Geom2 has the same electrode dimensions as Geom1. The inlet dimension
(BC) is unchanged. Segment (CDEFG) is a wall that constitutes a convergent - divergent
nozzle. Lines 1&2 are radial segments where quantities such as the temperature, the velocity
or the magnetic field will be presented.

The choice of these two geometries was made to evaluate the influence of the
magnetic field calculation for different thermal plasma configurations.

2/ Arc parameters and boundary conditions




In both Geom1l and Geom2, air plasma at atmospheric pressure is assumed. The
current intensity is equal to 600A and the mass inlet flow (BC boundary) is 25NI/min. The
boundary conditions, except for the potential vectors, are given in table 3.

Concerning the electrical potential, a parabolic profile is imposed on the cathode tip.
Thisis given by equation (22) where jma is the maximum value of the current density (chosen
equal to 1.2 10° A/m?) and R the radius verifying equation (24) for current intensity I. The
radial component of the current density is assumed equal to zero.

r

i()=j.. (- 2 if r <Rea 22

J2 (1) = e Rcat) if r (22)

i,(r)=0 if > Rea (23)
Reat

| =27 [ jrdr (24)

3/ Boundary conditions for the magnetic field

In order to compare the various formulations, we considered several cases, described
in table 4 for Geom1 and table 5 for Geom2. The generic number of the cases n°” X-Y” where
X corresponds to the number of the geometry and Y the number of the case. All the cases and
formulations are presented above and summarized in table 6.

- Cases 1-1, 1-2, 1-3: In some cases, we applied the mixed formulation by taking into account
the current density distribution only within the plasma. Nevertheless, current densities also
exist in the electrodes and particularly in the cathode. This current in the cathode plays a non-
negligible role on the potential vector amplitude and thus on the magnetic field. In order to
study the influence of the cathode, we tested three cases. In case 1-2 only the current density
distribution within the plasma is taken into account. In case 1-1 a constant distribution of the
axial current density is imposed within the cathode. In the last case (case 1-3) a null flux of
the potential vector components near the electrodes is assumed. For case 1-1, a constant
distribution for j, within the cathode is used. Indeed, Gonzalez [14] have shown that the
profile of the current density in the cathode is almost constant and that the change of this
constant profile to a more complex one at the boundary between the electrode and the plasma

occursonly in avery thin zone.



- Cases 1-4, 1-5: Case 1-4 is devoted to the results of the PVNF formulation applied to
Geoml. This case corresponds to the way this method is usually used in the literature.
Nevertheless, to complete and compare the results with case 1-1, we have studied the PVNF
formulation taking into account the current density within the cathode (like for case 1-1). This
corresponds to case 1-5.

- Case 1-6 is devoted to the test of the PVNV formulation. Nervetheless, due to the results of
cases 1-4 and 1-5, only the case taking into account the current density in the cathode is

presented.

- Case 1-7 concerns the situation using the MA formulation in Geom1.

- Cases 2-1, 2-2, 2-3, and 2-4 are arepetition of cases 1-1, 1-4, 1-5 and 1-7 for the constricted
geometry Geom2.

- Cases 2-5, 2-6, 2-7 and 2-8 : As Geom?2 is constricted, we have aso tested to impose the
boundary conditions for the potential vector in a “radially” extended domain. Thus, for case
2-5 the domain is extended up to the radial value of segment (WX) (that is to say 15mm) and
PVNF is applied. Case 2-6 corresponds to the same extended domain but with PVNV
formulation. Finally, cases 2-7 and 2-8 are PVNF calculations for an extended radial domain

up to respectively 9mm and 6mm.

4/ Results for Geoml.

a) General results for Geoml

First, we present “general” results obtained with geometry Geoml1. As shown below,
the more correct results are obtained by case 1-1. So temperature fields, velocity and current
density components are proposed for this case in figures 4&5 in order to present the general
properties of the arc created. In the right hand of figure 4, it is seen that a temperature
maximum of 31kK is reached on the axis near the cathode. On the axis, the temperature
decreases from this maximum to 12kK near the anode. Along the radial direction the arc
expands as expected for this kind of geometry. Concerning the velocity a maximum of
1500m/s is reached under the cathode. In this area, the velocity is essentially created by the
Lorentz force produced by the interaction of the self-induced magnetic field and the current

densities of the plasma. The velocity decreases along the axis.



The components of the current density in the geometry are presented in figure 5. The
axial component j, is maximal on the cathode where the parabolic condition (22) is imposed.
As it exists an expansion of the arc, there is an increase of the conductive section along the
axis and thus a decrease of the magnitude of the axial current density. Within the cathode, the
constant axial current density that we assumed can be observed. Concerning the radial
component of the current density, it is maximal near the cathode with a value of around -7 10’
A/m?. This maximum is out of the axis. The magnitude of the radial current density decreases

away from the cathode.

b) Influence of the magnetic field formulation in Geoml

In this section, we compare the magnetic field obtained for the different cases (Table
4). The magnetic field obtained in case 1-1 is presented in figure 6. We can see that it is
maximal on the side of the cathode with a value of around -70mT. This magnetic field is
compared on the right part of figure 6 to the one obtained by a numerical calculation of
equation (13) for al points of the geometry. We can conclude to a good agreement between
the two cases. The magnetic field representation found for case 1-1 is similar to that deduced
from the B& S formulation. Due to the good agreement, the other case will be compared with
case 1-1. Asthe B&S formulation is the exact one, the comparison validates the MF method
taking the current circulation in the cathode into account.

In figure 7, a comparison is given between case 1-1 (MF where the current in the
cathode is considered) and case 1-2 (MF where the current in the cathode is not considered).
The am now was to study if the current circulation on the cathode really needs to be
considered as this point is never presented in the literature. Dashed lines correspond to levels
A to K for case 1-1 (Left hand side). These lines are reported on the right hand side, related to
case 1-2. The dashed lines must therefore be compared to the continuous lines. All figures
involving a magnetic field use a similar representation. The magnitude of the magnetic field
obtained in case 1-2 in the vicinity of the upper electrode is clearly smaller than in case 1-1,
with a value near the cathode equal to -60mT. This will lead to differences on the estimated
convective Lorentz forces. Axiadly, even if the behaviour of the magnetic field obtained in the
two cases is similar, the values obtained without taking the current in the cathode into account
remain smaller than those obtained in case 1-1. From this point, we can therefore conclude
that the authors who consider the MF (like He Ping Li [11]) or B&S formulation without

considering the current in the cathode, underestimate the magnetic field.



In figure 8, we compare case 1-1 and case 1-3, where null flux is considered for
potential vector components on the arc attachment locations. In case 1-3, the magnetic field
obtained near the cathode is more than 80mT and so higher than in case 1-1. Nevertheless, in
other parts of the calculation domain, the differences between the two fields are weak.

In Figure 9 we plot the magnetic field obtained considering potentia vectors with null
flux conditions applied at all the boundaries (case 1-4). In this case, neither the radial nor the
axia expansions seem to be well predicted. Furthermore, the null flux boundary condition on
the potential vector leads to an overestimation of the magnetic field close to the cathode. This
case corresponds to the most classical boundary conditions used in the literature when authors
use PVNF formulation [9-10].

In order to compare with the MF case where current density is taken into the cathode
we achieved a calculation of PVNF with this condition (case 1-5). The magnetic field
obtained is plotted in figure 10. We can observe that the magnetic field obtained for PVNF
taking into account the cathode is in quite good agreement with MF results on the centre of
the plasma. Nevertheless, in the radial direction, the differences between the two formulations
remain important.

In figure 11, comparison between case 1-1 and case 1-6 (PVNV taking into account
the cathode) is presented. We can observe that a better agreement is obtained for this case
even if PVNV condition seems to overestimate the radial values of the magnetic field.

Finally, in figure 12 we plot the magnetic field obtained by the MA equation (ignoring
equation (12), case 1-7) and MF (case 1-1). The magnetic field obtained by the MA
formulation is higher in the axia and radia directions than that obtained with the MF
formulation. The results close to the cathode are suitable compared to those obtained in other
parts of the domain such asin the vicinity of the anode.

In order to estimate the influence of these differences on arc properties, axia velocity
and temperature profiles obtained in various cases are plotted in figures 13-14-15. In figure
13), we can observe that the behaviour of the velocity profiles following the different
formulations is similar with a maximum vaue located at the position z=12mm. This
maximum decreases from 12mm to the anode position. Cases 1-3, 1-4 and 1-7 lead to similar
profile evolutions with a maximum value of 1500m/s at z=12 mm. For these three cases, the
velocity is overestimated compared to case 1-1 which corresponds to the MF taking into
account the cathode. In cases 1-1, 1-5 and 1-6 the maximum velocity value is 1350m/s. For

these three cases, the current density is taken within the cathode and the formulation used



seems not to play arole on the evolution of the velocity on the axis. This was not the case for
magnetic field values.

Finally, due to the underestimation of the magnetic field in case 1-2, the velocity is
clearly underestimated too.

The axial temperature variations following the choice of the different formulations
used to represent the magnetic fields are reported in figure 13b. Except for case 1-2, the
temperature profiles obtained for the various cases is amost the same. The most important
difference of 700K between the temperature profiles is obtained between case 1-1 and the
others at z=15mm.

We present (Figures 14a&b and Figures 15a&b) the radia evolutions for the axial
velocity and the temperature for the two sections (line 1 and line 2) represented in the
geometries of Figure 3.The velocity profiles are presented for the two lines. The conclusions
are the same for the two lines: in cases 1-3, 1-4, 1-7 an overestimation of the axial velocity is
found compared to the ones obtained in cases 1-1, 1-5 and 1-6. The velocity obtained in case
1-2 is underestimated.

The greatest difference occurs close to the axis for plasma radii lower than the
electrode. This difference becomes lower going to the anode position.

For a temperature representation, the axial and radial temperature evolutions (Figure
13b and aso Figures 15a&b) shows that MA, PVNF, MF, PVNV with or without current
circulation in the cathode are sufficient to represent the temperature field correctly.

In figures 15a& b, we present the radial temperature profiles for line 1 and line 2. The
differences in the approaches used to calcul ate the self-induced magnetic fields are very small
for temperature variation.

5/ Results for geometry 2.

In this section, we studied if the conclusions obtained with Geoml1 remain the same
for a geometry where the arc is constricted (Geomz2). All the cases studied are summarized in
table 5. First, the general results obtained in case 2-1 (M.F. With cathode) are presented.
Secondly, the influence of the approach used to calculate the self-induced magnetic field is
commented. For the second step, only PVNF, MA and MF are studied due to the fact that
boundary conditions are too close to the conduction core to apply PVNV. Finally, a study on
the position of an extended radial boundary condition for PVNF and PVNV is proposed.

a) General results for Geom2




The temperature and velocity fields obtained in case 2-1 are presented in figure 16.
For the velocity (left hand side in figure 16), the nozzle presence accelerates the fluid in order
to maintain the mass flow rate. The maximum plasma velocity is 2000m/s and is reached on
the axis at the nozzle exit. The maximum temperature (around 31kK) is obtained close to the
cathode tip. In the nozzle, the temperature decreases to 16kK at the nozzle exit.

Figure 17, the axial current density is maximum near the cathode where equation (22)
is assumed as boundary condition. Along the axis, current density decreases as conduction
radius increases. Concerning the radial current density, values up to 10° A/m? are obtained
near the cathode and at the exit of the throat of the nozzle.

b) Influence of magnetic field formulation

In this section, the influence of the magnetic field formulation is studied in geometry
2. As shown in the study with Geom1, the case where MF is used without taking into account
the electrode shows a clear underestimation of the velocity. Consequently, MF formulation
without the cathode is no longer considered.

Magnetic fields obtained in case 2-2 (PVNF), case 2-3 (PVNF with cathode) and in
case 2-4 (MA) are compared with the case 2-1 (MF with cathode) (Figures 18,19,20)

It seems clear that the estimation given by the PVNF formulation (Cases 2-2, 2-3) is
far from the reference solution (figures 18,19). These differences are present in the axial and
radia directions. Furthermore, in the nozzle, the null flux boundary condition leads to a quasi
null value of the magnetic field which is not physical. The trend obtained in the previous
geometry with the comparison of formulations MA and MF with cathode is conserved (figure
20). Thus, MA leads to an overestimation of the magnetic field in the radial direction and to a
lesser extension, in the axial direction.

As with Geoml we present the influence of the magnetic field formulation on the
velocity and temperature profiles which are plotted along the axis in figures 21a&b. The axial
velocity profile on the axis is different for the four cases. In all geometries, MA and PVNF
without taking into account the current within the cathode lead to an overestimation of the
velocity compared with MF. The greatest difference (350m/s) is obtained at z=12.5mm. Note
that differences also exist between MA and PVNF, particularly in the throat of the nozzle and
after the exit (z=25mm). For case 2-3 which corresponds to the PVNF where current in the
cathode has been taken into account, before the nozzle throat, the values of the velocity are
close to the one of the MF case. Nevertheless, after the throat, the velocity is clearly
underestimated, probably due to the bad estimation of the magnetic field.



Whereas velocities on the axis are different, the axial temperature profile does not
seem to depend on the formulation used for the magnetic field.
¢) Influence of the domain dimension for the boundary condition for PVNF..

It seems that PVNF work “well” when null flux is applied to a boundary far from the
conduction zone. In this section, we achieve a calculation, in Geom2 but with the potential
vector equation solved on an extended domain. All cases calculated are presented in table 5.

- Case 2-5 caculates the potential vectors beyond the nozzle wall in an

extended domain up to aradial boundary situated at r=15mm (in front of line
WX (figure 3)).
- Case 2-6 corresponds to the same extended domain but applying PVNV.
- Cases 2-7 and 2-8 are calculations for respectively 9mm and 6mm extended
domain.
The dimensions15mm, 9mm and 6mm have been chosen as they corresponds approximately
to respectively 5, 3 and 2 times the characteristic arc core radius. The new calculation domain
for Geom?2 is presented in figure 22. Dashed domain corresponds to the extended domain for
potential vector calculation.

The comparison of the magnetic field obtained with the mixed formulation and PVNF
with full extended domain taking into account the cathode is presented in figure 23. In the
plasma, the estimation of the magnetic field obtained with the extended domain is clearly
closer to the reference than the one obtained without the extended. Nevertheless, as obtained
for Geoml, the radial evolution far from the plasma (visible close to the anode) is badly
represented.

In order to study the influence of the dimension of the extended domain, we propose to
study the evolution of the magnetic field along the isotherm 10kK in figure 24. This isotherm
can be seen as an image of the conduction zone and its position remains the same for all cases
studied in Geom2. The evolution of magnetic field is plotted for aradial extended domain of
9mm (case 2-6) and 6mm (case 2-7). To complete the study, the magnetic field obtained with
PVNV is also presented on the same figure. The results obtained with PVNV formulation are
very close to those of the mixed formulation. For the PVNF formulation, results from 15mm
and 9mm extended domains are also close to the reference case with slight differences. When
the size of the extended domain is too reduced compared to the conduction zone (case 2-7
with 6mm extended domain), one can observe that the estimation of the magnetic field is

clearly worse.



In order to conclude on the influence of the size of the extended domain on the arc
characteristics, the evolution of the axial velocity for the various cases is represented in figure
25. For PVNF used with 15mm and 9mm extended domain and for PVNV case, the profile of
the axia velocity obtained is close to the reference one but shifted by around 50m/s. As
expected, due to differences observed on the magnetic fields calculated for the case 2-7 the
velocity profile is further away from the reference one. Nevertheless, the maximum difference
remains under 200m/s.

V/ Conclusion

The self-induced magnetic field conjugated with the current density leads to the
Lorentz forces. These forces generate velocity in the arc core and, depending on the cathode
geometry and the injected mass flow rate, can be totaly responsible for the plasma
characteristics. The self-induced magnetic field is due to current circulation not only in the
plasma but also in the electrodes. Nevertheless current circulation in the electrode is never or
rarely taken into account except in low-voltage circuit-breaker studies to represent arc
displacement [15]. Several methods exist to represent the self-induced magnetic field such as
the Biot & Savart formulation (which is the exact solution but is very time consuming), the
Maxwell Ampere formulation (in two dimensional systems), the vector potential formulation
(VP) with a null flux(PVNF) or an null value (PVNV) boundary condition on the walls. Due
to the lack of studies on this point, this article was devoted to the comparison of severa
methods in two different geometries (Geom1l and Geom?2). As the difficulty of the vector
potential formulation is the choice of the boundary conditions, we propose a mixed
formulation (MF) where the boundary values of the vector potential are determined by the
resolution of the Biot & Savart formulation written for the vector potential. As the aim was
also to obtain a satisfactory method in 2D, the éliptic integrals are used to assume the
boundary conditions. Geom2 was a confined geometry compared to Geom1, with the applied
boundary conditions close to the arc core. A study is aso proposed on the interest of
calculating the potential vector on an extended domain in such case. Table 6 summarize the
results of the study which alow conclusionsto be reached on several points:

- The sdf-induced magnetic field produced by current circulation in the cathode is
essential to represent the velocity field. For PVNF and PVNV formulations, only this
approach provides results comparable with the Biot & Savart formulation.



For a representation of the temperature field, other methods such as PVNF (Vector
potential with anull flux) or MA (Maxwell Ampere) give similar results.

When the wall boundary condition of the geometry is close to the arc core, the PVNF
formulation must be used with an extended domain on the radia direction for the
potential vector calculation. The extension of this domain should be up to 3 times the
characteristic arc core radius.

The mixed formulation provides exactly the same results as the Biot & Savart
formulation but requires much less calculation time. Indeed the triple integral is only
calculated for points along the domain edges.

The mixed formulation gives a good representation of the velocity field in the
calculation domain. Indeed even though small differences exist in the temperature
field, a wrong estimation of the self-induced magnetic field leads to large differences
in the deduced velocities.

The present study used a current intensity of 600A, in the stationary case. An increase
of the current intensity leads to an increase of the self-induced magnetic field and can
give erroneous results for the velocity field and the pressure waves in specific
configurations such as for example high-voltage circuit breakers where the current

intensity can reach 70 kA.



Appendix A

Boundary condition for A,

In order to calculate the Biot & Savart condition for A, we have to remember equation
(AD).

ALl L ffjdeChav (A1)

r
u—’ X
Figure Al
X X r
So we have in Cartesian r y| and r y |and so in cylindrical formulation r| 0 |and
z z z
r'cos(¢)
r r'@n(@') . S0 equation (A1) can be rewritten in term of cylindrical data.
z
Alrz) 1 i,(r.2) L
Ho Ho,'[n,zl [(r —r'cost )* + (r'sind )* + (z- Z)ZJ(M) rraiz (A7)

Assuming that j,is constant for 8, we have



H 1
nl(r—r'cosﬁ')2+(r'sin0') (z-2) ]1/2

Al L )
Ho all {

;do [ar' dz (A3)

If we consider elliptical integral 1, (r,r' ,a) defined by equation (A4), the integral over 0
can be written in function of 1, (r,r' ,a) written in equation (A5) in function of the complete
first order dliptical integral K(K).

11 cos(nk)
| (o) rr a)= — [do A4
© H{'J‘(r2+r'2+a2—2rr'co&9)(1/2) (A4)
KK (k
I(ooo)(r’r a)=17 (rr? (AS)
With :
(1r2)
4rr'
k= —— A6
e -
And
/2 d@
KK)= [ — (A7)

) 1-k?sin?(p)

More details can be found in [16] and [17]. From equation (A4) we can rewrite equation (A2)
interm of eliptical integral :

AZ/EZ,Z) %£ (', 2) 1o (rur 2= 2)dr dz (AB)

The strong interest of equation (A7) is that I, can be expressed in terms of K(k) and that
K (k) can be approximated by an analytical equation :

K (k)= (& + &m, + a,m? + a,m} + a,m!)

A9
+In(l/ml)(b0+blml+b2mf+bsmf+b4ml4) 49

With m;=1-k?, & and b; are constants given in [16].

Boundary condition for A,




For calculating boundary condition for A, we have to use equation (A10).

Y
ékLZﬁ@%ﬁ%W

This equation can be written in cylindrical system :

cos(¢)de
+r2+(z-z) -2 cos(H)J

dr' dz

Ho w2

—nr

Sl

Equation (A11) can be written in terms of elliptical integrals|.1,1:

A(r2)
Ho

= % J‘I" jZ(rl ’Zl)l(o,l,l)(r,rI 2~ Z')dl" dz
0

(A10)

(A1)

(A12)

The integral 1¢0,1,1) can be written in term of second and first order total elliptic integrals K(k)

and E(K)
1
l o1 = — (12— k? JK(k)-2E(k
(0.1.1) I /'(—)rr. (( ) ( ) ( )) (A13)
AsK(K) in equation (A9), E(k) can be approximated by an analytical expression [16]
E(k)= (8, + aym, + a,m’ + agm? + a,m )+ A4
In(1/ my (b, + bymy + b,m? + by + b, )
Values for the coefficients for the calculation of E(k) and K(k) are given in table A1.
a0 al a2 a3 a4
K(k) | 1.38629436112 | 0.09666344259 | 0.03590092383 | 0.03742563713 | 0.01451196212
E(k) 0 0.44325141463 | 0.06260601220 | 0.04757383546 | 0.01736506451
b0 bl b2 b3 b4
K(K) 0.5 0.12498593597 | 0.06880248576 | 0.03328355346 | 0.00441787012
E(K) 0 0.24998368310 | 0.09200180037 | 0.03328355346 | 0.00526449639

Table Al : Numerica constants for the calculation of the elliptic integrals.




Table captions

Table 1: Equations solved in the fluid model
Table 2: Vector potentia equation

Table 3: Boundary conditions for geometries Geoml & Geom?2

Table 4: Description of the magnetic field treatment for the cases studied for Geom1

Table 5: Description of the magnetic field treatment for the cases studied for Geom?2

Table 6: Summary of the studied cases and of the results on the estimation of the magnetic

field (© : Good, ©: Average ,® :Bad)
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Table 1: Equations solved in the fluid model




Name

() Mo Se

Electric potentia

V o 0, No convectiveterm

(6)

Table 2: Vector potentia equation




Ve ocity

Temperature Pressure Scalar potential
Boundary components Vv
() ) ) V)

: Current density
A"-B 3000 K - Om/s profile (22)
B-B' 300 K - Om/s a_v =0

on
B-C 300 K 25NIl/min vz Yo
v,=0 on
(Geoml) C-
D Y
(Geom?2) C- 300K - 0m/s on 0
D-E-F-G- "
H-wW
W-X-Y 300K 1atm M LA
on on
Y-Y' 300K - Om/s N =0
on
y'.7' aT _ 0 - om/s oV
on
oT oP ov, ov
A-Z' —=0 —=0 —=0 —=0
on on on on

Table 3 : Boundary conditions for geometries 1 & 2.




Geometry

Magnetic field treatment

Casel1-1

Geoml : Freely expansion

-M.F.

- Biot & Savart on (A'-B'-B-C-D-W-X-Y-Y'-Z"),
caculated from the current density within the
domain and the cathode

Case 1-2

Geoml

-M.F.

- Biot & Savart on (A'-B'-B-C-D-W-X-Y-Y'-Z",
caculated from the current density within the
domain

Case 1-3

Geoml

-M.F.

- Biot & Savat on (B'-B-C-D-W-X-Y-Y"),
caculated from the current density within the
domain

- Null flux of potential vector on (Y'-Z') and (A'-B’)

Case1-4

Geoml

- P.V.N.F., on al boundaries, without taking into
account the cathode

Case 1-5

Geoml

- P.V.N.F., on al boundaries, calculated from the
current density within the domain and the cathode.

Case 1-6

Geoml

-P.V.N.V. on (DWX) and P.V.N.F.on (Y’-Z") and
(A-B). Case calculated by taking into account the
current density within the domain and the cathode.

Case 1-7

Geoml

-M.A.

Table 4 : Description of the magnetic field treatment for the studied cases for Geom1.




Case2-1

Geom?2

-M.F.

- Biot & Savart on (A'-B'-B-C-D-E-F-G-H-W-X-Y -
Y'-Z"), calculated from the current density within the
domain and the cathode

Case 2-2

Geom?2

- P.V.N.F., on al boundaries,without taking into
account the current density within the cathode

Case 2-3

Geom?2

- P.V.N.F,, on al boundaries, taking into account
the current density within the cathode

Case 2-4

Geom?2

-M.A.

Case 2-5

Geom?2

- P.V.N.F,, on al boundaries, taking into account
the current density within the cathode and imposed
at an extended radia distance r=15mm

Case 2-6

Geom?2

- P.V.N.V. taking into account the current density
within the cathode and imposed at an extended
radial distance r=15mm. P.V.N.F. on (ABC) and
(ZYX)

Case 2-7

Geom?2

- P.V.N.F. taking into account the current density
within the cathode and imposed at an extended
radial distance r=9mm P.V.N.F. on (ABC) and
(ZYX)

Case 2-8

Geom?2

- P.V.N.F., on al boundaries, taking into account
the current density within the cathode and imposed
at an extended radial distance r=6mm

Table 5 : Description of the magnetic field treatment for the studied cases for Geomz2.




Estimation | Estimation
Boundary of the of the
i magnetic | magnetic
Number | PVNF | MA | PVNV | MF | Cathode | condition | _
fildinthe| fieldfar
Distance
core from the
core
1-2 x 15mm | average average
1-3 x 15mm average
1-4 x 15mm | average

< O m ®

Table 6: Summary of the studied cases and of the results on the estimation of the magnetic
field
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Figure Captions

Figure 1: Cylinder with a constant current density distribution

Figure 2: Azimuthal magnetic field in the middle plane of the cylinder

Figure 3: The two geometries studied: (Geoml ) free expansion geometry, (Geom?2)

constricted geometry.

Figure 4: Fields of temperature (left) and velocity magnitude (right) for case 1-1

Figure 5: Fields of current density components for case 1-1

Figure 6: Comparison of magnetic field obtained by the mixed formulation (case 1-1) and the
full Biot & Savart Calculation in case of Geoml.

Figure 7: Comparison of azimuthal components of the magnetic field obtained in case 1-1
(M.F. with cathode) and case 1-2 (MF without cathode)

Figure 8: Comparison of azimuthal component of the magnetic field obtained in case 1-1 and

case 1-3 (M.F. With null flux on the arc attachment locations. anode and cathode).

Figure 9: Comparison of azimuthal component of the magnetic field obtained in case 1-1 and
case 1-4 (P.V.N.F.)

Figure 11: Comparison of azimuthal component of the magnetic field obtained in case 1-1 and

case 1-6 (P.V.N.V.)

Figure 12: Comparison of azimuthal component of the magnetic field obtained in case 1-1 and
case1-7 (M.A))



Figure 13 a& b: Axia velocity and temperature in Geom1.

Figure 14 a & b: Veocity profilesaong lines 1 and 2 (Respectively z=12.5mm and 20mm)

Figure 15 a& b: Temperature profiles along lines 1 and 2 (z=12.5mm and 20mm
respectively)

Figure 16: Fields of temperature and of the magnitude of the velocity for case 2-1 (MF with
cathode)

Figure 17: Current density components

Figure 18: Comparison of azimuthal component of the magnetic field obtained in case 2-1
(MF with cathode) and case 2-2 (PVNF without cathode)

Figure 19: Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-3 (PVNF with cathode)

Figure 20: Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-4 (MA)

Figure 21a & b: Axia velocity (a) and the axia temperature (b) profilesin Geom?2.

Figure 22 : Geom2 with hatched extended domain

Figure 23 : Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-5 (PVNF extended domain 15mm)

Figure 24: Comparison of the magnetic field along isotherm 10kK, depending on the size of

the extended domain and the formula.



Figure 25: Evolution of the axial velocity in geom. 2 depending on the size of the extended
domain and the formulation.
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Figure 1: Cylinder with a constant current density distribution
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Figure 2: Azimuthal magnetic field in the middle plane of the cylinder
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Figure 3: The two geometries studied:
(Geoml) Free expansion geometry. (Geom?2) Constricted geometry.
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Figure 4: Fields of temperature (left) and velocity magnitude (right) for case 1-1
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Figure 5: Fields of current density components for case 1-1
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Figure 6: Comparison of magnetic field obtained by the mixed formulation (case 1-1) and the
full Biot & Savart Calculation in case of Geom1.
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Figure 7: Comparison of azimuthal component of the magnetic field obtained in case 1-1
(M.F. with cathode) and case 1-2 (MF without cathode)
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Figure 8: Comparison of azimuthal component of the magnetic field obtained in case 1-1 and
case 1-3 (M.F. With null flux on the arc attachment locations: anode and cathode)
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Figure 10: Comparison of azimuthal component of the magnetic field obtained in case 1-1 and
case 1-5 (P.V.N.F.)
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Figure 11: Comparison of azimutha component of the magnetic field obtained in case 1-1 and
case 1-6 (P.V.N.V.)
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Figure 12: Comparison of azimutha component of the magnetic field obtained in case 1-1
andcase1-7 (M.A))
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Figure 13 (a&b): Axia velocity and temperature in Geom1.
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Figure 14 a&b: Ve ocity profilesalong lines 1 and line 2
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(Respectively z=12.5mm and 20mm)
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Figure 16: Fields of temperature and of the magnitude of the velocity for case 2-1
(M.F. With cathode)
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Figure 17: Current density components for case 2-1
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Figure 18: Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-2 (P.V.N.F. without cathode)
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Figure 19: Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-3 (PVNF with cathode)




Magnetic field
(T)

0.00e+00

A -5.00e-03
B -1.00e-02
C -1.50e-02
-2.00e-02

-2.50e-02

-3.00e-02

-3.50e-02

-4.00e-02

-4.50e-02

-5.00e-02

-5.50e-02

-6.00e-02

-6.50e-02

-7.00e-02

-7.50e-02

-8.00e-02
<-8.00e-02

Figure 20: Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-4 (MA)
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Figure 21a& b: Evolution of the axia velocity (a) and or the axial temperature (b) in geom2.
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Figure 22 : Geom2 with hatched extended domain
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Figure 23 : Comparison of azimuthal component of the magnetic field obtained in case 2-1
(M.F. with cathode) and case 2-5 (PVNF extended domain 15mm)
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Figure 24: Comparison of the magnetic field along isotherm 10kK, depending on the size of

the extended domain and the formulation.
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Figure 25: Evolution of the axial velocity in geom. 2 depending on the size of the extended
domain and the formulation.
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