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Abstract—Homology theory provides new and powerful so-
lutions to address the coverage problems in wireless sensor
networks (WSNs). They are based on algebraic objects, such
as Čech complex and Rips complex. Čech complex gives accu-
rate information about coverage quality but requires a precise
knowledge of the relative locations of nodes. This assumption is
rather strong and hard to implement in practical deployments.
Rips complex provides an approximation of Čech complex. It
is easier to build and does not require knowledge of nodes
location. This simplicity is at the expense of accuracy. Rips
complex can not always detect all coverage holes. It is then
necessary to evaluate its accuracy. This work proposes to use
the area of undiscovered coverage holes per unit of surface
as performance criteria. Investigations show that it depends on
the ratio of communication and sensing ranges of each sensor.
Closed form expressions for lower and upper bounds of the
accuracy are also derived. Simulation results are consistent with
the proposed analytical lower bound, with a maximum difference
of 0.4%. Upper bound performance depends on the ratio of
communication and sensing ranges.

I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted a great deal

of research attention due to their wide potential applications

such as battlefield surveillance, environmental monitoring and

intrusion detection. Many of these applications require a

reliable detection of specified events. Such requirement can

be guaranteed only if the target field monitored by a WSN

contains no coverage holes, that is to say regions of the

domain not monitored by any sensor. Coverage holes can

be formed for many reasons, such as random deployment,

energy depletion or destruction of sensors. Consequently, it

is essential to detect and localize coverage holes in order to

ensure the full operability of a WSN.

There is already an extensive literature about the cover-

age problems in WSNs. Several approaches are based on

computational geometry with tools such as Voronoi diagram

and Delaunay triangulations, to discover coverage holes [1]–

[3]. These methods require precise information about sensor

locations. This substantially limits their applicability since

acquiring accurate location information is either expensive or

impractical in many settings. Some other approaches attempt

to discover coverage holes by using only relative distances

between neighboring sensors [4], [5]. Similarly, obtaining

precise range between neighbor nodes is costly.

More recently, homology is utilized in [6]–[8] to address the

coverage problems in WSNs. Ghrist and his collaborators in-

troduced a combinatorial object, Čech complex (also known as

nerve complex), which fully characterizes coverage properties

of a WSN (existence and locations of holes). Unfortunately,

this object is very difficult to construct as it requires rather

precise informations about the relative locations of sensors.

Thus, they introduced a more easily computable complex, Rips

complex (also known as Vietoris-Rips complex). This complex

is constructed with the sole knowledge of the connectivity

graph of the network and gives an approximate coverage by

simple algebraic calculations. As regards implementation in

real WSN, these homology based methods are necessarily

centralized, which makes them impractical in large scale

sensor networks. Some algorithms have been proposed to

implement the above mentioned ideas in a distributed context,

see [9]–[11].

As alluded above, Rips complex can not always detect all

coverage holes. For instance, in Figure 2, there exists a hole

inside the triangle [1, 2, 6] of the Čech complex though there

is no hole in the same triangle of the Rips complex. It is

thus of paramount importance to determine the proportion of

missed coverage holes to assess the accuracy of Rips complex

based coverage detection. In this paper, it is indicated that

such proportion is related to the ratio between communication

and sensing ranges of each sensor. In addition, closed form

expressions for lower and upper bounds of the proportion

are derived. A few papers [12]–[14] provide some results on

coverage probability but with a different point of view.

This paper is organized as follows. Section II introduces

the network model and the formal definition of triangular

holes. Upper and lower bounds of the area of triangular

holes per unit of surface for different values of the ratio

of communication radius by sensing radius are computed in

Section III. Simulation results are compared with theoretical

computation in Section IV. Finally, Section V concludes the

paper.
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II. MODELS AND DEFINITIONS

A brief introduction to the tools used in the paper is given.

For further readings, see [8] and references therein. Given a set

of points V , a k-simplex is an unordered set [v0, v1, ..., vk] ⊆
V where vi 6= vj for all i 6= j. So a 0-simplex is a vertex, a 1-

simplex is an edge and a 2-simplex is a triangle with its interior

included, see Figure 1. The faces of this k-simplex consist

of all (k-1)-simplex of the form [v0, ..., vi−1, vi+1, ..., vk] for

0 ≤ i ≤ k. A simplicial complex is a collection of simplices

which is closed with respect to inclusion of faces.

Fig. 1: 0-, 1- and 2-simplex

Čech complex and Rips complex are two simplicial com-

plexes defined as follows [8].

Definition 1 (Čech complex). Given a collection of sets U ,

Čech complex of U , Č(U), is the abstract simplicial complex

whose k-simplices correspond to nonempty intersections of k

+ 1 distinct elements of U .

Definition 2 (Rips complex). Given a set of points X in R
n

and a fixed radius ǫ, the Rips complex of X , Rǫ(X ), is the

abstract simplicial complex whose k-simplices correspond to

unordered (k + 1)-tuples of points in X which are pairwise

within Euclidean distance ǫ of each other.

Consider a collection of stationary sensors (also called

nodes) deployed randomly in a planar target field. As usual,

isotropic radio propagation is assumed. Each sensor monitors

a region within a circle of radius Rs and may communicate

with other sensors within a circle of radius Rc. Let V denote

the set of sensor locations in a WSN and S = {sv, v ∈ V} the

collection of sensing ranges of these sensors: For a location

v, sv = {x ∈ R
2 : ‖x − v‖ ≤ Rs}. Then, according

to the definition, the Čech complex and Rips complex of

the WSN, respectively denoted by ČRs
(V) and RRc

(V), can

be constructed as follows: [v1, · · · , vk] belongs to ČRs
(V)

whenever ∩k
l=1svl

6= ∅ and [v1, · · · , vk] belongs to RRc
(V)

whenever ‖vl − vm‖ ≤ Rc for all 1 ≤ l < m ≤ k.

Figure 2 shows a WSN, its Čech complex and two Rips

complexes for two different values of Rc. Depending on the

ratio Rc over Rs, the Rips complex and the Čech complex may

be close or rather different. In this example, for Rc = 2Rs,

the Rips complex sees the hole surrounded by [2, 3, 5, 6] as in

the Čech complex whereas it is missed in the Rips complex

for Rc = 2.5Rs. At the same time, the true coverage hole

surrounded by [1, 2, 6] is missed in both Rips complexes.

As a consequence of Rips complex definition, a hole in

a Čech complex not seen in a Rips complex is bounded by

a triangle. Based on this observation, a formal definition of

’triangular holes’ is given as follows.

(a) (b)

(c) (d)

Fig. 2: (a) a WSN, (b) Čech complex, (c) Rips Complex under

Rc = 2Rs, (d) Rips Complex under Rc = 2.5Rs

Definition 3 (Triangular hole). For a pair of complexes

ČRs
(V) and RRc

(V), a triangular hole is an uncovered region

bounded by a triangle which appears in RRc
(V) but not in

ČRs
(V).

It can easily be seen that there is one triangular hole in

the Rips complex in Figure 2(c) and there are three triangular

holes in the Rips complex in Figure 2(d). We are interested in

the proportion of the area of triangular holes in a target field.

Assume sensor nodes are distributed in the planar target field

according to a homogeneous Poisson process with intensity λ.

Because of homogeneity property, each point in the target field

has an equal probability of belonging to a triangular hole. This

probability in a homogeneous setting is equal to the proportion

of the area of triangular holes. So we only need to compute

the probability that any point belongs to a triangular hole.

III. BOUNDS ON PROPORTION OF THE AREA OF

TRIANGULAR HOLES

In this section, the conditions under which any point in the

target field belongs to a triangular hole are first given. From

the discussion in Section II, it is found that the probability that

any point belongs to a triangular hole is related to the ratio

Rc/Rs. Three different cases are considered for the probability

computation. For each case, the upper and lower bounds of the

probability are derived. Let define γ = Rc/Rs.

A. Preliminary

Lemma 1. For any point in the target field, it belongs to a

triangular hole if the following two conditions are satisfied:

1) the distance between the point and its nearest sensor is

larger than Rs.

2) the point is inside a triangle: the convex hull of three

nodes, two by two less that Rc apart.

Lemma 2. If there exists a point O which belongs to a

triangular hole, then Rs < Rc/
√
3. Furthermore, if l denotes

the distance between O and its closest neighbor, we have

Rs < l ≤ Rc/
√
3.
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Proof: Rs < l is a direct corollary from Lemma 1. We

only need to prove l ≤ Rc/
√
3. If point O belongs to a

triangular hole, it must be surrounded by a triangle formed

by sensor with pairwise distance less than Rc. Assume it is

surrounded by a triangle N0N1N2, as in Figure 3. The closest

neighbor of O is not necessarily in the set {N0,N1,N2}. If

l > Rc/
√
3, then d0 ≥ l > Rc/

√
3, d1 ≥ l > Rc/

√
3 and

d2 ≥ l > Rc/
√
3. In addition, since ∠N0ON1 +∠N1ON2 +

∠N0ON2 = 2π, there must be one angle no smaller than

2π/3. Assume ∠N0ON2 ≥ 2π/3 and denote it as α. Then

according to the law of cosines, d202 = d20+d22−2d0d2 cosα >
R2

c/3+R2
c/3−2/3RcRc cos(2π/3) = R2

c . So d02 > Rc. Since

N0 and N2 are neighbors, d02 ≤ Rc. There is a contradiction.

Therefore l ≤ Rc/
√
3.

Fig. 3: triangular point

A Poisson point process whose intensity is proportional

to the Lebesgue measure is stationary in the sense that any

translation of its atoms by a fixed vector does not change

its law. Thus any point has the same probability to belong

to a triangular hole as the origin O. This probability in a

homogeneous setting is also equal to the area of triangular

holes per unit of surface. We borrow the line of proof from

[14] where a similar problem was analyzed.

We consider the probability that the origin O belongs to

a triangular hole. Since the length of each edge in the Rips

complex must be at most Rc, only the nodes within Rc from

the origin can contribute to the triangle bounding a triangular

hole to which the origin belongs. Therefore, we only need

to consider the Poisson process constrained in the closed

ball B(O,Rc) which is also a homogeneous Poisson process

with intensity λ. We denote this process as Φ. In addition,

T (x, y, z) denotes the property that three points x, y, z are

within pairwise Euclidean distance Rc from each other, and the

origin O belongs to the triangular hole bounded by the triangle

with these points as vertices. When n0, n1, n2 are points of

the process Φ, T (n0, n1, n2) is also used to denote the event

that the triangle constructed by the nodes n0, n1, n2 bounds a

triangular hole to which the origin belongs.

Let τ0 = τ0(Φ) be the node in the process Φ which is

nearest to the origin. Assume node τ0 always contributes to

the triangle bounding the triangular hole to which the origin

belongs. Although it is possible that the node τ0 does not

contribute to the triangle bounding the triangular hole to which

the origin belongs, this probability is very low (Simulation

results show that this probability is less than 0.2% at any γ
with any intensity λ), so we can neglect it. Then the probability

that the origin belongs to a triangular hole can be defined as

p(λ, γ) =P{O belongs to a triangular hole}
=P{

⋃

{n0,n1,n2}⊆Φ

T (n0, n1, n2)}

≈P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}

Using polar coordinates, we assume the closest node τ0 lies

on (d0, π). It is well known that the distance d0 is a random

variable with distribution

Fd0
(r0) = P{d0 ≤ r0} = 1− e−λπr20 (1)

Therefore the above probability can be written as

P{
⋃

{n1,n2}⊆Φ\{τ0(Φ)}
T (τ0, n1, n2)}

=

∫

P{
⋃

{n1,n2}⊆Φ′
r0

T ((r0, π), n1, n2)}Fd0
(dr0)

(2)

where Φ′
r0 is the restriction of Φ in B(0, Rc)\B(0, r0).

B. Case 0 < γ ≤
√
3

Theorem 1. When 0 < γ ≤
√
3, p(λ, γ) = 0.

Proof: According to Lemma 2, if the origin O belongs

to a triangular hole, then Rs < Rc/
√
3. Since γ ≤

√
3, then

Rs = Rc/γ ≥ Rc/
√
3. There is a contradiction. So the origin

O can not belong to a triangular hole.

C. Case
√
3 < γ ≤ 2

Theorem 2. When
√
3 < γ ≤ 2, pl(λ, γ) < p(λ, γ) <

pu(λ, γ), where

pl(λ, γ)

=2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ π

2 arccos Rc
2r0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r1,θ1)|)r1dr1

(3)

and

pu(λ, γ)

= 2πλ2

∫ Rc/
√
3

Rs

r0dr0

∫ π

2 arccos Rc
2r0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r0,θ1)|)r1dr1

(4)

and

R1(r0, θ1) = min(

√

R2
c − r20 sin

2 θ1 − r0 cos θ1, Rc)

Proof: As we have assumed that the node τ0 must

contribute to the triangle bounding the triangular hole to which

the origin belongs, the other two nodes must lie in the different

half spaces: one in H+ = R
+ × (0, π) and the other in

H− = R
+ × (−π, 0). Since the distance to τ0 is within

Rc, they must also lie in the ball B(τ0, Rc). Furthermore,

the distance to the origin is less than Rc and larger than d0,
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they both lie in the area B(0, Rc)\B(0, d0). Therefore, one

node must lie in H+
⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0) and

the other node lie in H− ⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0).
Ordering the nodes in H+

⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0)
by increasing polar angle so that τ1 = (d1, θ1) has the smallest

angle θ1. Other nodes such as τ ′1, τ
′′
1 in the same region

have polar angle larger than θ1, as illustrated in Figure 4.

Assume the node τ1 contributes to the triangle bounding the

triangular hole to which the origin belongs, then the third

node τ2 ∈ H− ⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0) must lie to

the right of the line passing through τ1 and O, denoted by

H+(θ1). In addition, the distance to τ1 is less than Rc. So

the node τ2 must lie in the region

Fig. 4: illustration of case
√
3 < γ ≤ 2

S−(τ0, τ1) = S−(d0, d1, θ1) = H−
⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0)
⋂

H+(θ1)
⋂

B(τ1, Rc)

Here we need to obtain the density of node τ1. Considering

the way τ1 was defined, there should be no nodes with a polar

angle less than θ1, that is to say no nodes are in the region

S+(τ0, τ1) = S+(d0, θ1)

= H+
⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0)
⋂

H+(θ1)

Since the intensity measure of the Poisson process in polar

coordinates is λrdrdθ, the density Fτ1 of τ1 can be expressed

as

Fτ1(dr1, dθ1) = λr1e
−λ|S+(d0,θ1)|dr1dθ1 (5)

The integration domain D(d0) with respect to parameters

(d1, θ1) can be easily obtained. According to Lemma 2,

Rs < d0 ≤ Rc/
√
3. Thus in this case, Rc = γRs ≤

2Rs < 2d0. It means the ball B(τ0, Rc) must intersect with

the ball B(0, d0), as illustrated in Figure 4. Furthermore,

θ0 = 2arccos(Rc/(2d0)). So 2 arccos(Rc/(2d0)) ≤ θ1 ≤ π
and d0 < d1 ≤ R1(d0, θ1), where

R1(d0, θ1) = min(

√

R2
c − d20 sin

2 θ1 − d0 cos θ1, Rc)

Assume only τ0, τ1 and nodes in S−(τ0, τ1) can contribute

to the triangle bounding the triangular hole to which the origin

belongs, we can get a lower bound of the probability that

the origin belongs to a triangular hole. It is a lower bound

because it is possible that other nodes such as τ ′1, τ
′′
1 in

H+
⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0) can also contribute to

the triangle bounding the triangular hole to which the origin

belongs. Based on the assumption, we have

P{
⋃

{n1,n2}⊆Φ′
r0

T ((r0, π), n1, n2)} >

∫ ∫

D(r0)

P{
⋃

n2⊆Φ′
r0

⋂

S−(r0,r1,θ1)

T ((r0, π), (r1, θ1), n2)}Fτ1(dr1, dθ1)

=

∫ ∫

D(r0)

P{Φ′
r0(S

−(r0, r1, θ1)) > 0}Fτ1(dr1, dθ1)

(6)

Therefore, from (1), (2), (5) and (6), the lower bound shown

in (3) can be derived.

Still consider the nodes in H+
⋂

B(τ0, Rc)
⋂

B(0, Rc)\B(0, d0), each node (r, θ) corresponds to

an area |S−(r0, r, θ)|. Maybe the corresponding area of

some nodes is 0. Among all such areas, there must exist one

maximum value. From Figure 4 , we can see that the closer

to r0 is r and the closer to θ1 is θ, the larger is the area of

S−(r0, r, θ). So we have

(r0, θ1) = argmax
r0≤r≤R1
θ1≤θ≤π

|S−(r0, r, θ)|

Then the upper bound shown in (4) can be obtained.

Here we need to compute the area of S+(r0, θ1) and

S−(r0, r1, θ1). In fact, the area |S+(r0, θ1)| and the area

|S−(r0, r1, θ1)| have very similar expressions. For example,

the area |S+(r0, θ1)| can be expressed as

|S+(r0, θ1)| =
∫ θ1

2 arccos Rc
2r0

dθ

∫ R1(r0,θ1)

r0

rdr

=
1

2

∫ θ1

2 arccos Rc
2r0

R2
1(r0, θ1)dθ −

r20
2
(θ1 − 2 arccos

Rc

2r0
)

When θ1 ≤ π − arccos(r0/(2Rc))

1

2

∫ θ1

2 arccos Rc
2r0

R2
1(r0, θ1)dθ = I(θ1)− I(2 arccos

Rc

2r0
)

where

I(θ) =
r20
2

sin θ cos θ +
R2

c

2
θ − R2

c

2
arcsin

r0 sin θ

Rc

− r0
2
sin θ

√

R2
c − r20 sin

2 θ
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When π − arccos(r0/(2Rc)) < θ1 ≤ π

1

2

∫ θ1

2 arccos(Rc/(2r0))

R2
1(r0, θ1)dθ

= I(π − arccos(r0/(2Rc)))− I(2 arccos(Rc/(2r0)))

+
R2

c

2
(θ1 − π + arccos(r0/(2Rc)))

In this way, |S+(r0, θ1)| can be derived. Similarly,

|S−(r0, r1, θ1)| can be obtained. The detailed process is ne-

glected due to space limitation.

D. Case γ > 2

Theorem 3. When γ > 2, pl(λ, γ) < p(λ, γ) < pu(λ, γ),
where

pl(λ, γ) = 2πλ2
{

∫ Rc/2

Rs

r0dr0

∫ π

0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r1,θ1)|)r1dr1

+

∫ Rc/
√
3

Rc/2

r0dr0

∫ π

2 arccos Rc
2r0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20

× e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r1,θ1)|)r1dr1
}

(7)

and

pu(λ, γ) = 2πλ2
{

∫ Rc/2

Rs

r0dr0

∫ π

0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20 × e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r0,θ1)|)r1dr1

+

∫ Rc/
√
3

Rc/2

r0dr0

∫ π

2 arccos Rc
2r0

dθ1

∫ R1(r0,θ1)

r0

e−λπr20

× e−λ|S+(r0,θ1)|(1− e−λ|S−(r0,r0,θ1)|)r1dr1
}

(8)

In this case, we can use the same method as in section III.C

to get the upper and lower bounds. But we need to consider

two situations Rs < d0 ≤ Rc/2 and Rc/2 < d0 ≤ Rc/
√
3. In

the first situation, d0 ≤ Rc/2 means that the ball B(0, d0) is

included in the ball B(d0, Rc), see Figure 5. Then the lower

limit of integration for θ1 is 0. This is the only difference. The

areas |S+(r0, θ1)| and |S−(r0, r1, θ1)| can be computed in the

same way as presented in Section III.C. The second situation is

the same as that in section III.C. So we can directly obtain the

lower and upper bounds as shown in (7) and (8) respectively.

IV. SIMULATIONS AND PERFORMANCE EVALUATION

This section first introduces simulation settings. Simulation

results are then presented and compared with closed form

expressions for upper and lower bounds.

A. Simulation settings

A disk centered at the origin with radius Rc is considered

in the simulations. The probability that the origin belongs to a

triangular hole is computed. Sensors are randomly distributed

in the disk according to a Poisson process with intensity λ. The

sensing radius Rs of each node is set to be 10 meters and γ is

Fig. 5: illustration of case γ > 2

chosen from 2 to 3 with interval of 0.2. So the communication

radius Rc ranges from 20 to 30 meters with interval of 2

meters. λ is selected from 0.001 to 0.020 with interval of

0.001. For each γ, 106 simulations are run under each λ to

check whether the origin belongs to a triangular hole.

B. Performance evaluation

The probability p(λ, γ) obtained by simulation is presented

with the lower bound and upper bound in Figure 6(a) and 6(b)

respectively. It can be seen that for any value of γ, p(λ, γ) has

a maximum at a threshold value λc of the intensity.

As a matter of fact, for λ ≤ λc, the number of nodes is

small. Consequently the probability that the origin belongs to

a triangular hole is relatively small too. With the increase of λ,

the connectivity between nodes becomes stronger. As a result,

the probability that the origin belongs to a triangular hole

increases. However, when the intensity reaches the threshold

value, the origin is covered with maximum probability. p(λ, γ)
decreases for λ ≥ λc. The simulations also show that λc

decreases with the increase of γ.

On the other hand, it can be seen from Figure 6(a) and 6(b)

that for a fixed intensity λ, p(λ, γ) increases with the increases

of γ. That is because Rs is fixed. Then the larger Rc is, the

higher is the probability of each triangle containing a coverage

hole.

Furthermore, the maximum probability increases quickly

with γ ranging from 2.0 to 3.0. It is shown that when

Rc = 2Rs, the maximum probability from simulation is about

0.03% and thus it is acceptable to use Rips complex based

algorithms to discover coverage holes. While the ratio Rc/Rs

is high to a certain extent, it is unacceptable to use connectivity

information only to discover coverage holes.

Finally, it can be found in Figure 6(a) that the probability

obtained by simulation is very well consistent with the lower

bound. The maximum difference between them is about 0.4%.

Figure 6(b) shows that probability obtained by simulation is

also consistent with the upper bound. The maximum difference

between them is about 4%.
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Fig. 6: proportion of the area of triangular holes (a) simulation

results and lower bounds ; (b) simulation results and upper

bounds

V. CONCLUSION

In this paper, the proportion of the area of triangular holes

in a WSN is analyzed under different ratios between commu-

nication radius and sensing radius of each sensor. Both the

lower and upper bounds of the proportion are derived. When

the ratio is no larger than
√
3, there is no triangular hole. When

the ratio is between
√
3 and 2, both the theoretical analysis

and simulation results show that the proportion is lower than

0.06% under any intensity. It means that the triangular holes

can nearly be neglected and homology based coverage hole

detection algorithms can work well if they can discover all

non-triangular holes. When the ratio is larger than 2, the

proportion of the area of triangular holes increases with γ.

It becomes unacceptable for γ larger than a threshold. In that

case triangular holes can not be neglected anymore.
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