N
N

N

HAL

open science

Injecting Task Delegation Constraints into a Role-based
Access Control Model
Khaled Gaaloul, Erik H.A. Proper, Francois Charoy

» To cite this version:

Khaled Gaaloul, Erik H.A. Proper, Frangois Charoy. Injecting Task Delegation Constraints into a
Role-based Access Control Model. The first Workshop on Alignment of Business Process and Security

Modelling (ABPSM’11), Sep 2011, Riga, Latvia. pp.219 - 224. hal-00646869

HAL Id: hal-00646869
https://hal.science/hal-00646869
Submitted on 30 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00646869
https://hal.archives-ouvertes.fr

Injecting Task Delegation Constraints into a
Role-based Access Control Model

Khaled Gaaloul!, H.A. (Erik) Proper?, and Francois Charoy?

1 Public Research Centre Henri Tudor,
L-1855 Luxembourg-Kirchberg, Luxembourg
2 Radboud University Nijmegen
P. O. BOX 9010 6500, GL: Nijmegen, The Netherlands
3 LORIA, Université de Lorraine
BP 239, F-54506 Vandceuvre-les-Nancy Cedex, France
{khaled.gaaloul, erik.proper}@tudor.lu, charoy@loria.fr

Abstract. In role-based access control models, delegation of authority
involves delegating roles that a user can assume or the set of permis-
sions that he can acquire, to other users. Several role-based delegation
models have been proposed in the literature. However, these models con-
sider only delegation in presence of the role type, which have some in-
herent limitations to task delegation in workflow systems. In this pa-
per, we address task delegation in a workflow and elaborate a security
model supporting delegation constraints. Delegation constraints express
security requirements with regards to task’s resources, user’s assignment
and privileges (delegation of authority). Further, we show how, using a
role-based security model, we inject formalised delegation constraints to
compute delegation principals with their respective privileges.

Key words: Access control, delegation, constraints, privileges

1 Introduction

With the broad adoption of workflow management systems to model and au-
tomate business processes cross organisations, security becomes a crucial and
essential topic. Typically, activities that are part of a process are represented as
tasks. Organisations establish a set of authorisation policies that regulate how
business processes and resources should be managed within a workflow [I]. Au-
thorisation information is given which authorises users to perform tasks. Such
authorisation information may be specified using a simple access control list or
more complex role-based structures [2].

In current workflow management systems, the role-based access control
(RBAC) model is widely adopted, where system administrators assign roles to
users. It is more convenient for administrators to manage roles than to manage
users directly [3]. One important factor that affects access control (authorisa-
tion) distribution among users is delegation. Delegation involves a user passing
its authority to other users. If delegation is allowed, a delegator delegates au-
thority (a privilege) to another active entity, called the delegatee, to carry out a

2 Khaled Gaaloul et al.

task on behalf of the former. In the context of workflow systems, delegation can
be very useful for real-world situations where a user who has to perform a task
is either unavailable or too overloaded [4]. Hence, we define task delegation as a
means for assigning a task and its access rights from a delegator to a delegatee.

The concept of delegation has been presented in [I} [5]. Significant contribu-
tions to role-based delegation can be found in [6l [7]. While much of the work
in the area of delegation is limited to role-based access control, the goal of our
paper is to consider task delegation constraints in workflow systems. Delegation
constraints needs to tackle several issues with regards to workflow’s invariants
in terms of users, tasks and resources. In doing so, we need to come up with an
access control model supporting the assignment of task delegation. Delegation as-
signment deals with delegation principals (delegator, delegatee) their respective
rights (privileges) and their availability (no conflicts during task assignment). In
this paper, we extend the RBAC model of Sandhu et al. in two directions: (i)
our formal security model defines a Task-oriented Access Control (TAC) model
which is capable of supporting task assignment condition in workflows and (ii) we
leverage TAC specifications to inject delegation constraints, thereby computing
potential delegatees and their required privileges.

The remainder of this article is organised as follows. Section 2 defines work-
flow authorisation constraints during task execution. In section 3, we present a
formal security model to reason about task assignment within a workflow. This
model is used in Section 4 to integrate delegation constraints in order to com-
pute delegatees with their respective privileges. Finally, we conclude and discuss
future work.

2 Workflow Authorisation Constraints

A workflow comprises various activities that are involved in a business process.
Activities that are part of a process are represented as tasks [§]. Authorisation
information is given which authorises users to perform tasks. Such authorisation
information may be specified using a simple access control list or more complex
role-based structures [9].

We define a task execution model using an activity diagram composed of
three main activities : Initialisation, Processing and Finalisation (see Fig. [1)).
During the initialisation of the task, a task instance is created and then assigned
to a user. During task processing, the assigned user can start or delegate the
task which gathers all operations and rights over the business objects related to
task’s resources (see Definition 1). Finally, the task finalisation would notice the
workflow management system that the task is terminated, where termination
defines completeness, failure or cancellation.

Seeing a task as a block that needs protection against undesired accesses,
the activity diagram includes an access control transition which is in charge of
granting access to a task. Access control defines a transition from the creation of
a task to its assignment to a user. This assignment will lead to the processing or

Injecting Task Delegation Constraints into RBAC 3

Task
Finalisation

AC checks

Authorisation granting?
Task
Processing

Cancel

Task
Initialisation

Fig. 1. Task execution model.

the cancellation of a task. Cancellation can be triggered when an assigned user
does not fulfill the required authorisation to execute a task.

Definition 1 (Permission). P is a set of permissions. P defines the right to
execute an operation on a resource type. A permission p is a pair (f,0) where f
s a function and o is a business object. We note : P € F x O where F is a set
of functions and O is a set of business objects.

Authorisation information define the access control transition. We define a
permission as an authorisation allowing a users to perform a task. Authorisation
makes an explicit binding between a user, a task resource (business object) and
his rights over it (fuction/action). In our work, we define a task oriented access
control model based on the RBAC model. We focus on task’s requirements to
analyse and specify security constraints while accessing workflow’s data. Data
access defines permissions on business objects related to task’s resources.

3 Task-oriented Access Control Model

We propose a Task-oriented Access Control (TAC) model to support authorisa-
tion requirements in workflow systems (see Fig. [2). Authorisation information
will be inferred from access control data structures, such as user-role assignment
(URA) and task-role assignment (TRA) relations. In addition, we model per-
mission assignment relations for tasks and roles in order to support the task
execution context. The remaining relations are generic relations based on the
RBAC model [3].

Formally, we define sets U, R, OU, T, P, S and TI as a set of users, roles,
organisations units, tasks, permissions, subjects and task instances, respectively.
We use a subject to denote the time a user selects roles for a session. During
the task instantiation assignment, we create a user’s current active role set and
define it as a subject (see Fig. . For example, the user Alice with the role clerk
defines a subject to execute the instance of a task “Check credit” in a bank loan
process.

We define RH (Role Hierarchy), where RH is a partial order on R, r; and
r; € R. RH denotes that r; is a role superior to r;, as a result, r; automatically
inherits the permissions of r;.

4 Khaled Gaaloul et al.

RM

TPA

Fig. 2. Task-oriented access control (TAC) model.

We define RM (Role Mapping), where RM C OU; x OU; with OU; and
OUj two organisations units. RM defines external roles accessing distributed re-
sources cross-organisations. It provides a decentralised access control mechanism
where externally known roles are publicly available :
rr € OU; and r; € OU;, RM denotes that 7; is a role mapped to 7, as a result,
r; shares the permissions of 7.

3.1 Definitions of map relations

Formally, we define sets of relations as follows:

— URA C U x R, the user role assignment relation mapping users to roles they
are member of.

— RPA C R x P, the permission role assignment relation mapping roles to
permissions they are authorised to.

— TPA C T x P, the task permission assignment relation mapping tasks to
permissions. This defines the set of permission required to execute a task (see
Definition 2).

— TRA C T x R the task role assignment relation mapping roles to tasks they
are assigned to.

3.2 Definitions of functions

Formally, we define sets of functions as follows:

— SU:S — U a function mapping a subject to the corresponding user.

- SR:S — R, a function mapping each subject to a role, where SR(s) =
r,(SU(s),r) € URA} with a subject s having a permission p|(r,p) € RPA}.

— instance,p: T — T, a function mapping a task instance to its task type.

Injecting Task Delegation Constraints into RBAC 5

— claimedy,: T1 — S, a function mapping a task instance to a subject to execute
it. It defines the user-task assignment condition s = claimedy, (t;1) where :
{t; = instanceys(ti1),(r,u) € URA|(SR(s) = rASU(s) = w),(t;,7) €
TRA}.

3.3 Definitions of constraints

Here we discuss Separation of duty (SoD) and Binding of duty (BoD) constraints.
It defines security constraints between two tasks that compose a business pro-
cess [I0]. Such constraints help to verify whether a user is not allowed to execute
a task due to some conflicts (e.g., conflict of interest). We define an exclusive
relation between tasks for SoD, and a binding relation between tasks for BoD :

TTsop : {(t;,t;) € T x T | t; is exclusive with t;}
TTgop : {(ti,t;) € T x T | t; is binding with t;}

If (t;,t;) € TTsop, then t; and ¢; cannot be assigned to the same user.
If (t;,t;) € TTpop, then t; and t; must be assigned to the same user which
defines a binding relation between two tasks.

3.4 Model contributions

The main contribution of the TAC model is to specify the task assignment
relation where two conditions have to be verified: (1) the first condition is related
to task’s resources requirements. The role’s permissions defined in RPA (role-
permission assignment) needs to satisfy the permissions defined in TPA (task-
permission assignment). (2) the task is executed if and only if the user/role is
assigned to it. Basically, having a permission to execute a task but not being
assigned to it will not satisfy the outlined conditions and, therefore, will deny
the access to task resources.

Definition 2 (Task Assignment). A task instance t; is assigned to a user u
with an active subject s if and only if :

(t,r) € TRA = {p € P|(t,p) € TPA} C {p|(r,p) € RPA} \ claimedy, (t;) = s,
where (SR(s) =r A SU(s) = u).

The user-task assignment requires the claimeds, function. For instance, a
task t; is assigned a set of permissions based on the TPA relation in order to
carry out this task. A user u; with a role r; is assigned to ¢; if and only if
uy verifies the TRA and claimedy, conditions. However, if we consider another
user up member of same role 7; having the same permissions based on the RPA
relation but ug is not defined in claimedy, (t;), which means not assigned to this
task. In this case, us is not allowed to execute t; since he does not fulfill the
user-task assignment relation (see condition 2).

6 Khaled Gaaloul et al.

In the loan process example, let user Bob a member of role Clerk but not from
the same bank agency. Bob is not allowed to perform the task “Check credit”
since he is not assigned by the system to execute it. Within organisations, users
can share different roles but are not assigned to the same tasks. This is due to
privacy and security constraints such as the separation of duty. Therefore, we
leverage condition 2 as an additional constraint when claiming a task instance
by a user.

In the next section, we leverage the user-task assignment conditions to sup-
port task delegation assignment with regards to the delegatees and its required
privileges.

4 Access Control Over Delegation using TAC

Delegation is a mechanism that permits a user to assign a subset of his assigned
authorisations (privileges) to other users who currently do not possess it.

Definition 3 (Delegation Relation). We define a delegation relation DR C
TxUxUx2PC where T a set of tasks, U a set of users and DC a set of delegation
constraints. A task delegation relation is defined as DR = (t,u;,us,{DC}), t is
the delegated task and t € T, uy the delegator and uy the delegatee € U.

For instance, delegation constraints (DC) can be related to time or evidence
specifications [4]. In addition, organisational constraints regarding roles mapping
cross organisations or role hierarchies within an organisation define user-to-user
delegation constraints (see RM and RH relations of the TAC model in Fig. [2)).
For instance, a subordinate in an organisation hierarchy can act on behalf of his
superior where the latter is the delegator and the former is the delegatee.

Here, a delegation relation defines the main constraints to be considered when
delegating privileges with regards to users/roles, task and resources. Our focus
is to integrate such constraints in a secure manner. In doing so, we leverage the
TAC (task-oriented access control) model specifications to compute delegatees
and privileges. The TAC model allows to compute the list of potential delega-
tees using the RPA (role-permission assignment) relation that may satisfy the
delegated task requirements based on the TPA (task-permission assignment) re-
lation. In doing so, we define a method for access control over task delegation
using TAC. In the following, we detail our method and describe how valid dele-
gatees are checked and whether they need delegated privileges grant.

Input: uy,up € U;rq, 10 € R; 8, t; € T.
1. Defining the role and permission assignments for each user (URA and RPA);
2. Instantiating the task t;; and assigning it to the delegator s; who is the
current user uy;
. Checking security constraints before delegation (SoD and BoD);
4. Computing the delegatee so, who is the current user us, based on his per-
missions assignment ((¢;,pr2) € TPA) or;

w

Injecting Task Delegation Constraints into RBAC 7

5. Granting privileges for so based on the task instance permissions assignment
(prg < pra U py;) which is defined in the claimeds, function;

Output: Delegation relation instance : dr; = (t;1,81,82,{DC});

The main contribution of this method is to specify the delegated task assign-
ment conditions based on Definition 2. If the two conditions are satisfied, then
the task t; is delegated to the delegatee uy. However, if us does not have the
permission required and there is no conflicts (BoD or SoD) to execute t;. Then
the delegated privileges are granted for us based on the claimeds, function.

The computation of the privileges is based on the TRA and claimedy, spec-
ifications defined in our TAC model (see claimeds, condition for permissions).
Basically, we provide a method to compute the least privileges to delegate based
on the current requirements of the task instances t;; which is generated from
the delegated task. At this stage, delegated privileges are done manually sup-
porting a user-to-user delegation. However, the administration of new access
rights has to be specified later on into authorisation policies in a compliant and
dynamic manner. Authorisation policies will regulate how the business process
and resources should be managed when delegating a task within a workflow.
Delegation policies are not discussed in this paper due to space restrictions.

5 Related Work

Barka et al. proposed a role-based delegation model based on the RBAC model.
Their unit of delegation is a role. Authors focused also on role-based models
supporting role hierarchies when studying delegation in the context of both
RBACO model (flat roles) and RBAC1 model (hierarchical roles) of the RBAC96
family [6]. However, users may want to delegate a piece of permission which is not
supported in such models. This is the case when computing delegated privileges.

Task-based access control (TBAC) aims to provide a task context during
permission assignments [I1]. A workflow system consisting of tasks is assumed.
Each of these tasks is then assigned a “protection state”, providing information
as to who gets to have which permission on a task basis. According to the current
state of the workflow system moving through the process instance, different
permission assignments are activated or deactivated as ordered by the protection
state. The TBAC design is process oriented, however, ignoring human-centric
interactions such as user-to-user delegation.

Team based access control (TMAC) is an access control scheme similar to
RBAC, but it provides the assignment of both users and permissions to teams
[12]. Each team then is bound to the task it was created for. At runtime, more
than one team can be created out of the same template, but each team will be
working on a different task instance and accordingly will need access to different
object instances. TMAC model is out of the scope of this paper where we consider
constraints on tasks and users rather than a team.

8

Khaled Gaaloul et al.

6 Conclusion

In this paper, we integrated task delegation constraints into a formal security
model. In doing so, we analysed task authorisation constraints to support se-
curity requirements for delegation. We defined a Task-oriented Access Control
(TAC) model to support access control over task delegation in workflow systems.
Moreover, we presented a method to compute potential delegatees and their del-
egated privileges. In future work we plan to examine the XACML (eXtensible
Access Control Markup Language) standard for the TAC model to support task
delegation constraints in particular and authorisation policies in general.

References

1.

10.

11.

12.

V. Atluri and J. Warner, “Supporting conditional delegation in secure workflow
management systems,” in SACMAT ’05: The tenth ACM symposium on Access
control models and technologies, New York, NY, USA, 2005, pp. 49-58.

. J. Crampton and H. Khambhammettu, “On delegation and workflow execution

models,” in SAC ’08: Proceedings of the 2008 ACM symposium on Applied com-
puting. New York, NY, USA: ACM, 2008, pp. 2137-2144.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access
control models,” IEEE Computer, vol. 29, no. 2, pp. 38-47, 1996.

K. Gaaloul, “A Secure Framework for Dynamic Task Delegation in Workflow Man-
agement Systems,” 2010, Ph.D. thesis, The University of Henri Poincaré, Nancy,
France.

J. Crampton and H. Khambhammettu, “Delegation in role-based access control,”
in Proceedings of the Computer Security - ESORICS 2006, 11th Furopean Sym-
posium on Research in Computer Security, Hamburg, Germany, September 18-20,
2006, ser. Lecture Notes in Computer Science. Springer, 2006, pp. 174-191.

. E. Barka and R. Sandhu, “Framework for role-based delegation models,” in Pro-

ceedings of the 16th Annual Computer Security Applications Conference. Wash-
ington, DC, USA: IEEE Computer Society, 2000, pp. 168-176.

X. Zhang, S. Oh, and R. Sandhu, “PBDM: a flexible delegation model in RBAC,”
in SACMAT ’08: Proceedings of the eighth ACM symposium on Access control
models and technologies. New York, NY, USA: ACM Press, 2003, pp. 149-157.
WFEFMC, The Workflow Management Coalition, “Workflow Management Coalition
Terminology and Glossary,” 1999, document Number WFMC-TC-1011.

J. Crampton and H. Khambhammettu, “Delegation and satisfiability in workflow
systems,” in SACMAT ’08: Proceedings of the 13th ACM symposium on Access
control models and technologies. New York, NY, USA: ACM, 2008, pp. 31-40.
R. A. Botha and J. H. P. Eloff, “Separation of duties for access control enforcement
in workflow environments,” IBM Systems Journal, vol. 40, no. 3, pp. 666-682, 2001.
R. K. Thomas and R. S. Sandhu, “Task-based authorization controls (tbac): A fam-
ily of models for active and enterprise-oriented autorization management,” in Pro-
ceedings of the IFIP TC11 WG11.8 Eleventh International Conference on Database
Securty XI. London, UK, UK: Chapman & Hall, Ltd., 1998, pp. 166-181.

R. K. Thomas, “Team-based access control (tmac): a primitive for applying role-
based access controls in collaborative environments,” in RBAC ’97: Proceedings of
the second ACM workshop on Role-based access control. New York, NY, USA:
ACM, 1997, pp. 13-19.

	Lecture Notes in Business Information Processing
	Authors' Instructions
	Introduction
	Workflow Authorisation Constraints
	Task-oriented Access Control Model
	Definitions of map relations
	Definitions of functions
	Definitions of constraints
	Model contributions

	Access Control Over Delegation using TAC
	Related Work
	Conclusion
	References

