Khaled Gaaloul

Erik Proper
email: erik.proper@tudor.lu

François Charoy
email: charoy@loria.fr

Injecting Task Delegation Constraints into a Role-based Access Control Model

Keywords: Access control, delegation, constraints, privileges

In role-based access control models, delegation of authority involves delegating roles that a user can assume or the set of permissions that he can acquire, to other users. Several role-based delegation models have been proposed in the literature. However, these models consider only delegation in presence of the role type, which have some inherent limitations to task delegation in workflow systems. In this paper, we address task delegation in a workflow and elaborate a security model supporting delegation constraints. Delegation constraints express security requirements with regards to task's resources, user's assignment and privileges (delegation of authority). Further, we show how, using a role-based security model, we inject formalised delegation constraints to compute delegation principals with their respective privileges.

Introduction

With the broad adoption of workflow management systems to model and automate business processes cross organisations, security becomes a crucial and essential topic. Typically, activities that are part of a process are represented as tasks. Organisations establish a set of authorisation policies that regulate how business processes and resources should be managed within a workflow [START_REF] Atluri | Supporting conditional delegation in secure workflow management systems[END_REF]. Authorisation information is given which authorises users to perform tasks. Such authorisation information may be specified using a simple access control list or more complex role-based structures [START_REF] Crampton | On delegation and workflow execution models[END_REF].

In current workflow management systems, the role-based access control (RBAC) model is widely adopted, where system administrators assign roles to users. It is more convenient for administrators to manage roles than to manage users directly [START_REF] Sandhu | Role-based access control models[END_REF]. One important factor that affects access control (authorisation) distribution among users is delegation. Delegation involves a user passing its authority to other users. If delegation is allowed, a delegator delegates authority (a privilege) to another active entity, called the delegatee, to carry out a task on behalf of the former. In the context of workflow systems, delegation can be very useful for real-world situations where a user who has to perform a task is either unavailable or too overloaded [START_REF] Gaaloul | A Secure Framework for Dynamic Task Delegation in Workflow Management Systems[END_REF]. Hence, we define task delegation as a means for assigning a task and its access rights from a delegator to a delegatee.

The concept of delegation has been presented in [START_REF] Atluri | Supporting conditional delegation in secure workflow management systems[END_REF][START_REF] Crampton | Delegation in role-based access control[END_REF]. Significant contributions to role-based delegation can be found in [START_REF] Barka | Framework for role-based delegation models[END_REF][START_REF] Zhang | PBDM: a flexible delegation model in RBAC[END_REF]. While much of the work in the area of delegation is limited to role-based access control, the goal of our paper is to consider task delegation constraints in workflow systems. Delegation constraints needs to tackle several issues with regards to workflow's invariants in terms of users, tasks and resources. In doing so, we need to come up with an access control model supporting the assignment of task delegation. Delegation assignment deals with delegation principals (delegator, delegatee) their respective rights (privileges) and their availability (no conflicts during task assignment). In this paper, we extend the RBAC model of Sandhu et al. in two directions: (i) our formal security model defines a Task-oriented Access Control (TAC) model which is capable of supporting task assignment condition in workflows and (ii) we leverage TAC specifications to inject delegation constraints, thereby computing potential delegatees and their required privileges.

The remainder of this article is organised as follows. Section 2 defines workflow authorisation constraints during task execution. In section 3, we present a formal security model to reason about task assignment within a workflow. This model is used in Section 4 to integrate delegation constraints in order to compute delegatees with their respective privileges. Finally, we conclude and discuss future work.

Workflow Authorisation Constraints

A workflow comprises various activities that are involved in a business process. Activities that are part of a process are represented as tasks [START_REF] Wfmc | Workflow Management Coalition Terminology and Glossary[END_REF]. Authorisation information is given which authorises users to perform tasks. Such authorisation information may be specified using a simple access control list or more complex role-based structures [START_REF] Crampton | Delegation and satisfiability in workflow systems[END_REF].

We define a task execution model using an activity diagram composed of three main activities : Initialisation, Processing and Finalisation (see Fig. 1). During the initialisation of the task, a task instance is created and then assigned to a user. During task processing, the assigned user can start or delegate the task which gathers all operations and rights over the business objects related to task's resources (see Definition 1). Finally, the task finalisation would notice the workflow management system that the task is terminated, where termination defines completeness, failure or cancellation.

Seeing a task as a block that needs protection against undesired accesses, the activity diagram includes an access control transition which is in charge of granting access to a task. Access control defines a transition from the creation of a task to its assignment to a user. This assignment will lead to the processing or the cancellation of a task. Cancellation can be triggered when an assigned user does not fulfill the required authorisation to execute a task.

Definition 1 (Permission). P is a set of permissions. P defines the right to execute an operation on a resource type. A permission p is a pair (f,o) where f is a function and o is a business object. We note : P ∈ F × O where F is a set of functions and O is a set of business objects.

Authorisation information define the access control transition. We define a permission as an authorisation allowing a users to perform a task. Authorisation makes an explicit binding between a user, a task resource (business object) and his rights over it (fuction/action). In our work, we define a task oriented access control model based on the RBAC model. We focus on task's requirements to analyse and specify security constraints while accessing workflow's data. Data access defines permissions on business objects related to task's resources.

Task-oriented Access Control Model

We propose a Task-oriented Access Control (TAC) model to support authorisation requirements in workflow systems (see Fig. 2). Authorisation information will be inferred from access control data structures, such as user-role assignment (URA) and task-role assignment (TRA) relations. In addition, we model permission assignment relations for tasks and roles in order to support the task execution context. The remaining relations are generic relations based on the RBAC model [START_REF] Sandhu | Role-based access control models[END_REF].

Formally, we define sets U, R, OU, T, P, S and TI as a set of users, roles, organisations units, tasks, permissions, subjects and task instances, respectively. We use a subject to denote the time a user selects roles for a session. During the task instantiation assignment, we create a user's current active role set and define it as a subject (see Fig. 2). For example, the user Alice with the role clerk defines a subject to execute the instance of a task "Check credit" in a bank loan process.

We define RH (Role Hierarchy), where RH is a partial order on R, r i and r j ∈ R. RH denotes that r i is a role superior to r j , as a result, r i automatically inherits the permissions of r j . We define RM (Role Mapping), where RM ⊆ OU i × OU j with OU i and OU j two organisations units. RM defines external roles accessing distributed resources cross-organisations. It provides a decentralised access control mechanism where externally known roles are publicly available : r k ∈ OU i and r l ∈ OU j , RM denotes that r l is a role mapped to r k , as a result, r l shares the permissions of r k .

Definitions of map relations

Formally, we define sets of relations as follows:

-U RA ⊆ U × R, the user role assignment relation mapping users to roles they are member of. -RP A ⊆ R × P , the permission role assignment relation mapping roles to permissions they are authorised to. -T P A ⊆ T × P , the task permission assignment relation mapping tasks to permissions. This defines the set of permission required to execute a task (see Definition 2). -T RA ⊆ T × R the task role assignment relation mapping roles to tasks they are assigned to.

Definitions of functions

Formally, we define sets of functions as follows:

-SU : S → U a function mapping a subject to the corresponding user.

-SR: S → R, a function mapping each subject to a role, where SR(s) = r, (SU (s), r) ∈ U RA} with a subject s having a permission p|(r, p) ∈ RP A}. -instance of : T I → T , a function mapping a task instance to its task type.

-claimed by : T I → S, a function mapping a task instance to a subject to execute it. It defines the user-task assignment condition s = claimed by (t i1) where :

{t i = instance of (t i1), (r, u) ∈ U RA|(SR(s) = r SU (s) = u), (t i , r) ∈ T RA}.

Definitions of constraints

Here we discuss Separation of duty (SoD) and Binding of duty (BoD) constraints. It defines security constraints between two tasks that compose a business process [START_REF] Botha | Separation of duties for access control enforcement in workflow environments[END_REF]. Such constraints help to verify whether a user is not allowed to execute a task due to some conflicts (e.g., conflict of interest). We define an exclusive relation between tasks for SoD, and a binding relation between tasks for BoD :

T T SOD : {(t i , t j) ∈ T × T | t i is exclusive with t j } T T BOD : {(t i , t j) ∈ T × T | t i is binding with t j }
If (t i , t j) ∈ T T SOD , then t i and t j cannot be assigned to the same user. If (t i , t j) ∈ T T BOD , then t i and t j must be assigned to the same user which defines a binding relation between two tasks.

Model contributions

The main contribution of the TAC model is to specify the task assignment relation where two conditions have to be verified: (1) the first condition is related to task's resources requirements. The role's permissions defined in RPA (rolepermission assignment) needs to satisfy the permissions defined in TPA (taskpermission assignment). (2) the task is executed if and only if the user/role is assigned to it. Basically, having a permission to execute a task but not being assigned to it will not satisfy the outlined conditions and, therefore, will deny the access to task resources. Definition 2 (Task Assignment). A task instance t i is assigned to a user u with an active subject s if and only if : (t, r) ∈ T RA ⇒ {p ∈ P |(t, p) ∈ T P A} ⊆ {p|(r, p) ∈ RP A} claimed by (t i) = s, where (SR(s) = r SU (s) = u).

The user-task assignment requires the claimed by function. For instance, a task t i is assigned a set of permissions based on the TPA relation in order to carry out this task. A user u 1 with a role r j is assigned to t i if and only if u 1 verifies the TRA and claimed by conditions. However, if we consider another user u 2 member of same role r j having the same permissions based on the RPA relation but u 2 is not defined in claimed by (t i), which means not assigned to this task. In this case, u 2 is not allowed to execute t i since he does not fulfill the user-task assignment relation (see condition 2). In the loan process example, let user Bob a member of role Clerk but not from the same bank agency. Bob is not allowed to perform the task "Check credit" since he is not assigned by the system to execute it. Within organisations, users can share different roles but are not assigned to the same tasks. This is due to privacy and security constraints such as the separation of duty. Therefore, we leverage condition 2 as an additional constraint when claiming a task instance by a user.

In the next section, we leverage the user-task assignment conditions to support task delegation assignment with regards to the delegatees and its required privileges.

Access Control Over Delegation using TAC

Delegation is a mechanism that permits a user to assign a subset of his assigned authorisations (privileges) to other users who currently do not possess it.

Definition 3 (Delegation Relation). We define a delegation relation DR ⊆ T ×U ×U ×2 DC where T a set of tasks, U a set of users and DC a set of delegation constraints. A task delegation relation is defined as DR = (t,u 1 ,u 2 ,{DC}), t is the delegated task and t ∈ T, u 1 the delegator and u 2 the delegatee ∈ U.

For instance, delegation constraints (DC) can be related to time or evidence specifications [START_REF] Gaaloul | A Secure Framework for Dynamic Task Delegation in Workflow Management Systems[END_REF]. In addition, organisational constraints regarding roles mapping cross organisations or role hierarchies within an organisation define user-to-user delegation constraints (see RM and RH relations of the TAC model in Fig. 2). For instance, a subordinate in an organisation hierarchy can act on behalf of his superior where the latter is the delegator and the former is the delegatee.

Here, a delegation relation defines the main constraints to be considered when delegating privileges with regards to users/roles, task and resources. Our focus is to integrate such constraints in a secure manner. In doing so, we leverage the TAC (task-oriented access control) model specifications to compute delegatees and privileges. The TAC model allows to compute the list of potential delegatees using the RPA (role-permission assignment) relation that may satisfy the delegated task requirements based on the TPA (task-permission assignment) relation. In doing so, we define a method for access control over task delegation using TAC. In the following, we detail our method and describe how valid delegatees are checked and whether they need delegated privileges grant.

Input: u 1 , u 2 ∈ U ; r 1 , r 2 ∈ R; t i , t j ∈ T.
1. Defining the role and permission assignments for each user (URA and RPA); 2. Instantiating the task t i1 and assigning it to the delegator s 1 who is the current user u 1 ; 3. Checking security constraints before delegation (SoD and BoD); 4. Computing the delegatee s 2 , who is the current user u 2 , based on his permissions assignment ((t i , p r2) ∈ T P A) or;

5. Granting privileges for s 2 based on the task instance permissions assignment (p r2 ← p r2 ∪ p ti) which is defined in the claimed by function;

Output: Delegation relation instance : dr 1 = (t i1 ,s 1 ,s 2 ,{DC});

The main contribution of this method is to specify the delegated task assignment conditions based on Definition 2. If the two conditions are satisfied, then the task t i is delegated to the delegatee u 2 . However, if u 2 does not have the permission required and there is no conflicts (BoD or SoD) to execute t i . Then the delegated privileges are granted for u 2 based on the claimed by function.

The computation of the privileges is based on the TRA and claimed by specifications defined in our TAC model (see claimed by condition for permissions). Basically, we provide a method to compute the least privileges to delegate based on the current requirements of the task instances t i1 which is generated from the delegated task. At this stage, delegated privileges are done manually supporting a user-to-user delegation. However, the administration of new access rights has to be specified later on into authorisation policies in a compliant and dynamic manner. Authorisation policies will regulate how the business process and resources should be managed when delegating a task within a workflow. Delegation policies are not discussed in this paper due to space restrictions.

Related Work

Barka et al. proposed a role-based delegation model based on the RBAC model. Their unit of delegation is a role. Authors focused also on role-based models supporting role hierarchies when studying delegation in the context of both RBAC0 model (flat roles) and RBAC1 model (hierarchical roles) of the RBAC96 family [START_REF] Barka | Framework for role-based delegation models[END_REF]. However, users may want to delegate a piece of permission which is not supported in such models. This is the case when computing delegated privileges.

Task-based access control (TBAC) aims to provide a task context during permission assignments [START_REF] Thomas | Task-based authorization controls (tbac): A family of models for active and enterprise-oriented autorization management[END_REF]. A workflow system consisting of tasks is assumed. Each of these tasks is then assigned a "protection state", providing information as to who gets to have which permission on a task basis. According to the current state of the workflow system moving through the process instance, different permission assignments are activated or deactivated as ordered by the protection state. The TBAC design is process oriented, however, ignoring human-centric interactions such as user-to-user delegation.

Team based access control (TMAC) is an access control scheme similar to RBAC, but it provides the assignment of both users and permissions to teams [START_REF] Thomas | Team-based access control (tmac): a primitive for applying rolebased access controls in collaborative environments[END_REF]. Each team then is bound to the task it was created for. At runtime, more than one team can be created out of the same template, but each team will be working on a different task instance and accordingly will need access to different object instances. TMAC model is out of the scope of this paper where we consider constraints on tasks and users rather than a team.

Conclusion

In this paper, we integrated task delegation constraints into a formal security model. In doing so, we analysed task authorisation constraints to support security requirements for delegation. We defined a Task-oriented Access Control (TAC) model to support access control over task delegation in workflow systems. Moreover, we presented a method to compute potential delegatees and their delegated privileges. In future work we plan to examine the XACML (eXtensible Access Control Markup Language) standard for the TAC model to support task delegation constraints in particular and authorisation policies in general.

Fig. 1 .

 1 Fig. 1. Task execution model.

Fig. 2 .

 2 Fig. 2. Task-oriented access control (TAC) model.