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Content Based Image Retrieval Using
Bag-Of-Regions

Rémi Vieux, Jenny Benois-Pineau, and Jean-Philippe Domenger

LaBRI - CNRS UMR 5800 - Université de Bordeaux firstname.name@labri.fr

Abstract. In this work we introduce the Bag-Of-Regions model, in-
spired from the Bag-Of-Visual-Words. Instead of clustering local image
patches represented by SIFT or related descriptors, low level descriptors
are extracted and clustered from image regions, as given by a segmen-
tation algorithm. The Bag-Of-Region model allows to define visual dic-
tionaries that capture extra information with respect to Bag-Of-Visual-
Words. Combined description schemes and ad-hoc incremental clustering
for visual dictionnaries are proposed. The results on public datasets are
promising.

Keywords: Content Based Image Retrieval, Bag-Of-Regions, Incremental Clus-
tering, Meta-Search

1 Introduction

Image retrieval is a challenging topic that has been a research challenge for
several decades. The task is difficult for several reasons. Smeulders et. al. [24]
introduced the concept of semantic gap, that is the discrepancy between the low
level descriptors that can be computed from the images and the interpretation
of the image done by humans. A query to an image retrieval system is ill-defined
by nature. Such a query could take several forms. One of the earliest successful
system, QBIC[8], accepted queries as a user defined color palette, that images
should matches. A query can be formulated using an example image (Query-By-
Example — QBE- paradigm). The system must retrieve the most similar images
to the query. In this case, the notion of similarity is implicit for the user, and the
system must approximate this notion into a computable quantity. In the best
case, it can be related to several measurements in terms of low level descriptors.

In the last decade, a breakthrough in image retrieval and object recognition
have been achieved using the Bag-Of-Visual-Words (BOVW) model based on
interest-point descriptors such as SIFT[16]. In the mean time, methods based
on region-based properties of the image have known a decrease of popularity for
CBIR and classification tasks, since the fundamental work of Duygulu et. al. [5].
Few examples include Souvannavong et. al. [25] for video content indexing and
retrieval and Gokalp and Askoy [10] for scene classification. However, current
state-of-the-art for accurate object class image segmentation rehabilitates image
segmentation and region-based visual description of the image content [12,26,27].



In this paper, we study an image retrieval system that extends the traditional
notion of BOVW vocabulary not only to keypoint-based descriptors, but to re-
gion based descriptors, as obtained by a segmentation algorithm. Region-based
descriptors open the way to exploit a vast amount of different visual cues, such
as colour, texture and shape, that are not captured by keypoint descriptors.
With this extension arise several challenges: first, in section 2, we clarify the
definition of a region-based visual dictionary. The computation of visual dictio-
nary has been considered traditionally as an offline, time independent process.
This point becomes more problematic when several such dictionaries must be
built. In section 3, we propose to rely on an incremental clustering method that
has lower memory and computational complexity than k-means, the reference
algorithm. Able to express the image content through several visual dictionaries,
we combine them to improve the single-modality retrieval results. We introduce
in section 4 the topic of meta-search and its most famous strategies. In section
5, we perform deep experiments of the method on three public datasets. We
conclude the paper in section 6 and give research perspectives for the future of
this work.

2 Bag-Of-Regions Model

The BOVW model has been inspired by the Bag-Of-Words (BOW) model for
text document representation. In the BOW model, a text document is repre-
sented by the number of occurrences of the words in the document. Despite the
simplicity of the model, which neither takes into account the order of the words,
nor the relationships between them, this model is very efficient for document
classification tasks [11]. Sivic and Zisserman proposed to compute a visual dic-
tionary by clustering similar visual entities inspired by BOW model. Hence, to
build a visual dictionary, we must define two key concepts: what entity defines
the spatial support for a visual word and which descriptor underpins the no-
tion of similarity in the clustering process. In the BOVW model, local interest
points are used as salient image patches and SIFT or related [18] descriptors
used to describe the patches. We propose to define as the basic entities support-
ing the visual words the image regions obtained by a segmentation algorithm.
An extremely rich collection of descriptors can be extracted from image regions
providing new kind of visual dictionaries. We call the Bag-Of-Regions dictionary
BOR. Figure 1 shows the different steps for BOR extraction. If these are similar
to BOVW, BOR is trickier to compute due to the number of parameters in the
process. The parameters are represented by the colored box in figure 1: there
can be several segmentations, many visual features and different quantization
of the visual space to compute a single BOR dictionary. Hence, the number of
single BOR models that can be computed explode with the number of param-
eters. The time spent in the vocabulary computation is usually considered as
irrelevant, since clustering is performed offline. Time does matter with such an
amount of dictionaries to compute. There is a need for an efficient clustering
algorithm able to produce these results in a reasonable time.
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Fig. 1. Bag-Of-Regions extraction pipeline

3 Incremental Clustering for Visual Dictionnaries

Clustering for codebook construction is a difficult problem because of the large
number of data samples as well as clusters. K-means clustering has been the
reference and most popular method so far [23]. Alternative for to k-means have
been proposed by Nister and Stewenius, for handling large amount of data [19].
Yeh et. al. proposed the dynamic computation of visual vocabulary using adap-
tive vocabulary forests [28]. We propose to replace the traditional k-means algo-
rithm with the incremental vector quantization of Lughofer [17]. The principles
of vector quantization are the following:

Choose initial values for the k cluster centers, ¢,k =1,..., K.

Fetch out the next data sample x of the data set D

Calculate the distance of the selected data point to all cluster centers.
Elicit the cluster center which is closest to the data point as

==

Cwin = arg mkin d(x,c) (1)

5. If d(x,Cyin) > p then the current sample x becomes the center of a new
cluster. Otherwise move the cluster center towards the new point:
Chin = Coin +0(x — ) n € [0,1] (2)
The main advantage of incremental clustering with respect to k-means is the
lower computational complexity. All the data are processed in a single pass. The
computational complexity of the incremental clustering is O(K Nd) with K the
number of clusters, N the number of vectors and d their dimension. K-means is
O(IK Nd) with I the number of iterations. Extensions to vector quantization to
fit a real incremental clustering task with unknown number of clusters are given
in [17] that we do not detail here.

However, we have seen that those extensions are not directly suitable for
our task. Indeed, clustering model can differ significantly while processing the
same data in different order. We propose to choose the initial cluster centers
according to the k-means++ initialisation [1]. In this way, we ensure that a
minimal number of clusters (visual words) is reached. Moreover, as the position
of the centroid is crucial during the incremental clustering process, it is natural
to chose centers that reflect well the organisation of the data as k-means++



does, leading to a more robust model. In section 5, in order to compare the
incremental clustering with k-means, we ensured that no clusters were created
incrementally (i.e. setting up a high threshold p).

4 Fusion of Multiple Retrieval Systems

The BOR model allows a profusion of different representations of image content
based on the nature of the low level descriptor, the granularity of the segmen-
tation or the quantization method used for vocabulary construction. Retrieval
systems based on these vocabularies are likely to return different sets of images.
The optimal combination of this set is the problem of meta-search [2]. We as-
sume that the retrieval systems return results in a decreasing order of similarity
to the query. Two major types of error can occur for any such system[9]: 1) giv-
ing a high rank to non relevant documents and 2) giving a low rank to relevant
ones. In table 1, we present the most widely known strategies for combination
[9,13]. S(g,d) is the similarity value of document d to query ¢. CombMIN mini-

Name Formula

CombMIN S(g,d) = min,(Si(q,d))
CombMAX S(q,d) = max;(Si(g,d))
CombMED S(q, d) = median(S;(g,d))
CombSUM S(q,d) =3, Si(g,d)
CombANZ|S(q,d) = CombSUM/ Y. s (0 a0 L
CombMNZ| §(d) = CombSUM X 3o s |

Table 1. Classical combination strategies for multiple retrieval system results

mizes probability of 1), while CombMax minimizes probability of 2). CombMED
tries to handle 1) and 2). The other three methods consider the relative simi-
larity values given by each method, instead of selecting a value from the set of
runs. CombSUM gives the numerical mean of similarity values, CombANZ ig-
nore effects of single runs failing to retrieve relevant documents and CombMNZ
provides higher weights to documents retrieved by multiple retrieval methods.
Experiments have shown that CombSUM and CombMNZ usually offer the best
increase in performances [2,9,13]. We considered these methods as they are very
simple and are almost a standard in information retrieval, despite the existence
of more advanced literature on this subject.

5 Experiments

The goal of the experiments our threefold:

1. Test that the proposed incremental clustering approach for visual dictionary
computation does not affect the performances of the retrieval systems.



2. Show that BOR is a suitable approach that can be as efficient as traditional
BOVW.

3. Effectively combine the results of multiple systems to build a meta-search
engine with increased performances.

The three points are addressed in the following subsections. We used three pub-
licly available datasets, namely WANG, SIVAL and CALTECH101. WANG [15]
is a subset of Corel dataset containing 1000 images classified in 10 different cat-
egories. We chose WANG to compare our results with the in-depth evaluation
of features for image retrieval of Deselaers et. al. [4]. SIVAL is a more challeng-
ing dataset which has been specifically built for localized CBIR, i.e. where the
user is interested in retrieving images of a specific object[21]. 25 objects have
been pictured at different locations on the same set of complex backgrounds.
There are 1500 images in this dataset. Using this dataset, we will show that the
BOR representation is suitable for performing local queries as is the BOVW.
Finally, we used CALTECH101 dataset [6] to provide larger scale experiments.
CALTECH101 contains approximately 9000 images grouped into 101 categories.
The number of images per category differs from one another.

We fixed the parameters to compute BOR visual dictionaries for all the
datasets to the following:

— 7 different segmentations per image. 5 segmentations were computed with
the algorithm of Felzenszwalb and Huttenlocher [7], tuning the parameters to
produce different levels of region granularity. 2 segmentations were computed
using Turbopixels [14]. We the number of regions to k and 2k with k£ = 50
for WANG, k& = 1000 for SIVAL and k& = 100 for CALTECH101. We used
different k because images in SIVAL have much larger resolution than images
in WANG. Examples are given in figure 2.

— 2 low level descriptors were computed from the regions: HSV color histogram
and the histogram of Local Binary Patterns (LBP) [20] as a texture descrip-
tor.

— 5 different size for visual vocabularies were used: {500, 1000, 2000, 5000, 10000}
words.

Hence, we computed 5 x 2 x 7 = 70 BOR vocabularies for each dataset.
We also computed the BOVW by the clustering of SURF points [3] using the
same dictionary sizes. When computing the actual image signature for the BOR
representation, we can weight the contribution of each word either by the area of
the regions or by the number of regions in the image. We tried both approaches.
Thus we have 70 x 2 + 5 = 145 visual vocabularies for each dataset. In the case
of SIVAL dataset, we will consider 2 cases: global queries, where the BOR and
BOVW signature are computed using the full image, and local queries, where
they are computed considering only the regions or keypoints that are inside the
object bounding box, that have been manually annotated.

For all datasets, we computed the visual vocabularies using the whole dataset,
as no supervised learning is employed which would require the definition of a
training and test set. We evaluate the Mean Average Precision (MAP) to asses



Fig. 2. Example of segmentation with Felzenszwalb [7] (left) and TurboPixels [14]
(right). Image from CALTECH101 flamingo category.

the performances of the systems. The MAP is evaluated using every image of
the datasets as query.

5.1 Incremental Clustering

We compared k-means clustering and the proposed incremental clustering on
WANG and SIVAL, as it was not possible to compute k-means on CALTECH101
due to memory requirements. For incremental clustering and k-means, we used
k-means++ initialisation of centroids. We set up the incremental clustering to
ensure that no clusters were added incrementally, in order to have a fair com-
parison using vocabularies of the same size. Figure 3 shows the results obtained
with the two methods on the 145 systems for each. The curve of performances
of systems built with k-means and incremental clustering always have the same
shape. This shows that the incremental clustering does not affect the retrieval
performances, despite the lower computational and memory requirements. The
incremental clustering curve seems even slightly higher than the k-means curves
in all cases (i.e. WANG, SIVAL global and SIVAL local). Note that the increase
is not really significant and we are far from claiming that incremental clustering
should be favored to build retrieval systems with improved retrieval efficiency,
but use it for computational efficiency.

5.2 Retrieval Efficiency Using Bag-Of-Regions Vocabulary

In figure 4 we compare the results obtained by the HSV, LBP and original
BOVW with SURF descriptors. The results are presented in the same way as
in figure 3, by increasing MAP scores. There are only 5 systems based on SURF
and 70 systems based on HSV and LBP, which is why the SURF curve is shorter.

For WANG dataset, the results obtained with SURF descriptors is outper-
formed by HSV and LBP. More than half of the HSV and LBP systems are better
than SURF. The best results are achieved by HSV descriptors, which is in accor-
dance with the experiments of [4], where global color histograms were the best
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Fig. 4. Performances of retrieval systems using HSV, LBP and SURF descriptors.

features for this dataset. Note that the best MAP reported in [4] was 0.505, while
our best system obtains 0.548 MAP, and many systems outperform 0.505. The
best run based on SURF is 0.443. For the SIVAL and CALTECH101 datasets,
the best overall systems are obtained with SURF (0.157 on SIVAL global, 0.505
on SIVAL local, 0.177 CALTECH). However, SURF does not clearly outperforms



color and texture systems. In figure 5, we detail the MAP per categories of the
best performing SURF, HSV and LBP systems. The retrieval performances of
the descriptors is linked with the queries. The most explicit example can be
seen in CALTECH101 dataset, where there are 2 blue peaks corresponding to a
high MAP obtained with HSV. While HSV is overall the worst descriptor(figure
4), it is particularly well suited for car sides and leopards categories. This is
surprising for the first category, but is actually due to an artifact of the dataset.
All car sides images are black and white, while other are color images.

CALTECH101

MAP per category

HSV +LBP ~SURF

Fig. 5. MAP per category for the best performing SURF, HSV and LBP systems

5.3 Combining Multiple Retrieval Systems

The results obtained in the previous section naturally let us think that the
combining the runs could greatly improve the efficiency of the method. In this
section, we present the results of combined systems using the strategies shown
in table 1. Since we returned for each query the ranked list of all images in the
database, CombANZ and CombMNZ are not applicable as they are equivalent
to CombSUM. We defined two sets of systems to combine. In the first set, we
combine the best HSV, LBP and SURF runs. In the second set, we combine
the top 5 systems overall, independently of the descriptors. Results are shown in
table 2. It is clear from table 2 that combining the different systems is beneficial
to the overall retrieval efficiency. The best performing system, shown in bold,



Single runs Combined runs
SURF|HSV|LBP|| (SURF,HSV,LBP) (Topb)
MIN|MAX|MED|SUM|MIN|MAX|MED|SUM
WANG

443 |.548[.533]].539] .551 |. 522|.639.553] .551 | .556 | .563
SIVAL Global

157 [.120[.097]].131] .120 [.122 [.132 [[.135].157 | .148 | .149
SIVAL Local

505 |.443].260].461[ .437 | .508 | .555 ||.541] .475 | .579 |.603

CALTECH
177 [.142[.162]].173] 178 | 178 | 197 [|.172] .178 | 186 |.223
Table 2. MAP results for different combination strategies

is always the result of a meta-search. As reported in [9,13], CombSUM seems
to be the best choice. In these experiments, we have fixed a set of systems to
combine. The choice of this set is still an interesting research challenge. The
greatest increase in result is achieved when selecting high performing single sys-
tems with complementary results. This is the case when combining SURF, HSV
and LBP for WANG, while the 5 best systems on this dataset are HSV-based
and the improvement is small. Results are greatly improved for SIVAL-Local
and CALTECH101 when combining the top 5, which are composed of 2 HSV
and 3 SURF, 4 SURF and 1 LBP respectively. To our knowledge, there is no
comparable CBIR results on STVAL dataset. Ramanathan et. al. reported 0.0978
MAP on CALTECH101 using a quadtree extended vector space model [22], but
they queried the system using only 10 images per category. This corresponds to
a 19.2% of increase compared to the regular BOVW in their experiments (8.3%
increase using spatial pyramid matching). We increase the BOVW results by
26%. An example for a SIVAL-local query is shown in figure 6.

Fig. 6. Example query from SIVAL Dataset (local). First row: best SURF run. Second
row: best HSV run. Third row: best LBP run. Fourth row: CombSUM of the top 5
ranking system results, showing a higher average precision for the query.



6 Conclusion

In this work, we proposed a new kind of image signatures based on the cluster-
ing of image regions, BOR. We have demonstrated that the BOR signatures are
well adapted to build efficient CBIR systems, that can outperform traditional
BOVW signatures on some datasets. BOR signatures are a good counterpart
of BOVW, and can be more appropriate depending on the specific queries. Up-
grading the traditional BOVW framework to BOR leads to a multiplication of
possible visual dictionaries. With this increase, the computational time to build
the dictionaries becomes problematic. We proposed to rely on a single pass,
incremental clustering algorithm with appropriate k-means++ bootstrapping
method. Experiments have shown that visual dictionaries built upon the incre-
mental clustering lead to results as efficient as k-means. Finally, we proposed
to combine the results of the different systems using well known meta-search
techniques from text information retrieval. In all the cases, the combined results
have favorably impacted the performances of the single retrieval systems.

This work has demonstrated that a system based on BOVW and BOR
signatures is already very effective. Yet, it opens the way for further research on
at least two different aspects. The impact of the segmentation algorithms on the
retrieval performances would be interesting to study. Is an accurate segmentation
really necessary? Should we over-segment, under-segment, or both? Such a study
could allow to fix a few set of segmentation parameters that enable to capture
complementary information from the BOR, signatures. The second research topic
that we will investigate is concerning the meta-search. In our experiments, we
just fixed the set to combine under what seemed to be a reasonable choice.
However, we know for sure that those choices are far from optimal. Moreover,
the choice of an optimal combination is likely to differ between queries. In the
future we will investigate meta-models that allow the weighted combination of
each single system (e.g. weighted Borda-Fuse of Aslam and Montague [2]), where
the weights are interactively computed using relevance feedback.
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