
HAL Id: hal-00646730
https://hal.science/hal-00646730v2

Preprint submitted on 10 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constellation: Programming decentralised social
networks

Anne-Marie Kermarrec, François Taïani

To cite this version:
Anne-Marie Kermarrec, François Taïani. Constellation: Programming decentralised social networks.
2011. �hal-00646730v2�

https://hal.science/hal-00646730v2
https://hal.archives-ouvertes.fr

Constellation: Programming decentralised social networks

Anne-Marie Kermarrec1

1 INRIA Rennes Bretagne Atlantique, Rennes,
France

anne-marie.kermarrec@irisa.fr

François Taïani1,2

2 Lancaster University, Lancaster LA1 4YW, UK
f.taiani@lancaster.ac.uk

1. Motivation
The past decade has witnessed a dramatic shift in the way

the Web is used. The internet has entered our homes, our
factories, and our lives like never before. User-generated
content services (Flickr, Youtube, Delicious) and social net-
works (Twitter, FaceBook) have grown exponentially. The
digital systems we live with are now composed of hundreds
of millions of computing devices, of as many users, and of
Terabytes of data, that is dynamically produced, shared,
disseminated and searched globally. This data represents a
fantastic potential to leverage information about each and
every user (their circles of friends, their interests, their ac-
tivities, the content they generate), and use it to provide
better, more personalised, on-line services.

Although traditional social networks have been extremely
successful, they today only encompass a tiny part of these
many sources of information about users. It is not quite
clear whether they should encompass more: Twitter has
been known to experience regular outages because of the
sheer load of data it must process. Facebook is regularly
criticised out of privacy concerns.

These growing difficulties have prompted work on novel
and fully decentralised alternatives to traditional social net-
works [2, 6]. Where traditional social engines fail to provide
information that escape them, these decentralised data sys-
tems seek the information where it ultimately is: at the user.

To implement these decentralised social networks, gossip
protocols appear as a natural solution, as they intrinsically
tend to be highly resilient, efficient, and scalable. Existing
gossip-based social networks have however so far been lim-
ited to simple use-cases, that typically take a uniform view
of users, peers, and the data they hold [5, 1]. Similarly, the
various mechanisms developed for search, recommendation,
and personalisation in these systems currently only exist as
independent standalone solutions, and lack a clear frame-
work to allow their reuse, and composition, a key step to
allow the incremental construction of more complex systems.

To progress to full-fledged decentralised social networks,
we posit in this paper that we now need to move to gossip-
based social applications that can simultaneously cater for
different types of data and services. To design, and evaluate
these new approaches in a modular and incremental man-
ner, we further argue that we need specific and dedicated
programming technologies. To help in this task, this paper
sketches the main ingredients of a new programming lan-
guage, Constellation, that seeks to simplify the realisa-
tion and experimentation with modular social gossip-based
applications. Constellation is based on two central obser-
vations: (i) future decentralised social applications will need
to handle heterogeneous forms of data and self-organisation,
and (ii) these applications will need to better support mod-
ularity and incremental design, by providing appropriate

Alice Bob

Carl

Dave Ellie

Frank

similarity measure

profile of Alice profile of Bob

recommendations

Figure 1: A typical gossip-based social network

mechanisms to compose data and topologies.

2. Decentralised Social Networks
We first provide some background on decentralised so-

cial networks, before presenting the two main mechanisms
of Constellation (Section 3.1).

2.1 System model
A traditional decentralised social networks uses a peer-

to-peer architecture in which each peer (a smart phone, a
tablet, a laptop) is associated with a user (Fig. 1). (We will
discuss cases later in which a peer might also be associated
to a web-site, a venue, a storage node.) Peers can connect
to each other using point-to-point networking, but they only
have a partial and very limited view of the rest of the system:
Typically a small-size neighbourhood of other peers.

Each peer maintains some data (or profile) about its user,
for instance her friends, or the set of items tagged in a collab-
orative tagging service (delicious), or the set of the locations
visited in a geolocated social networks (foursquare). Peers
use this data to organise themselves in a distributed over-
lay so that similar peers end up connected together. E.g.
in Fig. 1, Alice and Bob have similar location profiles, and
have therefore been selected to be neighbours of each other
(using a mechanism we detail just below).

The resulting overlay can then be exploited to propose a
range of personalised services such as search, recommenda-
tion, and query extension. The intuition behind this is that
if Alice and Bob have similar profiles, then Alice’s data can
be leveraged to provide a better service to Bob. Here for
instance, Alice might know of locations of interest to Bob
(here the snowy house), and reciprocally (the circus tent).

2.2 Constructing the overlay
To construct its similarity overlay, a gossip-based social

network uses a two-layer structure (Fig. 2) [4, 7]. Both
layer maintain an overlay, in which peers have a fixed list
of neighbours. In Fig. 2, Alice is connected to Bob, Carl,
and Dave in the bottom RPS layer, and to Carl and Bob in
the upper layer (clustering). Periodically, each peer selects
a user from its view and exchanges information about its

neighbours with the final goal of converging to an optimal
topology of users with ‘similar’ profiles in the top layer.

More precisely, the bottom RPS periodically provides each
with a random sample of the rest of the network and thus
guaranties the convergence of the second layer (clustering),
while making the overall system highly resilient against churn
and partitions. This is achieved by having peers exchange
and shuffle their neighbours list in periodic gossip rounds to
maximise the randomness of the RPS graph over time [3].
Alice might for instance request Carl’s list of RPS neigh-
bours, and randomly decide to replace Dave by Ellie (re-
ceived from Carl) in her RPS view.

The clustering layer sits on top of the RPS layer, and im-
plements a local greedy optimisation procedure that lever-
ages both neighbours returned by the RPS, and current
neighbours from the clustering views [4, 7]. A peer (say Alice
in Fig. 2) will periodically update its list of similar neigh-
bours with new neighbours found to be more ’similar’ to her
in the RPS layer. This guarantees convergence under sta-
ble conditions, but can be particularly slow in large systems.
This mechanism therefore is complemented by a swap mech-
anism in the clustering layer (Fig. 3), whereby two neigh-
bouring peers (here Alice and Bob) exchange their neigh-
bours lists (Step 1), and seek to construct a better neigh-
bourhood based on the other peer’s information (Step 2).

In Fig. 3 for instance, Alice has a thing for hearts, and
prefers like-minded people. Bob, on the other hand, has
a minor interest in hearts, but is much more interested in
diamonds. When Alice sends to Bob her current list of
neighbours, and Bob sends Alice his (Step 1), both discover
new potential neighbours closer to their interests. Alice thus
drops Ellie for Carl, and Bob drops Alice for Ellie.

3. Constellation

3.1 Design goals
Constellation’s two main design goals are simplicity

and composability. This translates into mechanisms and
programming constructs that can very concisely represent
gossip-based social networks in which different types of peer
and clustering approach coexist (Sec. 3.2), at different levels
of composition (Sec. 3.3).

3.2 Heterogeneous self-organisation
The peer-to-peer system that results from the approach

presented in Section 2 is similar to a large set of physical
particles (the peers) submitted to a uniform law of attrac-
tion (the similarity measure). In this physical metaphor, the
RPS layer plays the role as thermal excitation (as in simu-
lated annealing), while the clustering layer provides a local
gradient approach to converge to an optimal topology (i.e.
one that maximise similarity between nodes).

In Constellation, that kind of uniform clustering sys-

RPS layer providing

random sampling

clustering layer

gossip-based

similarity clustering

similarity link random link

Alice
Bob

Carl

Dave

Ellie

Alice
Bob

Carl

Dave

Ellie

node

Figure 2: Gossip-based distributed clustering

exchange of

neighbors lists

neighborhood

optimization
1 2

Alice Bob

Carl

Dave Ellie

Frank

Figure 3: Peer-to-peer clustering mechanism

Website { List<String> topics }

User {

List<String> interests

clusters potentialFriends { |u|

overlap(this.interests,u.interest) }

clusters interestingSites with Website { |site|

cosSim(this.interests, site.topics) }

using potentialFriends.interestingSites }

Figure 4: Heterogeneous clustering

tem is described by indicating (i) which data each node holds
(e.g. interests below, a simple list of strings denoting the
tags used by a user); and (ii) which similarity measure to ap-
ply between nodes (with the keyword clusters; here count-
ing the overlap in tags between two users).

User { List<String> interests

clusters potentialFriends { |u|

overlap(this.interests, u.interests) }}

Social applications may however involve different types
of node (e.g. users and websites) and different similarities
between these nodes, which a uniform approach cannot cap-
ture. To help program these more advanced systems, Con-
stellation allows the declaration of multiple similarities
between different types of nodes. For instance, in Fig. 4, in-
terestingSites links each user with a list of websites this
user might be interested in. With an RPS layer adapted
to return both a random sample of both User and Website

nodes, each user will eventually converge to a list of web-
sites most likely to interest her. A complicating factor here
comes from the fact that websites have no neighbourhood,
which prevents the direct use of a gradient optimisation in
the clustering layer (cf. Fig. 2). To work around this prob-
lem, Constellation provides the using keyword (last line
in Fig. 4), which indicates here that user nodes should use
their list of potential friends to optimise their list of available
websites (a form of convergence piggybacking).

3.3 Virtualisation
The use of multiple similarity and heterogeneous peers

described offer a world in which different ‘attraction laws’
(different similarities) can act on different particles (users,
websites). In this model, all nodes are on the same level
and usually correspond to a physical machine in a peer-to-
peer system. Some social applications, however, can benefit
from treating entities that are not associated with individual
machines as ‘virtually distributed’, and thus provide an ad-
ditional mechanism to compose data and topologies. This
applies for instance to the search queries made by a user
(in a decentralised search system), to the videos stored by
a storage node (in a video storage system), or to the items

data

data

data

data

vertical data

aggregation

data

aggregated

container data

container node

(e.g. user, storage node)

container

node

vnode

(e.g. query)

similarity

computation

(vnodes)

similarity

computation

(container)

primary

container data
(user name etc.) data

vnode data
(tags in query)

Figure 5: Vertical data aggregation

Query{ List<String> tags

clusters similarQueries { |req|

overlap(this.tags, req.tags) } }

User { contains Query queries

clusters similarUsers { |u|

overlap(this.queries.tags,u.queries.tags)}

set scope similarUsers for queries }

Figure 6: Data aggregation & virtualised clustering

tagged by a contributor (in a collaborative tagging system).
To support these systems, Constellation allows nodes

(called containers) to host“virtual nodes”(vnodes for short),
i.e. entities which can maintain a similarity neighbourhood
as nodes do (Fig. 5), but are not directly associated with
a physical device. The neighbours of a vnode might be-
long to the same container node, or to distant containers.
To allow vnodes to cluster themselves with other similar
vnodes, Constellation includes two mechanisms: vertical
data-aggregation, and virtualised clustering.

Vertical data aggregation allows a container node to
access the data managed by its virtual nodes in the form of a
multiset (a ’bag’) of data items (red shaded arrow on Fig. 5).
For instance, if a node User contains Query vnodes in a vari-
able queries (Fig. 6), a user can access a collection of all her
queries with this.queries. If each query maintains in turn
a list of tags (as in Fig. 6), all tags contained in the queries
of a user can be aggregated using this.queries.tags.

Using vertical aggregation, a Constellation program
can define the neighbourhood of a container in terms of its
vnode content (green solid arrow on Fig. 5). E.g. in Fig. 6
the similarity relationship similarUsers uses the list of tags
of the queries made by a user to find similar users.

Virtualised clustering. Although vertical aggregation
can be used on its own, its main use is to couple the similar-
ity neighbourhood of vnodes with that of their containing
node. This is useful semantically as vnodes (e.g. queries
within users) are often contextually linked to their contain-
ing node: Similar queries from similar users are more likely
to call for related answers, than similar queries from dissimi-
lar users. Another reason pertains to efficiency: coupling the
clustering of vnodes to that of containers allows for efficient
realisations that do not overburden individual machines.

The general mechanism of virtualised clustering is shown
in Fig. 7 for the code of Fig. 6: a vnode (e.g. a query x)
can only maintain links with vnodes that lay in the neigh-
bourhood of its containing node (here Alice). This is as if
for x, the rest of the system only consists in Alice and her
neighbours Bob and Carl, and the queries (vnodes) they
contain (u, v, w, y, and z).

The clustering scope of queries is declared with the set

RPS layer of users

(container nodes)

clustering layer of

users (container nodes)

RPS of Alice’s queries,

x and y (vnodes)

clustering layer of

Alice’s queries, x & y

Alice
Bob

Carl

Dave

Ellie

user (container node)

query (vnode)

similarity link

random link

Alice’s queries (x & y)

virtualised

clustering of

Alice’s queries

x
y

w

v

x

w

v

z u

y

z
u

Figure 7: Virtualised clustering of Alice’s queries
(for the code of Fig. 6)

scope keyword (Fig. 6), which indicates which similarity
neighbourhood (here similarUsers) to use to scope the clus-
tering of queries. The result in Fig. 7 is a two-level clustering
system: users gravitate towards other users hosting similar
queries, and queries are linked so similar searches in a user’s
neighbourhood, in a way similar to that proposed in [2].

4. Outlook
Constellation offers two other features we have not dis-

cussed: the ability for nodes and vnodes to probe the data in
their neighbourhood (horizontal data aggregation), and the
capability of vnodes to migrate between containing nodes.
Although functionally simple, these four mechanisms (vir-
tualisation, virtualised clustering, data aggregation, and mi-
gration) can be combined arbitrarily, and we think offer a
particularly attractive playing ground to experiment with
novel gossip-based social algorithms.

Constellation suggests that social infrastructures might
be approached in terms of bio-inspired systems, an aspect
we would like to investigate. It might also provide paths to
reason about the correctness a systems through static anal-
ysis, which we would like to explore in the future.

Acknowledgement
This work has been partially supported by the ERC Starting
Grant GOSSPLE number 204742.

5. References
[1] X. Bai, M. Bertier, R. Guerraoui, A.-M. Kermarrec,

and V. Leroy. Gossiping personalized queries. In
EDBT’10.

[2] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec,
and V. Leroy. The gossple anonymous social network.
In Middleware’2010.

[3] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. van Steen. Gossip-based peer
sampling. ACM ToCS, 25, August 2007.

[4] Márk Jelasity and Ozalp Babaoglu. T-man:
Gossip-based overlay topology management. In 3rd Int.
Workshop on Engineering Self-Organising App., 2005.

[5] V. Leroy, B. B. Cambazoglu, and F. Bonchi. Cold start
link prediction. In KDD ’10, 2010.

[6] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The little
engine(s) that could: scaling online social networks. In
SIGCOMM 2010.

[7] S. Voulgaris and M. v. Steen. Epidemic-style
management of semantic overlays for content-based
searching. In Euro-Par’05.

