
HAL Id: hal-00646730
https://hal.science/hal-00646730v1

Preprint submitted on 30 Nov 2011 (v1), last revised 10 Jul 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constellation: Programming decentralised social
networks

Anne-Marie Kermarrec, François Taïani

To cite this version:
Anne-Marie Kermarrec, François Taïani. Constellation: Programming decentralised social networks.
2011. �hal-00646730v1�

https://hal.science/hal-00646730v1
https://hal.archives-ouvertes.fr

Constellation: Programming decentralised social networks

Anne-Marie Kermarrec1

1 INRIA Rennes Bretagne Atlantique, Rennes,
France

anne-marie.kermarrec@irisa.fr

François Taïani1,2

2 Lancaster University, Lancaster LA1 4YW, UK
f.taiani@lancaster.ac.uk

1. Motivation
As they continue to grow, social and collaborative appli-

cations (e.g. twitter, facebook, digg) are increasingly calling
for disruptive distributed solutions than can cater for the
millions of users these applications serve daily, in hundreds
of countries, over a wide variety of devices. To address these
challenges, fully decentralised versions of social and collab-
orative applications are progressively emerging that seek to
provide naturally scalable solutions to deliver their services.
Gossip protocols in particular appear as a natural solution to
implement these decentralised versions, as they intrinsically
tend to be highly resilient, efficient, and scalable.

Social applications based on gossip have however been lim-
ited so far to relatively homogeneous systems: They typi-
cally rely on one similarity measure [3] to self-organise large
amount of distributed users in implicit communities, and
thus offer powerful means to search, mine, and serve per-
sonalised data in a distributed manner [1].

We posit in this paper that we now need to move to more
complex gossip-based social applications that can cater for
different types of data and similarity, organised in multi-
ple levels of abstraction. Exploring, designing, and evaluat-
ing such novel approaches is unfortunately time-consuming
and error-prone. To help in this task, this paper sketches
the main ingredients of a new programming language, Con-

stellation, that seeks to simplify the realisation and ex-
perimentation with social gossip-based applications. Con-

stellation is based on two central observations: (i) future
decentralised social applications will need to handle hetero-
geneous forms of data and self-organisation, and (ii) to offer
more powerful services, these applications will need to move
beyond physical nodes to encompass richer data structures
organised in virtualised levels of abstractions.

2. Heterogeneous self-organisation
A traditional gossip-based social application [1] uses

a two-layer structure to organise a large number of dis-
tributed nodes in similarity neighbourhoods (Fig. 1). Each
node (e.g. representing a user) maintains a fixed list of
neighbours in both layers, and periodically updates these
view by interacting with its neighbours. In the top layer
(clustering), nodes seek to construct a neighbourhood of

RPS layer providing

random sampling

clustering layer

providing epidemic

similarity clustering

similarity linkrandom link

Alice

Bob
Carl

Dave

Ellie

Alice

Bob

Carl

Dave

Ellie

node

Figure 1: Gossip-based distributed clustering

Website { List<String> topics }

User {

List<String> interests

clusters potentialFriends { |u|

overlap(this.interests,u.interest) }

clusters interestingSites with Website { |site|

cosSim(this.interests, site.topics) }

using potentialFriends.interestingSites }

Figure 2: Heterogeneous clustering

similar nodes (for instance nodes serving similar videos, or
users with similar interest in their browsing history), accord-
ing to some similarity measure (e.g. a count of interest tags
in common) [3]. To that aim, they implement a local greedy
optimisation procedure that leverages both the bottom ran-
dom peer sampling (RPS) layer [2] (which guarantees con-
vergence and provide resilience against churn and partition)
and the clustering layer [3] (that speeds up convergence).

The resulting system is similar to a large set of physical
particles submitted to a uniform law of attraction (the sim-
ilarity measure). In this physical metaphor, the RPS layer
plays the role as thermal excitation (as in simulated an-
nealing), while the clustering layer provides a local gradient
approach to converge to an optimal topology (i.e. one that
maximise similarity between nodes).

In Constellation, that kind of uniform clustering system
is described by indicating (i) which data each node holds
(e.g. interests below, a simple list of strings denoting the
tags used by a user); and (ii) which similarity measure to ap-
ply between nodes (with the keyword clusters; here count-
ing the overlap in tags between two users).

User { List<String> interests

clusters potentialFriends { |u|

overlap(this.interests, u.interests) }}

Social applications may however involve different types
of node (e.g. users and websites) and different similarities
between these nodes, which a uniform approach cannot cap-
ture. To help program these more advanced systems, Con-

stellation allows the declaration of multiple similarities
between different types of nodes. For instance, in Fig. 2, in-
terestingSites links each user with a list of websites this
user might be interested in. With an RPS layer adapted
to return both a random sample of both User and Website

nodes, each user will eventually converge to a list of web-
sites most likely to interest her. A complicating factor here
comes from the fact that websites have no neighbourhood,
which prevents the direct use of a gradient optimisation in
the clustering layer (cf. Fig. 1). To work around this prob-
lem, Constellation provides the using keyword (last line

data

data

data

data

vertical data

aggregation

data

aggregated

container data

container node

(e.g. user, storage node)

container

node

vnode

(e.g. query)

similarity

computation

(vnodes)

similarity

computation

(container)

primary

container data
(user name etc.) data

vnode data
(tags in query)

Figure 3: Vertical data aggregation

Query{ List<String> tags

clusters similarQueries { |req|

overlap(this.tags, req.tags) } }

User { contains Query queries

clusters similarUsers { |u|

overlap(this.queries.tags,u.queries.tags)}

set scope similarUsers for queries }

Figure 4: Data aggregation & virtualised clustering

in Fig. 2), which indicates here that user nodes should use
their list of potential friends to optimise their list of available
websites (a form of convergence piggybacking).

3. Virtualisation
The mechanisms just described offer a world in which dif-

ferent ‘attraction laws’ (different similarities) can act on dif-
ferent particles (different nodes). In this model, all nodes
are on the same level and usually correspond to a physical a
machine in a peer-to-peer system. Some social applications,
however, can benefit from treating entities that are not as-
sociated with individual machines as ‘virtually distributed’.
This applies for instance to the search queries made by a
user (in a decentralised search system), to the videos stored
by a storage node (in a video storage system), or to the items
tagged by a contributor (in a collaborative tagging system).

To support these systems, Constellation allows nodes
(called containers) to host“virtual nodes”(vnodes for short),
i.e. entities which can maintain a similarity neighbourhood
as nodes do (Fig. 3), but are not directly associated with
a physical device. The neighbours of a vnode might be-
long to the same container node, or to distant containers.
To allow vnodes to cluster themselves with other similar
vnodes, Constellation includes two mechanisms: vertical

data-aggregation, and virtualised clustering.
Vertical data aggregation allows a container node to

access the data managed by its virtual nodes in the form of a
multiset (a ’bag’) of data items (red shaded arrow on Fig. 3).
For instance, if a node User contains Query vnodes in a vari-
able queries (Fig. 4), a user can access a collection of all her
queries with this.queries. If each query maintains in turn
a list of tags (as in Fig. 4), all tags contained in the queries
of a user can be aggregated using this.queries.tags.

Using vertical aggregation, a Constellation program
can define the neighbourhood of a container in terms of its
vnode content (green solid arrow on Fig. 3). E.g. in Fig. 4
the similarity relationship similarUsers uses the list of tags
of the queries made by a user to find similar users.

Virtualised clustering. Although vertical aggregation
can be used on its own, its main use is to allow contained

RPS layer of users

(container nodes)

clustering layer of

users (container nodes)

RPS of Alice’s queries,

x and y (vnodes)

clustering layer of

Alice’s queries, x & y

Alice
Bob

Carl

Dave

Ellie

user (container node)

query (vnode)

similarity link

random link

Alice’s queries (x & y)

virtualised

clustering of

Alice’s queries

x
y

w

v

x

w

v

z u

y

z
u

Figure 5: Virtualised clustering of Alice’s queries
(for the code of Fig. 4)

vnodes to create their own similarity neighbourhood while
maintaining some coupling with their containing node. This
is useful semantically as vnodes (e.g. queries within users)
are often contextually linked to their containing node: Sim-
ilar queries from similar users are more likely to call for
related answers, than similar queries from dissimilar users.
Another reason pertains to efficiency: coupling the cluster-
ing mechanics of vnodes to that of containers allows for ef-
ficient realisations that do not overburden individual ma-
chines.

The general mechanism of virtualised clustering is shown
in Fig. 5 for the code of Fig. 4: a vnode (e.g. a query x)
can only maintain links with vnodes that lay in the neigh-
bourhood of its containing node (here Alice). This is as if
for x, the rest of the system only consists in Alice and her
neighbours Bob and Carl, and the queries (vnodes) they
contain (u, v, w, y, and z).

The clustering scope of queries is declared with the set

scope keyword (Fig. 4), which indicates which similarity
neighbourhood (here similarUsers) to use to scope the clus-
tering of queries. The result in Fig. 5 is a two-level clustering
system: users gravitate towards other users hosting similar
queries, and queries are linked so similar searches in a user’s
neighbourhood, in a way similar to that proposed in [1].

4. Outlook
Constellation offers two other features we have not dis-

cussed: the ability for nodes and vnodes to probe the data in
their neighbourhood (horizontal data aggregation), and the
capability of vnodes to migrate between containing nodes.
Although functionally simple, these four mechanisms (vir-
tualisation, virtualised clustering, data aggregation, and mi-
gration) can be combined arbitrarily, and we think offer a
particularly attractive playing ground to experiment with
novel gossip-based social algorithms.

In the mid term, we are exploring the possibility for vn-
odes to divide and merge (as cells would), which can be use-
ful for storage and replication. Constellation might also
offer paths to reason about the correctness and efficiency of
a systems through static analysis, which we would like to
further explore in the future.

5. References
[1] M. Bertier et al. The gossple anonymous social

network. In Middleware’2010, pages 191–211.

[2] M. Jelasity et al. Gossip-based peer sampling. ACM

ToCS, 25, 2007.

[3] S. Voulgaris and M. v. Steen. Epidemic-style
management of semantic overlays for content-based
searching. In Euro-Par’05.

