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Conservation laws with a non-local flow

Application to Pedestrian traffic.

Magali Lécureux-Mercier1

November 30, 2011

Abstract

In this note, we introduce some models of pedestrian traffic and prove existence and
uniqueness for these models.

1 Introduction

In the last decades, the crowds’ dynamics has attracted a lot of scientific interest. A first
reason of this interest is to understand how crowd disasters happened in some panic events, for
example at the end of football play, during concerts, in the case of fire, or in place of pilgrimage
(e.g. on Jamarat Bridge in Saudi Arabia, see [13]). Another reason lies in architecture
of buildings such as subway stations or stadiums, where a lot of pedestrians are crossing.
The goals here are consequently twofold: in one hand we want to understand the behavior
of pedestrians in panic and adapt the regulation of traffic in order to avoid deaths; in the
other hand, we want to modelize the interaction of several kinds of pedestrians with different
objectives and in particular study how the geometry influences the general pattern.

In a macroscopic setting, a population is described by its density ρ which satisfies the
conservation law

∂tρ+Div(ρV (t, x, ρ)) = 0 , ρ(0, ·) = ρ0 , (1)

where V (t, x, ρ) is a vector field describing the velocity of the pedestrians depending on the
time t ≥ 0, the space x ∈ R

N and the density ρ. According to the choice of V , various behaviors
can be observed. Several authors already studied pedestrian traffic in two dimensions space
(N = 2). Some of these models are local in ρ, that is to say V depends on the local density
ρ(t, x) [8, 2, 15, 16, 20, 21] ; other models use not only the local density ρ(t, x) but the entire
distribution of ρ, for example they depend on the convolution product ρ(t)∗η [11, 22]. Here, in
the line of preceding papers [5, 4, 7, 6], we present nonlocal macroscopic models for pedestrian
traffic, we study these models and compare their properties.

Our first aim is to modelize the behavior of pedestrians in different situations: crowd
behaves indeed differently in panic or in a normal situation where courtesy rules do apply. We
also introduce models in the case of a population interacting with an individual, and in the
case of several populations with different objectives. For instance, we want to include in our
study the case of two populations crossing in a corridor.
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Second, we want to study the introduced models and prove existence and uniqueness of
solutions under various sets of hypotheses. We will use two kinds of arguments: the first one
comes from Kružkov theory [17, 18], the second one from the optimal transport theory. We
want to prove existence and uniqueness of solutions for the various models presented below.
Let us concentrate on the case of pedestrians in panic:

∂tρ+Div(ρ v(ρ ∗ η)~ν(x)) = 0. (2)

All the proofs of existence and uniqueness in this note are based on the following idea: let us
fix the nonlocal term and, instead of (2), we study the Cauchy problem

∂tρ+Div(ρ v(r ∗ η)~ν(x)) = 0 , ρ(0) = ρ0 , (3)

where r is a given function. Then, we introduce the application

Q :

{

r 7→ ρ
X → X

}

, (4)

where the space X has to be chosen so that

(a) X is equipped with a distance d that makes X complete;

(b) the application Q is well-defined: the solution ρ ∈ X exists and is unique (for a fixed r);

(c) the application Q is a contraction.

Once we have fullfilled these conditions, we can prove existence of a solution using a fixed
point argument.

Note that, in the modelization of pedestrian traffic, the space dimension N has to be equal
to two, but our results are in fact true for all N ∈ N. For instance, they can be adapted in
dimension N = 3 to modelize the behavior of fishes or birds. Consequently, we keep here a
general N , even if we essentially think to the case N = 2.

This note is organized as follows: in Section 2, we describe some nonlocal models and their
properties. In Section 3 we study one of these models through Kružkov theory and in Section
4 we study the same model through optimal transport theory.

2 Pedestrian Traffic Modelization

2.1 One-Population model

2.1.1 Pedestrian in panic

The first model we present corresponds to pedestrians in panic and was studied in [5, 6], in
collaboration with R. M. Colombo and M. Herty. A panic phenomenon appears under special
circumstances in crowded events. In these cases, the people are no longer rational and try, no
matter how, to reach their target. Let us denote ρ(t, x) the density of pedestrians at time t
and position x ∈ R

N . We consider the Cauchy problem:

∂tρ+Div
(

ρ v(η ∗ ρ(t, x))~ν(x)
)

= 0 ; ρ(0, ·) = ρ0 . (5)
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Here, v is a real function describing the speed of the pedetrians. This function does not depend
on the local density ρ(t, x) but on the averaged density ρ(t) ∗ η(x) =

∫

RN ρ(t, x − y) η(y) dy.
The vector field, ~ν(x) describes the direction that the pedestrian located in x will follow,
independently from the distribution of the pedestrians’ density. Note that we are working
here on the all of RN and not on a subset of RN ; thus, we are not working on a restriction to
a room, for example. However, we can still introduce the presence of walls and obstacles in
the choice of the vector field ~ν. Let us denote Ω ⊂ R

N the space where the pedestrians are
authorized to walk, e.g. a room. If we choose ~ν(x) in a nice way (for example we can require
that on the walls, i.e. for all x ∈ ∂Ω, ~ν(x) coincides with the entering normal to Ω), then we
can conclude to the invariance of the room. More precisely, if the initial density has support
on some closed set Ω ⊂ R

N , then the solution will have support contained in Ω for all time.
This remark allows us to avoid considering any boundaries and to have solutions on all RN .

Using the Kružkov theory on classical scalar conservation laws, we are able to prove:

Theorem 2.1 (see [6]). Let ρ0 ∈ (L1∩L∞∩BV)(RN ,R+). Assume v ∈ (C 2∩W2,∞)(R,R),
~ν ∈ (C 2∩W2,1)(RN ,RN ), η ∈ (C 2∩W2,∞)(RN ,R). Then there exists a unique weak entropy
solution ρ = Stρ0 ∈ C 0(R+,L

1(RN ,R+)) to (5) with initial condition ρ0. Furthermore we have
the estimate

∥

∥ρ(t)
∥

∥

L∞
≤ ‖ρ0‖L∞e

Ct , (6)

where the constant C depends on v, ~ν and η.

For the definition of weak entropy solutions see Section 3; the proof is defered to Section
3.2.1. Note that in Theorem 2.1, the hypotheses are very strong. Let us denote P(RN )
the set of probability measures on R

N and M+(RN ) the set of positive measures on R
N .

In collaboration with G. Crippa, using now some tools from optimal transport theory, we
obtained the better result:

Theorem 2.2 (see [9]). Let ρ0 ∈ M+(RN ). Assume v ∈ (L∞ ∩ Lip)(R,R), ~ν ∈ (L∞ ∩
Lip)(RN ,RN ), η ∈ (L∞ ∩ Lip)(RN ,R+). Then there exists a unique weak measure solution
ρ ∈ L∞(R+,M

+(RN )) to (5) with initial condition ρ0.
If furthermore ρ0 ∈ L1(RN ,R+) then for all t ≥ 0, the solution ρ satisfies also ρ(t) ∈

L1(RN ,R+).

For the definition of weak measure solution see Section 4; the proof is defered to Section
4.2.

Note that for the model (5), there is a priori no uniform L∞ bound on the density. Indeed,
heuristically, considering the case in which the density is maximal, equal to 1, on the trajectory
of a pedestrian located in x. If the averaged density around x is strictly less than 1 (because,
for example there is no one behind this pedestrian), then the speed v(ρ ∗ η) will be strictly
positive, which means the pedestrian in x will try to go forward, even though there is a queue
in front of him. Consequently, we expect the density to become larger than one.

This behavior is not really unexpected in the case of panic. In fact, in some events the
density attained up to 10 persons per square meter, which is obviously too much and a cause
of deaths (see [13]). Consequently, it is quite satisfactory to recover this behavior. One of our
goal in this context is then to introduce a cost functional allowing to characterize the cases in
which the density is too high, and to find extrema of this functional. Let us introduce

JT (ρ0) =

∫ T

0

∫

Ω
f(Stρ0) dx ,
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where Ω ⊂ R
N is the room, ρ0 is the initial condition and Stρ0 is the semi-group generated by

Theorem 2.1. We choose the function f ∈ C 1(R,R+) so that it is equal to zero for any density
ρ less than a fixed threshold ρc and so that it is stictly increasing on [ρc,+∞[. Consequently,
the functional JT above allows to characterize the solutions with too high density and in
particular it vanishes if the set {(t, x) ∈ [0, T ]×R

N : Stρ(x) ≥ ρc} has measure zero. We are
then interested in finding the minima of this cost functional.

Using the Kružkov theory we prove the following differentiability result:

Theorem 2.3 (see [5, 6]). Let ρ0 ∈ (W2,∞ ∩ W2,1)(RN ,R+), r0 ∈ (W1,1 ∩ L∞)(RN ,R)
and denote ρ = Stρ0. Assume v ∈ (C 4 ∩ W2,∞)(R,R), ~ν ∈ (C 3 ∩ W2,1)(RN ,RN ), η ∈
(C 3 ∩ W2,∞)(RN ,R+). Then there exists a unique weak entropy solution r = Σρ

t r0 to the
Cauchy problem

∂tr +Div(r v(ρ ∗ η)~ν(x)) = −Div(ρ v′(ρ ∗ η)~ν(x)) , r(0) = r0 . (7)

Furthermore, the semi-group St obtained in Theorem 2.1 is Gâteaux-differentiable, that is
to say, for all ρ0 ∈ (W2,1 ∩W2,∞)(RN ,R+), r0 ∈ (W1,1 ∩ L∞)(RN ,R),

lim
h→0

∥

∥

∥

∥

St(ρ0 + hr0)− Stρ0
h

− Σρ
t r0

∥

∥

∥

∥

L1

= 0 .

The proof is defered to Section 3.2.2.
It is not possible to obtain the same result by the use of optimal transport theory. Indeed,

it seems already not possible to find a good definition of Gâteaux differentiability on the set
of probability measures equipped with the Wasserstein distance of order 1.

2.1.2 Orderly crowd

In opposite to the previous model, for a model of orderly crowd it is required to have a uniform
L∞ bound on the density. In collaboration with R. M. Colombo and M. Garavello [4], we
studied the equation

∂tρ+Div






ρv(ρ)

(

~ν(x)−
∇(ρ ∗ η)

√

1 +
∥

∥∇(ρ ∗ η)
∥

∥

2

)






= 0 ; (8)

with ρ0 ∈ (L1 ∩ L∞ ∩BV)(RN ;R).
In this model, the speed v depends on the local density ρ(t, x), which allows to prove some

uniform bound in L∞. The prefered direction of the pedestrians is still ~ν(x), but they deviate
from their optimal path trying to avoid entering regions with higher densities. Indeed, (ρ ∗ η)
is an average of the crowd density around x and −∇(ρ ∗ η) is a vector going in the direction
opposite to the area of maximal averaged density. Due to the nonlinearity of the flow with
respect to the local ρ, it is no longer possible to use optimal transport theory. Hence, we use
Kružkov theory, to prove existence and uniqueness of solutions. We obtain the theorem:

Theorem 2.4 (see [4]). Assume that v ∈ C 2([0, 1],R+) satisfies v(1) = 0, that ~ν ∈ (C 2 ∩
W2,1∩W1,∞)(RN ,RN ), and that η ∈ (C 3∩W3,1∩W2,∞)(RN ,R). Then, for any ρ0 ∈ (L1∩
L∞ ∩BV)(RN , [0, 1]), there exists a unique weak entropy solution ρ ∈ C 0(R+,L

1(RN , [0, 1])).
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The proof of this theorem relies on Kružkov theory (see Section 3). Note that for this
model the density is uniformly bounded in L∞, contrarily to the panic model, in which the
L∞ norm can grow exponentially in time.

Some difficulties now appear in proving that the pedestrians remain in the authorized area.
Let us introduce the following invariance property:

(P) Let Ω ⊂ R
N be region where the pedestrians are allowed to walk. The model (8) is

invariant with respect to Ω if

Supp(ρ0) ⊂ Ω ⇒ Supp(ρ(t)) ⊂ R
N for all t ≥ 0 . (9)

To obtain that (P) is satisfied, we have to require the prefered direction to be strongly entering
the room (see [4, Proposition 3.1 & Appendix A]).

Some interesting phenomena show up through numerical computations. First, when con-
sidering a crowd walking along a corridor, we observe the formation of lanes (see Figure 1).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   0.000

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   2.529

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   5.043

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   7.557

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =  10.071

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =  15.014

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

Figure 1: Solution to (8) at times t = 0, 2.529, 5.043, 7.557, 10.071, 15.014. First 3 lanes are
formed, then the middle lane bifurcates forming the fourth lane. Picture from [4].

Furthermore, this phenomenon seems very stable with respect to initial conditions and
geometry. Indeed considering the room and initial distribution as in Figure 2, adding some
various obstacles, we still have lanes, at least in large space (see Figures 3).
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Figure 2: Initial datum and room geometry. Picture from [4].

A further remarkable property of the model (8) is that it captures the following well-
known, although sometimes counter intuitive phenomenon (Braess paradox): the evacuation
time through an exit can be reduced by carefully positioning suitable “obstacles” that direct
the outflow (see for instance [12] and the references therein). Indeed, looking at Figure 4,
we observe that the time of exist with obstacles is slightly shorter than the one without any
obstacle.
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Figure 3: Solution to (8) with different geometries, computed at time t = 2.521, 5.043 and
7.563. Picture from [4].

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   4.438  Inside =  58.61%

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   6.253  Inside =  41.98%

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =  11.396  Inside =   0.99%

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   4.438  Inside =  59.66%

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =   6.253  Inside =  42.96%

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time =  11.396  Inside =   0.00%

-4

-3

-2

-1

0

1

2

3

4

0 2 4 6 8 10 12 14 16

Figure 4: Solution to (8) with ε = 0.2, at times t = 4.438, 6.253, 11.396. On the first line, no
obstacle is present. On the second line, 4 columns direct the crowd flow. The evacuation time
in the latter case is shorter than in the former one. Picture from [4].

2.2 Several populations

A natural wish now is to extend the previous models to the case of several population with
different objectives.

2.2.1 Panic

With several populations, we have to consider several densities and several equations. For
two populations, extending the idea of the equation (5) to the case of several populations, we
obtain the system

{

∂tρ1 +Div
(

ρ1 v(ρ1 ∗ η1 + ρ2 ∗ η2)~ν1(x)
)

= 0 ,
∂tρ2 +Div

(

ρ2 v(ρ1 ∗ η1 + ρ2 ∗ η2)~ν2(x)
)

= 0 .
(10)

Here we consider that the speed v depends on the average of the total density ρ1+ρ2. Further-
more, the difference of goals of the populations 1 and 2 is reflected in the choice of different
prefered directions ~ν1 and ~ν2.

We are able to prove theorems similar to the ones of section 2.1.1. In collaboration with
R. M. Colombo [6], we obtained:
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Theorem 2.5 (see [6]). Let ρ0 = (ρ0,1, ρ0,2) ∈ (L1 ∩ L∞ ∩ BV)(RN ,R2
+). Assume that, for

i ∈ {1, 2}, vi ∈ (C 2 ∩W2,∞)(R,R), ~νi ∈ (C 2 ∩W2,1)(RN ,RN ), ηi ∈ (C 2 ∩W2,∞)(RN ,R).
Then there exists a unique weak entropy solution ρ = Stρ0 ∈ C 0(R+,L

1(RN ,R2
+)) to (5) with

initial condition ρ0. Furthermore we have the estimate

∥

∥ρ(t)
∥

∥

L∞
≤ ‖ρ0‖L∞eCt , (11)

where the constant C depends on v, ~ν and η

Similarly as for one population, it is possible with several populations to prove the Gâteaux-
differentiability thanks to Kružkov theory (see [6, Theorem 2.2]).

As in Theorem 2.5, the hypotheses of Theorem 2.5 are very strong. In collaboration with
G. Crippa [9], using tools from optimal transport theory, we obtained the better result:

Theorem 2.6 (see [9]). Let ρ0 ∈ P(RN )2. Assume vi ∈ (L∞ ∩ Lip)(R,R), ~νi ∈ (L∞ ∩
Lip)(RN ,RN ), ηi ∈ (L∞ ∩ Lip)(RN ,R+). Then there exists a unique weak measure solution
ρ ∈ L∞(R+,P(RN )2) to (10) with initial condition ρ0.

If furthermore ρ0 ∈ L1(RN ,R+) then for all t ≥ 0, we have ρ(t) ∈ L1(RN ,R+).

The idea of the proof for this theorem is given in Section 4.
Interaction continuum / individuals. Note that in the framework of Theorem 2.6,

we are dealing with measure solutions. This context allows us to describe a coupling be-
tween a group of density ρ1 and an individual located in p(t). Indeed, let us assume that
ρ1 ∈ L∞(R+,L

1(RN ,R+)) and ρ2 = δp(t) is a Dirac measure. Then we have the following
ODE/PDE coupling:











∂tρ1 + div
(

ρ1 v
(

ρ1 ∗ η1(x) + η2(x− p(t))
)

~ν1(x)
)

= 0 ,

ṗ(t) = v
(

ρ1 ∗ η1
(

p(t)
)

+ η2(0)
)

~ν2(p(t)) .

2.2.2 Orderly crowd

We now extend (8) to the case of several populations. We consider here not only that ρ1 and
ρ2 have two different goals, but also that ρ1 is repelled by ρ2, and that ρ2 is repelled by ρ1.
Let us denote εi the parameter of self-interaction and εo the parameter of interaction with the
other population. We obtain:































∂tρ1 +Div
(

ρ1 v1(ρ1)
(

~ν1(x)− εi
∇ρ1 ∗ η1

√

1 + ‖∇ρ1 ∗ η1‖
2
− εo

∇ρ2 ∗ η2
√

1 + ‖∇ρ2 ∗ η2‖
2

))

= 0 ,

∂tρ2 +Div
(

ρ2 v2(ρ2)
(

~ν2(x)− εo
∇ρ1 ∗ η1

√

1 + ‖∇ρ1 ∗ η1‖
2
− εi

∇ρ2 ∗ η2
√

1 + ‖∇ρ2 ∗ η2‖
2

))

= 0 .

(12)

Remark 2.7. Note that the interaction between the equations is only in the nonlocal term.

We obtain again existence and uniqueness of weak entropy solutions thanks to Kružkov
theory (see [6, Theorem 3.2]). The obtained theorem is similar to Theorem 2.4 so we don’t
rewrite it.
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A classical situation considered in the engineering literature is that of two groups of people
moving in opposite directions and crossing each other. The numerical integration (see Fig-
ure 5), shows formation of lanes that are not superimposing as described in the engineering
literature ([14, 10] or [1] ).
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Figure 5: Numerical integration of (12). Above, the population ρ1 moving to the right and,
below, ρ2 moving to the left. Note the lanes that are formed. First, due to the self-interaction
(εi = 0.3) within each populations and then due to the crossing between the two populations
(εo = 0.7). The latter lanes of different populations do not superimpose. Picture from [6].

Another situation developping interesting features is the following: two populations are
initially uniformly distributed in the same region. At time t =0, the first populations starts
moving towards an exit (first line of Figure 6), on the right while the second moves only to
let the first one pass (second line of Figure 6).
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Figure 6: Numerical integration of (12) when with εi = 0, εo = 0.3. Above, the population
ρ1 and, below, ρ2. Note first the formation of small clusters separating the two populations,
then lanes and, finally, a sort of fingering. Picture from [6].

2.2.3 Interaction group / isolated agent

Let us finally introduce a model that would take into account the situation in which an isolated
individual interact with a crowd. We think for example to the situation in which a predator
is running after a group of preys. We can also think to the case of a leader willing to carry a
group of followers to a given region. Let ρ ∈ R+ be the density of the group and p ∈ R

k be
the position of an isolated agent (e.g. a leader or a predator). We describe the interaction by
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the coupling (see [7]):










∂tρ+Div
(

ρV
(

t, x, ρ, p(t)
)

)

= 0 ,

ṗ = ϕ
(

t, p,
(

Aρ(t)
)

(p(t))
)

,
(t, x) ∈ R

+ × R
N , (13)

with initial conditions
ρ(0, x) = ρ0(x) , p(0) = p0 .

Using once again Kružkov theory and tools on the stability of ordinary differential equations,
in collaboration with R. M. Colombo, we proved existence and uniqueness of solutions (see [7,
Theorem 2.2]).

For example, we can consider:

• Followers / Leader (see Figure 7): here the vector p ∈ R
2 is the position of the leader

and ρ is the density of the group of followers. The function v(ρ) describes essentially
the speed of the followers and is, as usual, a decreasing function, vanishing in ρ = 1;
the direction of a follower located in x is given by the vector p(t) − x, directed toward
the leader. The velocity of the leader is increasing with respect to the averaged density
ρ∗η, computed in the position of the leader. Indeed, we expect the leader to wait for the
followers to join him when the density of followers is small around him, and to accelerate
when the density of followers becomes bigger; this means low speed when the averaged
density is small and high speed when the averaged density is maximal. The direction of
the leader is a chosen vector field ~ψ(t).







∂tρ+Div
(

ρ v(ρ) (p(t) − x)e−‖p−x‖
)

= 0 ,

ṗ = (1 + ρ ∗ η(p(t)) ) ~ψ(t) .

Solution at time 0.000
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Figure 7: Numerical solution of (13) in a predator/prey interaction. Picture from [7].

• Sheeps / Dogs: in this example, there are n dogs, located in pi(t) ∈ R
2 for i ∈ {1, . . . , n}

and a group of sheeps of density ρ(t, x). The dogs want to constrain the sheeps to a
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given area by running around them and the sheeps are afraid by the dogs. As above,
the speed of the sheeps is given by the decreasing function v(ρ) that vanishes in ρ = 1.
The direction of a sheep located in x is a sum of two terms. The first one is their
prefered direction ~ν(x) ; the second one is given by the vector

∑n
i=1(x− pi(t))e

−‖pi−x‖

representing the repulsive effects of the dogs on the sheeps, and its presence is is less felt
if it is too far away. Each dog run around the flock tacking the direction perpendicular
to the direction of maximal averaged density.























∂tρ+Div

(

ρ v(ρ)
(

~ν(x) +
∑n

i=1(x− pi)e
−‖pi−x‖

)

)

= 0 ,

ṗi =
(ρ ∗ ∇η)⊥(pi(t))

√

1 +
∥

∥ρ ∗ ∇η(pi(t))
∥

∥

2
, for all i ∈ {1, . . . n} .

• Preys / Predator: here a predator, located in p(t) ∈ R
3 is pursuing a group of preys of

density ρ(t, x). For example, we can think to an hawk pursuing a swarm of little birds
or to a shark pursuing a shoal of little fishes. As above, the speed of the preys is given
by the decreasing function v(ρ) that vanishes in ρ = 1. The direction of a prey located

in x is given by the vector (x−p(t))e−‖p(t)−x‖ so that the predator has a repulsive effect
on the preys, and its presence is is less felt if it is too far away. The acceleration of
the predator is directed toward the maximal averaged density of preys, as felt from its
position, so it is directed as ∇(ρ ∗ η)(p(t)).















∂tρ+Div

(

ρ v(ρ)
(

1 + e−‖x−p(t)‖ (x− p(t)
)

)

)

= 0 ,

d2p

dt2
= (ρ ∗ ∇)η(p(t)) .

Note that Theorem 2.6 deals with measure solutions. Consequently, if ρ1 ∈ L1 and
ρ2 = δp(t), we recover the above coupling PDE/ODE. However, in Theorem 2.6, there are
restricitions on the flow as we only deal with continuity equations. In particular, with a well-
chosen nonlinearity with respect to ρ in the first equation of (13), we are able to provide for
(13) an a priori uniform bound on the L∞ norm, which is not possible for (10): in the three
examples above, if v(1) = 0, then 0 ≤ ρ0 ≤ 1 implies 0 ≤ ρ(t) ≤ 1 for all t ≥ 0.

3 Using Kružkov theory

3.1 General Theory on scalar conservation laws

In this section, we consider classical scalar conservation laws.

∂tu+Divf(t, x, u) = F (t, x, u) , u(0, x) = u0(x) , (14)

where f is the flow and F is the source. Note that, Div stands for the total divergence
whereas div stands for the partial divergence. Thus Divf(t, x, u(t, x)) = divf(t, x, u(t, x)) +
∂uf(t, x, u(t, x)) · ∇u(t, x).

Let us recall the definition of weak entropy solution:
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Definition 3.1. The function ρ ∈ L∞([0, T ] × R
N ,R) is called weak entropy solution to

the Cauchy problem (14) if it satisfies for all k ∈ R and any test-function ϕ ∈ C 0
c (] −

∞, T [×R
N ,R+),

∫

R∗

+

∫

RN

[

(u− k) ∂tϕ+
(

f(t, x, u)− f(t, x, k)
)

∇xϕ+
(

F (t, x, u) − divf(t, x, k)
)

ϕ
]

×sign(u− k) dxdt+
∫

RN

∣

∣ρ0(x)− k
∣

∣ϕ(0, x) dx ≥ 0 .

(15)

We also recall the well-known Kružkov theorem [17, Theorem 4], giving existence and
uniqueness of weak entropy solutions.

Theorem 3.2 (Kružkov). Let u0 ∈ (L∞ ∩ L1)(RN ,R). For all A,T ≥ 0, we denote ΩA
T =

[0, T ] × R
N × [−A,A] and Ω = R+ × R

N × R. Under the conditions f ∈ C 0(Ω;RN ), F ∈
C 0(Ω;R) and

(K)























f ∈ C 0(Ω;RN ) , F ∈ C 0(Ω;R) , and for all T,A > 0 :

f , F have continuous derivatives: ∂uf , ∂u∇f , ∇
2f , ∂uF , ∇F ,

for all T,A > 0 , ∂uf ∈ L∞(ΩA
T ) ,

F − divf ∈ L∞(ΩA
T ) , ∂u(F − divf) ∈ L∞(ΩA

T )

there exists a unique weak entropy solution u ∈ L∞([0, T ];L1(RN ;R)) of (14) that is right-
continuous in time.

Let v0 ∈ (L1 ∩ L∞)(RN ;R). Let u be the solution associated to the initial condition
u0 and v be the solution associated to the initial condition v0. Let M be such that M ≥
sup(‖u‖

L∞(R+×RN ;R), ‖v‖L∞([0,T ]×RN ;R)). Then, for all t ∈ [0, T ], with γ = ‖∂uF‖L∞(ΩM
T

), we
have

∥

∥(u− v)(t)
∥

∥

L1
≤ eγt‖u0 − v0‖L1 . (16)

3.1.1 Estimate on the dependence with respect to flow and source

Let us now consider a pair of different flows f, g ∈ C 2([0, T ] × R
N × R;RN ) and different

sources F,G ∈ C 1([0, T ]× R
N × R;R), let us denote u, v the solutions of

∂tu+Div f(t, x, u) = F (t, x, u) , u(0, ·) = u0 , (17)

∂tv +Div g(t, x, v) = G(t, x, v) , v(0, ·) = v0 , (18)

with initial conditions u0, v0 ∈ (L1∩L∞∩BV)(RN ,R). We want here to estimate
∥

∥(u− v)(t)
∥

∥

L1

with f−g, F−G, u0−v0. To do that, we use the doubling variable method due to Kružkov [17].
This strategy was already employed by Lucier [19] and Bouchut & Perthame [3] to study the
case in which the flows f, g depend only on u and the source are identically zero (F = G = 0).
A key ingredient in the previous results is that the solution of ∂tu+Div(f(u)) = 0 with initial
condition u0 ∈ (L∞ ∩ L1 ∩BV)(RN ,R) satisfies TV(u(t)) ≤ TV(u0).

Let us remind the definition of total variation.

Definition 3.3. For u ∈ L1

loc
(RN ;R) we denote the total variation of u:

TV(u) = sup
{

∫

RN

udivΨ ; Ψ ∈ C
1
c (R

N ;RN ) , ‖Ψ‖
L∞ ≤ 1

}

.

The space of function with bounded variation is then defined as

BV(RN ;R) =
{

u ∈ L1

loc; TV(u) <∞
}

.
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Remark 3.4. If u ∈ (C 1 ∩ W1,1)(RN ,R) then TV(u) = ‖∇u‖
L1 . When f and F are not

depending on u, we have

u0 ∈ (L∞ ∩BV)(RN ,R) ⇒ ∀t ≥ 0 , u(t) ∈ (L∞ ∩BV)(RN ,R)

and, with γ = ‖∂uF‖L∞(ΩM
T

),

TV(u(t)) ≤ TV(u0)e
γt .

Theorem 3.5 (see [19]). Let f, g : R → R
N be globally Lipschitz, let u0, v0 ∈ (L1∩L∞)(RN ;R)

be initial conditions of

∂tu+Div f(u) = 0 , ∂tv +Div g(v) = 0 .

Assume furthermore that v0 ∈ BV(RN ;R). Then for all t ≥ 0,

∥

∥(u− v)(t)
∥

∥

L1
≤ ‖u0 − v0‖L1 +C tTV(v0) Lip (f − g) ,

where C > 0 is a given constant.

We want to generalize this theorem. Let us introduce the set of hypotheses:

(FS)











for all U, T > 0 , ∂uF ∈ L∞(ΩU
T )

∫ T

0

∫

RN

∥

∥(F − div f)(t, x, ·)
∥

∥

L∞([−U,U ];R)
dxdt < +∞ .

Denoting ΩV
T = [0, T ] × R

N × [−V, V ], we obtain:

Theorem 3.6 (see [18]). Assume that (f, F ), (g,G) satisfy (K), that (f − g, F −G) satisfies
(FS). Let u0, v0 ∈ (L1 ∩ L∞ ∩ BV)(RN ;R). Let u and v be the solutions of (17) and (18)
associated to (f, F ) and (g,G) with initial conditions u0 and v0. Assume furthermore that
TV(u(t)) <∞ for all t ≥ 0.

Let V = max(‖u‖
L∞ , ‖v‖L∞) and κ = ‖∂uF‖L∞(ΩV

T
). Then for all t ∈ [0, T ]:

∥

∥(u− v)(t)
∥

∥

L1
≤ eκt‖u0 − v0‖L1 + eκt sup

τ∈[0,t]

(

TV(u(τ))
)

∫ t

0

∥

∥∂u(f − g)(τ)
∥

∥

L∞(RN×[−V ;V ])
dτ

+

∫ t

0
eκ(t−τ)

∫

RN

∥

∥((F −G)− div (f − g))(τ, x, ·)
∥

∥

L∞([−V,V ])
dxdτ .

The proof of this theorem is based on the Kružkov doubling variables method and is
detailed in [18].

In some particular cases, we recover known estimates:

• f(u), g(u), F = G = 0 : κ = 0 and

∥

∥(u− v)(t)
∥

∥

L1
≤ ‖u0 − v0‖L1 + tTV(u0)

∥

∥∂u(f − g)
∥

∥

L∞(ΩV
T
)
.

• f(t, x), F (t, x) : κ = 0, u(t, x) = u0(x) +
∫ t
0 (F − divf)(τ, x) dτ , and

∥

∥(u− v)(t)
∥

∥

L1
≤‖u0 − v0‖L1 +

∫ t

0

∫

RN

∣

∣((F −G)− div (f − g))(τ, x)
∣

∣dxdτ .
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3.1.2 Total variation estimate

To complete Theorem 3.6, we need an estimate on the total variation, defined in Definition 3.3.
To do so we need a few more hypotheses. Indeed, there is no reason why the total variation
should be bounded for all time. In fact, let us consider the equation ∂tu+∂x cos x = 0, u0 = 0.
The solution of this Cauchy problem is u(t, x) = t sinx whose total variation is 0 at time 0
and +∞ for any time t > 0.

Our goal now is to give a general estimate on the total variation. Let us introduce the
following set of hypotheses

(TV) :























for all A,T > 0
∇∂uf ∈ L∞(ΩA

T ;R
N×N ) , ∂uF ∈ L∞(ΩA

T ;R) ,
∫ T

0

∫

RN

∥

∥∇(F − divf)(t, x, ·)
∥

∥

L∞([−A,A];RN)
<∞ .

We obtain

Theorem 3.7. Let us assume (f, F ) satisfies (K)-(TV). Denote WN =
∫ π/2
0 (cos θ)N dθ,

M = ‖u‖
L∞([0,T ]×RN ), and

κ0 = (2N + 1)‖∇∂uf‖L∞(ΩM
T

) + ‖∂uF‖L∞(ΩM
T

) .

Then, the weak entropy solution u of (14) satisfies u(t) ∈ BV(RN ;R) for all t > 0, and

TV
(

u(T )
)

≤ TV(u0) e
κ0T +NWN

∫ T

0
eκ0(T−t)

∫

RN

∥

∥∇(F − divf)(t, x, ·)
∥

∥

L∞([−Ut,Ut];R)
dxdt ,

where Ut = supy∈RN

∣

∣u(t, y)
∣

∣.

The proof of this theorem is based on a good representation formula for the total variation
and on the doubling variable method and is detailed in [18].

Remark 3.8. In some cases, we recover known estimates.

• When f depends only on u and F = 0, we have a result similar to the one that was
already known: TV(u(t)) ≤ TV(u0).

• When f and F do not depend on u, the equation reduces in fact to the ODE ∂tu =
(F − divf)(t, x), whose solution writes

u(t, x) = u0(x) +

∫ t

0
(F − divf)(τ, x) dτ .

Meanwhile, the bound above reduces to

TV(u(t)) ≤ TV(u0) +NWN

∫ t

0

∫

RN

∣

∣(F − divf)(τ, x)
∣

∣ dτ

which is essentially what we expected, up to the coefficient NWN .

Proof. Let us admit the following proposition:
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Proposition 3.9. Let µ ∈ C∞
c (R+;R+) such that ‖µ‖

L1 = 1 and µ′ < 0 on R
∗
+. Let

u ∈ L1

loc
(RN ,R). We define µλ(x) =

1
λN µ

(

‖x‖
λ

)

. If there exists C0 > 0 such that ∀λ > 0,

I(λ) =
1

λ

∫

RN

∫

RN

∣

∣u(x+ y)− u(x)
∣

∣µλ(y)dxdy ≤ C0,

then u ∈ BV(RN ,R) and
C1TV(u) = lim

λ→0
I(λ) ≤ C0.

with C1 =
∫

RN |y1|µ(‖y‖)dy.

Hence, we introduce:

F(T, λ) =

∫ T

0

∫

RN

∫

B(x0,R+M(T0−t))

∣

∣u(x+ y)− u(x)
∣

∣µλ(y)dxdy dt ,

our goal being to estimate this quantity using the Kružkov doubling variable method.
Doubling variable method. Let us denote u = u(t, x) and v = u(s, y) for (t, x), (s, y) ∈

R
∗
+ × R

N . For all k, l ∈ R and all test-function ϕ = ϕ(t, x, s, y) ∈ C 1
c

(

(R∗
+ × R

N )2;R+

)

, we

have, by definition of weak entropy solution (see Definition 3.1)

∫

R∗

+

∫

RN

[

(u− k) ∂tϕ+
(

f(t, x, u)− f(t, x, k)
)

∇xϕ+
(

F (t, x, u) − divf(t, x, k)
)

ϕ
]

×sign(u− k) dxdt ≥ 0

(19)

and
∫

R∗

+

∫

RN

[

(v − l) ∂sϕ+
(

f(s, y, v)− f(s, y, l)
)

∇yϕ+ (F (s, y, v) − divf(s, y, l))ϕ
]

×sign(v − l) dy ds ≥ 0 .

(20)

Let us choose k = v(s, y) in (19) and integrate in (s, y). Similarly, we choose l = u(t, x) in (20)
and we integrate in (t, x). Furthermore, we choose ϕ(t, x, s, y) = Ψ(t− s, x− y)Φ(t, x) and we
summate to get

∫

R∗

+

∫

RN

∫

R∗

+

∫

RN

sign(u− v)

[

(u− v)Ψ ∂tΦ+
(

f(t, x, u)− f(t, x, v)
)

· (∇Φ)Ψ

+
(

f(s, y, v)− f(s, y, u)− f(t, x, v) + f(t, x, u)
)

· (∇Ψ)Φ

+
(

F (t, x, u)− F (s, y, v) + divf(s, y, u)− divf(t, x, v)
)

ϕ

]

dxdt dy ds ≥ 0 .

(21)

We choose now µ and ν unit approximations and

Ψ(t− s, x− y) =
1

λN
µ

(

x− y

λ

)

1

η
ν

(

t− s

η

)

,

so that Ψ converges to a Dirac in space and time when λ, η → 0; and we choose Φ such that
Φ → 1[0,T ]×B(x0,R+M(T−t)) when θ, ε → 0. The last step consists in estimating the integral
(21) when η, θ, ε→ 0, keeping the λ fixed to make appear F .
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Estimate on F. By the doubling variable method, we obtain

∂TF(T, λ) ≤∂TF(0, λ) + Cλ

(

∂λF(T, λ) +
N

λ
F(T, λ)

)

+ C ′F(T, λ) + λ

∫ T

0
A(t)dt , (22)

where

A(t) =M1

∫

RN

∥

∥∇(F − div f)(t, x, ·)
∥

∥

L∞(u)
dx , M1 =

∫

RN

‖y‖µ(‖y‖)dy,

C ′ = N‖∇∂uf‖L∞ + ‖∂uF‖L∞ . C = ‖∇∂uf‖L∞ .

We use the hypothesis u0 ∈ BV(RN ,R) to get 1
λ∂TF(0, λ) ≤M1TV(u0), and we integrate

with respect to time, obtaining:

0 ≤
M1

C
TV(u0) + ∂λF(T, λ) +

α(T )

λ
F(T, λ) +

1

C

∫ T

0
A(t)dt ,

where

α(T ) = N +
C ′

C
−

1

C T
→T→0 −∞ .

Next, we choose T so that α < −1 and we integrate on [λ,+∞[. We obtain:

F(T, λ) ≤
λ

−α− 1

M1

C
TV(u0) +

λ

C(−α− 1)

∫ T

0
A(t)dt .

Besides, note that, thanks to the shape of µ, we can find K > 0 so that

∂λF(T, λ)+
N

λ
F =

∫ T

0

∫

RN

∫

B(x0,R+M(T0−t))

∣

∣u(x+ y)− u(x)
∣

∣µ′λ(y)dxdydt ≤
K

2λ
F(T, 2λ) .

Hence, we finally obtain

1

λ
∂TF(T, λ) ≤

1

λ
∂TF(0, λ) +

CK + C ′

(−α− 1)C

(

M1TV(u0) +

∫ T

0
A(t)dt

)

+

∫ T

0
A(t)dt .

By Proposition 3.9 we have then u(t) ∈ BV(RN ,R).We can now divide (22) by λ and make
λ→ 0. Applying a standard Gronwall-type argument, we obtain the desired inequality. �

3.2 Scalar conservation law with a non-local flow

Let us consider equation (5) with initial condition ρ0 ∈ (L1 ∩ L∞ ∩ BV)(RN ,R). We
want to prove Theorem 2.1 and Theorem 2.3. Note that this proof adapt smoothly to
prove Theorem 2.4 and 2.5. We use here the scheme proposed in Section 1, choosing X =
C 0([0, T ],L1(RN ,R)) at point (a). Point (b) is then satisfied by Kružkov theorem (see The-
orem 3.2) and point (c) is satisfied by the stability estimate given by Theorem 3.6 & 3.7.

This scheme of proof can be also used for the other models: the proof of Theorem 2.4 for
an orderly crowd is based on it, as well as Theorem 2.5 giving existence and uniqueness for
the several populations models (10) and (12). For more details on these various theorems,
refer to [6, 4].

We use also this scheme of proof in order to prove existence and uniqueness of solution to
equation (13), where we need furthermore stability results on the ODE (see [7]).
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3.2.1 Proof of Theorem 2.1

Let us introduce the space
X = C

0([0, T ],L1(RN ;R+)) .

Let r ∈ X and ρ ∈ X be the solution of (3) given by Kružkov Theorem (see Theorem 3.2).
Note that, u = 0 being a solution to (3), ρ0 ≥ 0 implies ρ(t) ≥ 0 for all t ≥ 0 thanks to the
maximal principle on scalar conservation laws [17, Theorem 3].

Remark 3.10. For the model (8) of orderly crowd, we can use the same king of argument to
have a uniform bound on the L∞ norm. Indeed, if u = 1 is a solution to the equation

∂tρ+Div(ρv(ρ)~w(x)) = 0 (23)

then ρ0 ≤ 1 implies ρ(t) ≤ 1 for all t ≥ 0. This fact allows us in this case to consider the space
X = C 0([0, T ],L1(RN , [0, 1])). The same fact is also true for each density of the model (12)
of orderly crowd with several populations. Indeed, the interaction between the equations is
only in the non-local term; so, if we fix the nonlocal term, we have to deal with the same kind
of scalar conservation law as (23). In particular, for each density ρi the maximum principle
gives us

0 ≤ ρ0,i ≤ 1 ⇒ 0 ≤ ρi(t) ≤ 1 for all t ≥ 0 .

So finally, if there are k populations, we have the following uniform bound on the total density
density

0 ≤

k
∑

i=1

ρi(t) ≤ k .

Let us introduce the application

Q : r ∈ X → ρ ∈ X .

For r1, r2, we get by Theorem 3.6 and Theorem 3.7,
∥

∥Q(r1)− Q(r2)
∥

∥

L∞([0,T ],L1)
≤ f(T )‖r1 − r2‖L∞([0,T ],L1) ,

where f is continuous, increasing, f(0) = 0 and f →T→∞ ∞. Consequently, we can choose T
small enough so that f(T ) = 1/2 and apply the Banach fixed point theorem for a small time.
Iterating the process in time, we obtain global in time existence.

3.2.2 Gâteaux derivative of the semi-group

We prove now that the semi-group obtained in Theorem 2.1 (or 2.5) is Gâteaux-differentiable
with respect to the initial condition. The following result is obtained by the use of Kružkov
theory.

Note that the Gâteaux-differentiability is also possible for the more non-linear models of
orderly crowd (8) and (12). Indeed an important tool below is that the equation (5) preserves
the regularity of the initial condition, which is no longer true for (8).

Definition 3.11. We say the application S : L1(RN ;R) → L1(RN ;R) is Gâteaux differen-
tiable in L1, in ρ0 ∈ L1, in the direction r0 ∈ L1 if there exists a linear continuous application
DS(ρ0) : L

1 → L1 such that
∥

∥

∥

∥

S(ρ0 + hr0)− S(ρ0)

h
−DS(ρ0)(r0)

∥

∥

∥

∥

L1

→h→0 0 .
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We expect the Gâteaux derivative to be the solution of the linearized problem (7).
First, we prove that the linearized problem admits an entropic solution (see [5, 6]).

Theorem 3.12. Assume that v ∈ (C 4 ∩W2,∞)(R,R), ~ν ∈ (C 3 ∩W2,1 ∩ W2,∞)(RN ,RN ),
η ∈ (C 3∩W2,∞)(RN ,R+). Let ρ ∈ C 0([0, Tex[;W

1,∞∩W1,1(RN ,R)), r0 ∈ (L1∩L∞)(RN ;R).
Then the linearized problem (7) with initial condition r0 admits a unique entropic solution
r ∈ C 0([0, Tex[;L

1(RN ;R)) and we denote Σρ
t r0 = r(t, ·).

If furthermore r0 ∈ W1,1(RN ,R), then for all t ∈ [0, Tex[, r(t) ∈ W1,1(RN ,R).

The proof is similar to the one of Theorem 2.1 so we omit it.

Theorem 3.13. Assume that v ∈ (C 4 ∩W2,∞)(R,R), ~ν ∈ (C 3 ∩W2,1 ∩ W2,∞)(RN ,RN ),
η ∈ (C 3 ∩W2,∞)(RN ,R+). Let ρ0 ∈ (W1,∞ ∩W2,1)(RN ,R+), r0 ∈ (W1,1 ∩ L∞)(RN ,R).

Then, for every t ≥ 0, the local semigroup of the pedestrian traffic problem is L1 Gâteaux
differentiable in the direction r0 and

DSt(ρ0)(r0) = ΣStρ0
t r0 .

We prove this theorem following the same sketch of proof as above.

Proof. Let ρ, ρh the solutions of the problem (5) with initial condition ρ0, ρ0 + hr0.
Let r be the solution of the linearized problem (7), r(0) = r0 and let zh = ρ + hr which

then satisifies

∂tzh+Div
(

zh(v(ρ ∗ η) + hv′(ρ ∗ η)(r ∗ η))~ν(x)
)

= h2Div(rv′(ρ∗η)(r∗η)~ν(x)) , zh(0) = ρ0+hr0 .

Then we use Theorem 3.6 & 3.7 to compare ρh et zh. We get:

1

h
‖ρh − zh‖L∞([0,T [,L1) ≤F (T )

(

1

h
‖ρh − ρ‖2

L∞(L1) +
1

h
‖ρh − zh‖L∞(L1)

)

+ hC(β)TeC(β)T ‖r‖
L∞(W1,1)‖r‖L∞(L1) ,

with F increasing and F (0) = 0. Then, we choose T small enough so that F (T ) = 1/2.
Besides, applying Theorem 3.6 to compare ρ and ρh and using Gronwall lemma, we obtain

that 1
h‖ρh − ρ‖

L∞(L1) remains bounded when h→ 0.
Finally, we can take the limit h→ 0 and obtain the desired result. �

3.2.3 Extrema of a cost functional

We are now able to characterize the extrema of a given cost functional. Let J be a cost
functional such that

J(ρ0) =

∫

RN

f (Stρ0) ψ(t, x)dx .

Proposition 3.14. Let f ∈ C 1,1(R;R+) and ψ ∈ L∞(R+×R
N ;R). Assume S : [0, T ]× (L1∩

L∞)(RN ;R) → (L1 ∩ L∞)(RN ;R) is L1 Gâteaux differentiable.
If ρ0 ∈ (L1 ∩ L∞)(RN ;R) is solution of the problem:

Find min
ρ0

J(ρ0) such that
{

Stρ0 is solution of problem (Traffic)
}

.

then, for all r0 ∈ (L1 ∩ L∞)(RN ;R)
∫

RN

f ′(Stρ0)Σ
ρ0
t r0 ψ(t, x) dx = 0 .
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4 Using the Optimal transport theory

In this section, we want to prove Theorem 2.2, giving existence and uniqueness of weak measure
solurtion to (5) and (10). In a more general settings, we consider the system:

∂tρi + div(ρiVi(x, ρ1 ∗ ηi,1, . . . , ρk ∗ ηi,k)) = 0 , (t, x) ∈R+ × R
N (24)

ρi(0) = ρ̄i , i ∈{1, . . . , k} .

in which the coupling between the equations is only present through the nonlocal term. Fixing
the nonlocal term, we obtain a system of decoupled continuity equations:











∂tρ1 + div(ρ1 b1(t, x)) = 0 ,
. . .
∂tρk + div(ρk bk(t, x)) = 0 ,

where b1, . . . , bk are regular with respect to x.

4.1 Existence and uniqueness of weak measure solutions

Let us remind the following definitions of weak measure solution, but also of Lagrangian
solution.

Definition 4.1. ρ ∈ L∞([0, T ],M+(RN )k) is a measure solution of (24) if, ∀ϕ ∈ C∞
c (] −

∞, T ]×R
N ,R)

∫ T

0

∫

RN

[

∂tϕ+ Vi(x, ρ ∗ ηi) · ∇ϕ
]

dρit(x) dt+

∫

RN

ϕ(0, x) dρ̄i(x) = 0 .

Definition 4.2. ρ ∈ L∞([0, T ],M+(RN )k) is a Lagrangian solution with initial condition
ρ̄ ∈ M+(RN )k if there exists an ODE flow Xi : [0, T ]× R

N → R
N , solution of







dXi

dt
(t, x) = Vi(X

i(t, x), ρt ∗ η
i(Xi(t, x))) ,

Xi(0, x) = x ;

and such that ρit = Xi
t ♯ρ̄

i where Xi
t : RN → R

N is the map defined as Xi
t(x) = Xi(t, x) for

any (t, x) ∈ R+ × R
N .

Definition 4.3. Let µ be measure on Ω and T : Ω → Ω′ a measurable map. Then T♯µ is the
push-forward of µ if for any ϕ ∈ C 0

c (Ω
′),

∫

Ω′

ϕ(x) dT♯µ(x) =

∫

Ω
ϕ
(

T (y)
)

dµ(y) .

If T♯ dµ (x) = f(x) dx and dµ (y) = g(y) dy; and T is a C 1-diffeomorphism. Then we have
the change of variable formula

g(x) = f(T (x))
∣

∣det(∇T (x))
∣

∣ .

Instead of proving directly Theorem 2.2 (or Theorem 2.6), we prove first the existence and
uniqueness of lagrangian solutions.
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Theorem 4.4. Let ρ̄ ∈ M+(RN ,Rk). Let us assume that V ∈ (L∞ ∩ Lip)(RN × R
k,RN×k)

and that η ∈ (L∞∩Lip)(RN ,Rk×k). Then there exists a unique Lagrangian solution to system
(24) with initial condition ρ̄.

Remark 4.5. Note that a Lagrangian solution is also a weak measure solution.
Besides, we recover the results of Theorem 2.1, except the continuity in time. Indeed,

Lagrangian solutions conserve the regularity of the initial condition along the time: if ρ̄ ∈
L1(RN , (R+)k) then ρ ∈ L∞(R+,L1(RN , (R+)k)) and we have

∥

∥ρ(t)
∥

∥

L1
= ‖ρ̄‖

L1 .

If moreover ρ̄ ∈ (L1 ∩ L∞)(RN , (R+)k), then ρ(t) ∈ L∞ for all t ≥ 0 and we have the
estimate

∥

∥ρ(t)
∥

∥

L∞
≤ ‖ρ̄‖

L∞eCt ,

where C depends on ‖ρ̄‖M, V and η.

We conclude the proof of Theorem 2.2 stating the uniqueness of measure solutions, so that
the Lagrangian solution obtained is also the unique measure solutions.

Proposition 4.6. Under the same set of hypotheses as Theorem 4.4, the weak measure solu-
tions for (24) are unique.

4.2 Proof of Theorem 4.4

Once again, the proof is based on the scheme described in Section 1. We consider below
probability measures instead ; for any i, we could also consider positive measures of fixed

total mass
∥

∥

∥
ρ̄i
∥

∥

∥

M
.

(a) Let us first introduce a space

X = L∞([0, T ],P(RN )k) .

We equip this space with the distance d(µ, ν) = supt∈[0,T ]W1(µt, νt). The Wasserstein distance
W1 is defined as follow:

Definition 4.7. Let µ, ν ∈ P(RN ). Let us denote Px : Rd×R
d → R

d the projection on the first
coordinate; that is, for any (u, v) ∈ R

d×R
d, Px(u, v) = u. In a similar way, Py : Rd×R

d → R
d

is the projection on the second coordinate; that is, for any (u, v) ∈ R
d ×R

d, Py(u, v) = v. We
denote Ξ (µ, ν) the set of plans, that is

Ξ(µ, ν) =
{

γ ∈ P(RN × R
N ) : Px♯γ = µ and Py♯γ = ν

}

.

The Wasserstein distance of order one between µ and ν is

W1(µ, ν) = inf
γ∈Ξ (µ,ν)

∫

RN×RN

|x− y|dγ(x, y) .

Let ρ = (ρ1, . . . , ρk), σ = (σ1, . . . , σk) ∈ P(RN )k. The Wasserstein distance of order one
between ρ and σ, denoted W1(ρ, σ), as

W1(ρ, σ) =
k
∑

i=1

W1(ρ
i, σi) .
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Let us recall the following duality formula:

Proposition 4.8 (cf. Villani [23, p. 207]). Let f, g be two probability measures. The Wasser-
stein distance of order one between f and g satisfies

W1(f, g) = sup
Lip(ϕ)≤1

∫

Rd

ϕ(x)
(

df(x)− dg(x)
)

.

(b) Existence of Lagrangian solutions.
Let r ∈ L∞([0, T ],P(RN )k).

Define bi(t, x) = Vi(x, rt ∗ ηi) ∈ L∞([0, T ],W1,∞(RN )k). Let us consider the equation

∂tρi + div
(

ρibi(t, x)
)

= 0. (25)

Let ρi = Xt♯ρ̄ be the Lagrangian solution of (25). Then the application

T : r ∈ L∞([0, T ],P(RN )k) 7→ ρ ∈ L∞([0, T ],P(RN )k) .

is well-defined.
(c) Stability estimate.

Proposition 4.9. Let ρ̄, σ̄ ∈ P(RN ) and r, s ∈ C 0([0, T ],P(RN )). Let V ∈ (L∞ ∩Lip)(RN ×
R
k,RN ), η, ν ∈ (L∞ ∩ Lip)(RN ,R). If ρ and σ are Lagrangian solutions of

∂tρ+ div(ρV (x, r ∗ η)) = 0 , ρ(0, ·) = ρ̄ ,
∂tσ + div(σ V (x, s ∗ η)) = 0 , σ(0, ·) = σ̄ .

We have the estimate:

W1(ρT , σT ) ≤ eCTW1(ρ̄, σ̄) + T eCT C ′ sup
t∈[0,T ]

W1(rt, st) ,

where C = Lipx(V )+Lipr(V )Lip(η)‖ρ̄‖M+Lipr(V )Lip(η)‖ρ̄‖M and C ′ = Lipr(V )Lip(η)‖ρ̄‖M.

Proof. Let X,Y be the ODE flows associated to ρ, σ. Let γ0 ∈ Ξ(ρ̄, σ̄). Define

Xt ⋊⋉ Yt : (x, y) 7→ (X(x), Y (y)) .

Then γt = (Xt ⋊⋉ Yt)♯γ0 ∈ Ξ(ρt, σt). Let us introduce

Q(t) =

∫

RN×RN

|x− y|dγt(x, y) =

∫

RN×RN

∣

∣Xt(x)− Yt(y)
∣

∣ dγ0(x, y) .

Then Q is a Lipschitz function and

Q′(t) ≤

∫

RN×RN

∣

∣V (Xt(x), rt ∗ η(Xt(x)))− V (Yt(y), st ∗ η(Yt(x)))
∣

∣ dγ0(x, y) .

By triangular inequality, we obtain

Q′(t) ≤(Lipx(V ) + Lipr(V )Lip(rt ∗ η))Q(t) + Lipr(V )

∫

RN×RN

∣

∣(rt − st) ∗ η(Yt(y))
∣

∣ dγ0(x, y) .
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Note besides that, thanks to Proposition 4.8, we have

(rit − sit) ∗ η(z) =

∫

RN

η(z − ζ)(drit(ζ)− dsit(ζ)) ≤ Lip(η)W1(r
i
t, s

i
t) .

Integrating, we get
Q(t) ≤ Q(0)eCt + tC ′ eCt sup

τ
W1(rt, st) .

where C = Lipx(V ) + Lipr(V )‖rt‖MLip(η), C ′ = Lipr(V )Lip(η)‖ρ̄‖M.
We conclude taking γ0 in an optimal way so that Q(0) = W1(ρ0, σ0) and using the in-

equality
W1(ρt, σt) ≤ Q(t) .

�

The stability estimate allows us to apply Banach fixed point Theorem for T small enough.

4.3 Measure solutions are Lagrangian solutions

Proof of Proposition 4.6. Let ρ be a measure solution of (24). Let b = V (x, ρ ∗ η) and
denote σ the Lagrangian solution associated to ∂tσ + div(σb) = 0 with σ(0) = ρ̄.

Then δ = ρ− σ is a measure solution of ∂tδ + div(δb) = 0, with δ(0) = 0. That is to say,
for any ϕ ∈ C∞

c (]−∞, T ]× R
N ,R),

∫ T

0

∫

RN

(

∂tϕ+ bi(t, x) · ∇ϕ
)

dδt dt = 0 .

Let ψ ∈ C 0
c (] − ∞, T ] × R

N ,R). We can find ϕ ∈ C 1
c (] − ∞, T ] × R

N ,R) so that ψ =

∂tϕ + bi(t, x) · ∇ϕ. Hence, for any ψ ∈ C 0
c (] −∞, T ] × R

N ,R), we have
∫ T
0

∫

RN ψ dδt dt = 0,
which implies δ ≡ 0 a.e. so ρ = σ a.e.. Consequently, we have bi(t, x) = V i(x, σ ∗ ηi), and ρ
is a Lagrangian solution of (24). �

5 Conclusion

In the Kružkov framework, we are able to prove existence and uniqueness of weak entropy
solution for the equation ∂tρ + div(ρV (x, ρ, ρ ∗ η)) = 0. Furthermore, we can prove uniform
bound in L∞ if V = v(ρ) ~W (x, ρ ∗ η), with v(1 =)0. However, the required hypotheses are
very strong: we need indeed V ∈ C 2 ∩W2,1 ∩W2,∞.

In the optimal transport theory framework, we can treat only equations such that ∂tρ +
div(ρV (x, ρ ∗ η)) = 0 . For this equation, we have only L∞ bound that are exponentially
growing in time. The hypotheses are nevertheless weaker since we only ask V ∈ Lip ∩ L∞,
but we are no longer able to prove the Gâteaux-differentiability of the semi-group.
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