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Abstract 
One of the advantages of the Discrete Wavelet Transform (DWT) 
compared to Fourier Transform (e.g. Discrete Cosine Transform 
DCT) is its ability to provide both spatial and frequency 
localization of image energy. However, WT coefficients, like 
DCT coefficients, are defined by magnitude as well as sign. 
While algorithms exist for the coding of wavelet coefficients 
magnitude, there are no efficient for coding their sign.  In this 
paper, we propose a new method based on separate entropy 
coding of sign and magnitude of wavelet coefficients.   The 
proposed method is applied to the standard color test images 
Lena, Peppers, and Mandrill. We have shown that sign 
information of wavelet coefficients as well for the luminance as 
for the chrominance, and the refinement information of the 
quantized wavelet coefficients may not be encoded by an 
estimated probability of 0.5.  The proposed method is evaluated; 
the results obtained are compared to JPEG2000 and SPIHT 
codec. We have shown that the proposed method has 
significantly outperformed the JPEG2000 and SPIHT codec as 
well in terms of PSNR as in subjective quality. We have proved, 
by an original mathematical analysis of the entropy, that the 
proposed method uses a minimum bit allocation in the sign 
information coding.   
Keywords: Color Image Compression, Wavelet Transform, 
Entropy Coding, Sign, Magnitude 
 

1. Introduction 
 
Image compression is necessary for storage and 
transmission in multimedia applications. In image 
compression, JPEG (based on DCT) [1] and JPEG2000 [9] 
(based on DWT technology) are the standards for still 
image. In DCT, the image is split in blocks of 8 x 8 pixels 
and the transform is applied to each block as an 
independent  sub-image  and      Variable     Length Coding  

 
 
(VLC) is used to compress the quantized coefficients. The 
main drawbacks of JPEG are the blocking artifacts at low 
bit rate. However, in JPEG2000, the image is decomposed 
in wavelet domain without block splitting; only in the case 
where image dimensions are large (for example the case of 
JPEG2000 test images), the standard allows splitting image 
in tiles for the efficient management of the space memory 
in DWT computation. A lot of progress has been made in 
wavelet based image compression [4], [5-8], [9, 10], [12-
14], [16-28], resulting in the realization of the JPEG2000 
standard. One of the advantages of the DWT is that it 
provides both spatial and frequency localization of image 
energy. The WT coefficients are defined by both 
magnitude (absolute values of coefficients) and sign.  In 
most current wavelet image coding systems, the inefficient 
coding of the sign of coefficients is accepted as a trade-off 
for gains obtained through energy compaction which can 
not give any information about the sign of the wavelet 
coefficients.  Moreover, in [4], the author states that a 
quantized coefficient is as much likely to be positive and 
negative. Only recently have some authors begun to 
investigate the sign of wavelet coefficients in image coding 
[13-14]. In [13], the authors have combined sign and 
coefficient extrapolation in their approach. They have 
proposed the estimation of wavelet coefficient with the 
probability of the sign being positive or negative. In [14], 
the authors have assumed that the sign information bit of 
wavelet coefficients may be encoded with an estimated 
probability of 0.5 and the same assumption is done for the 
refinement information bit. In this paper, we propose a new 
method based on separate entropy coding of sign and 
magnitude of wavelet coefficients. The proposed scheme is 



     

 

described in section 2. The experimental results and 
discussions are presented in section 3. A mathematical 
analysis of the proposed method is presented in section 4. 
Finally, the conclusion is presented in section 5.  
 

2. Coding of sign and magnitude of wavelet 
coefficients  
2.1 Description of the proposed method 
 
Once the color image is decomposed in wavelet domain, 
we consider the coefficient as the data which gives two 
types of information: the sign and the magnitude. Wavelet 
coefficients are organized as a list of different sub-bands 
which are horizontal low and vertical low frequencies 
(LL), horizontal low and vertical high frequencies (LH i), 
horizontal high and vertical low frequencies (HLi), 
horizontal high and vertical high frequencies (HHi) where i  
is the scale level number. The sign may be either negative 
or positive; the magnitude information is the absolute 
value of the wavelet coefficient. The magnitude is 
considered significant if its absolute value is greater or 
equal to a predefined threshold T, similar to EZW codec.  
In EZW, this coefficient is encoded respectively with POS 
or NEG symbol if it is positive or negative.  In our method, 
a single symbol which we call Significant (S) is used to 
encode the magnitude.  We use two other symbols ZT and 
UZT to encode the Zero Tree root and the UnZero-Tree 
root respectively. ZT and UZT symbols may be considered 
as ZTR and IZ symbols in EZW codec.    In the finest sub-
bands HL1, LH1, and HH1 where the coefficients have no 
child, the symbol Zero Coefficient ZC is used to encode 
the coefficients which are inferior to the threshold. Three 
types of information are considered in our method:  
1)  The magnitude information: a magnitude map 
containing the symbol S is generated. The presence of the 
symbol S is indicated by the symbol ‘1’ and its absence by 
the symbol ‘0’.  
2) The sign information of wavelet coefficients: in our 
method, the probability of the quantized wavelet 
coefficients to be positive or negative is calculated bit-
plane by bit-plane. We have generated a sign map which 
indicates the presence of a negative or a positive   
coefficient in HLi, LHi, and HHi sub-bands at scale i. The 
presence of a positive significant coefficient is indicated by 
the symbol ‘0’ and the presence of negative significant 
coefficient is indicated by the symbol ‘1’. 
3)  The third information is the refinement of the quantized 
coefficients (quantization index). Since we have used the 
scalar quantizer, the quantized wavelet coefficient may be 
set in the low or in the high interval in the uncertainty 
interval [ ]TT 2, where T is the current threshold. An 

uncertainty interval [ ]TT 2,  is generated progressively, 

bit-plane by bit-plane, depending on the current threshold 
T. The probability of the quantized coefficient to belong to 
the low interval [ [TT )2/3(,  or to the high 

interval [ [TT 2,)2/3(  in the refinement processing is also 

calculated bit-plane by bit-plane. If a quantized coefficient 
is set in the high interval, the symbol ‘1’ is generated; if it 
is set in the low interval, the symbol ‘0’ is generated.  
It is important to note these considerations: 
1)   The magnitude information of a given wavelet 
coefficient may be significant or insignificant depending 
on the current threshold;  
2)  The refinement information is not unique for the same 
wavelet coefficient because it may change. Depending on 
the current threshold, a given quantized coefficient (in the 
past and in the current bit-planes) may be set in the high 
interval or in the low interval;  
3)  The sign information is unique for a given wavelet 
coefficient since a coefficient is either positive or negative. 
Since we are in the case of color image compression, the 
above considerations are applied on the luminance Y, blue 
chrominance Cb and red chrominance Cr coefficients. 
 
2.2 Technical description of the implementation 
 
In each sub-band and depending on the current threshold 
T, we have developed an  algorithm that generates the 
different symbols described in section 2.1 where each sub-
band is transformed from coefficient matrix to a vector of 
symbols.  Among the symbols described in the section 2.1, 
only the significance symbol, the sign symbol and the 
refinement symbol are necessary for the reconstruction of 
the image. Precisely, the presence of the symbol S informs 
the decoder to reconstruct the magnitude of a significant 
coefficient using the value of the current threshold; its 
absence informs the decoder to reconstruct a tree of zero 
(symbol ZT) except for few coefficients which are 
significant in this tree (symbol UZT). In the finest sub-
bands (HL1, LH1, and HH1), the absence of the symbol S 
informs the decoder to reconstruct the zeros. 
To illustrate the execution of the algorithm, we show 
below the binary data symbols automatically generated for 
the Lena luminance (component Y), 512 x 512 pixels, 
decomposed in 5 scales for the first bit plane:  
 
0100000111111100010001111101111001000011110111100100001111
0101000100101111111101010010111111100101001000011100110100
1000111000110100000100100111111000011110011110100000111001
1111100100110011110110000001001111011000001110101001000000
111111100100000011110000 

a) Significant binary symbols (symbol S)  automatically 
generated for the LL5 sub-band   

 
 
 



     

 

0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
00000000000000 
b) Significant binary symbols (symbol S) automatically generated for the 

HL5 sub-band  
 

0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
00000000000000 
c) Significant binary symbols (symbol S) automatically generated for the 

LH5 sub-band 
 

0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
00000000000000 
d) Significant binary symbols (symbol S) automatically generated for the 

HH5 sub-band  
 

0000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000
00000000000000 

e) Sign binary symbols automatically generated for the LL5 sub-band 
 

0000000000000000000000000000001100000001100000000000100000
0000000010000000000000000000000000100000000010000001000010
00000100000001 

f) Refinement binary symbols (quantization index) automatically 
generated for the LL5 sub-band 

 

3. Experimental results and discussions 
To evaluate the proposed method, three standard color test 
images: Lena, Peppers and Mandrill, all 512 x 512 x 3 
pixels are decomposed in the wavelet domain using the 
biorthogonal 9/7 filter bank of Daubechies [11]. Five 
decomposition scales are performed. Magnitude, sign and 
refinement information as well for the luminance Y as for 
the blue chrominance Cb and the red chrominance Cr are 
together entropy encoded using the arithmetic coding [30]. 
Firstly, we present the results of the online observed 
probabilities of:   

- the magnitude information of Y, Cb and Cr 
described by the symbol S (fig.1); 

-  the positive and negative sign informations (fig. 2 
to 4); 

- the refinement information (fig. 5 to 7). 
Secondly, we present the results in terms of Peak Signal to 
Noise Ratio (PSNR) in dB versus bit rate in bits per pixel 
(bpp) (fig. 8 to 10).  
Thirdly, we present the decoded Lena, Peppers and 
Mandrill images   at 0.08 bpp (fig. 11).  
Finally, we present a mathematical analysis of the 
proposed method (fig. 12 to 14). 
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(a) 

Cb image
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(b) 

Cr image
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(c)  

Fig. 1 Observed probabilities of magnitude information (symbol S) 
versus bit-plane number of Lena, Peppers and Mandrill 

 (a) for luminance Y, (b) for blue chrominance Cb, (c) for red 
chrominance Cr   

 



     

 

Y image of LENA
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(a) 

Y image of  MANDRILL
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(b) 

Y image of  PEPPERS
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(c) 

Fig. 2 Observed probabilities of positive and negative luminance sign 
information versus bit-plane number: (a) Lena, (b) Mandrill, (c) Peppers  
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(a) 

Cb image of MANDRILL
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(b) 

Cb image of PEPPERS
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(c)       
Fig. 3 Observed probabilities of positive and negative blue chrominance 

sign information versus bit-plane number: (a) Lena, (b) Mandrill, (c) 
Peppers  
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(a) 

Cr image of  PEPPERS
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(b) 



     

 

Cr image of MANDRILL
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(c) 

Fig. 4 Observed probabilities of positive and negative red chrominance 
sign information versus bit-plane number: (a) Lena, (b) Mandrill, (c) 

Peppers  
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(a) 

Y image of PEPPERS
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(b)  

Y  image of MANDRILL
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(c ) 

Fig.5 Observed probabilities of luminance refinement information versus 
bit-plane number: (a) Lena, (b) Peppers, (c) Mandrill   
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(a)  

Cb image of PEPPERS
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(b)  

Cb image of MANDRILL
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(c )  

Fig.6 Observed probabilities of blue chrominance refinement information 
versus bit-plane number: (a) Lena, (b) Peppers, (c) Mandrill  
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(a)  



     

 

Cr image of  PEPPERS
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(b)  

 

(c ) 

Fig.7 Observed probabilities of red chrominance refinement information 
versus bit-plane number: (a) Lena, (b) Peppers, (c) Mandrill  

Fig. 1 presents the probabilities of the S symbol of the 
luminance Y, the chrominance Cb and Cr; we observe 
from this figure that the probability to find significant 
coefficient is less than 0.5. This indicates that less than 50 
percent of the wavelet coefficients contribute to the best 
reconstruction quality. 
The interesting behaviors observed are the sign and the 
refinement information of the luminance and the 
chrominance components. Fig. 2 to 4 show that the 
positive and negative sign information of the luminance, 
the blue chrominance and red chrominance have an equal 
probability after few bit-plane numbers.  From these 
figures, we can notice that  wavelet coefficients are not all 
equally distributed in the positive and negative domains 
(particularly for the first bit-plane numbers); this is due to 
the presence of the approximation sub-band where there is 
no negative coefficient. However, some coefficients are 
equally distributed in positive and negative domains after 
few bit planes and it is due to the contribution of the high 
frequency sub-band coefficients. The fact that the 
probabilities to find negative significant and positive 
significant coefficients are almost equal to 0.5 after few 
bit-plane numbers  may  be explained by the generalized 
Gaussian distribution of the detail sub-bands of 
photographic images. So, the estimated probability of 0.5 

may not be used to encode the sign information for all bit 
planes contrarily to the work presented in [14] since the 
positive sign information is also provided by the 
approximation sub-band. Fig. 5 to 7 present the 
probabilities of the quantized wavelet coefficients to be set 
in the low interval or in the high interval in the refinement 
processing. It appears that the refinement information bit 
may not be encoded with an estimated probability of 0.5 
such as used in [14].  In these figures, we see that the 
probabilities of the quantized wavelet coefficients of the 
luminance and the chrominance images to be set in the low 
interval or in the high interval in the refinement processing 
present symmetry with the probability value of 0.5. So, 
encoding the refinement information with the probability 
estimated of 0.5 is not accurate.  
Some relevant questions may arise: for example these 
observations are image dependant? In an attempt to answer 
to this question, we have deal with the other color test 
images such as Boat, Goldhill, Barbara and we have 
observed the same behavior.  
Fig. 8 to 10 present the PSNR in dB versus bit rate in bit 
per pixel of Y, Cb and Cr for the three standard color test 
images: Lena, Peppers and Mandrill. The JPEG2000  
(jpeg2000 J2K-Tool) [15] and the SPIHT codec [5][29] 
are run for the same test images and the results are 
compared with our results. The PSNR in dB for Y, Cb and 
Cr is calculated by equation (1) where MSE (Mean Square 
Error) is defined by equation (2). 


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                                (2) 

Where H and L are respectively the height and width of the 
image; I and Î are respectively the original and the decoded 
images. 
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(b) 

 
(c) 

Fig. 8   PSNR versus bit rate in bpp for Lena: (a) luminance Y,  
(b) Blue chrominance Cb, ( c) red chrominance Cr: our method  

compared to JPEG2000 and SPIHT codec 
 

 
(a) 

 
(b) 

 
(c)  

Fig. 9   PSNR versus bit rate in bpp for Peppers: (a) luminance Y, (b) 
Blue chrominance Cb, (c) red chrominance Cr: our method compared to 

JPEG2000 and SPIHT codec 
 

 
(a) 

 
(b) 

 
(c ) 

Fig.10 PSNR versus bit rate in bpp for Mandrill: (a) luminance Y, (b) 
Blue chrominance Cb, (c) red chrominance Cr: our method compared to 

JPEG2000 and SPIHT codec 



     

 

 
 

    
        
          
 
 

        

         

          
Fig.11   Comparative subjective qualities of decoded Lena, Peppers and Mandrill   at 0.08 bpp 
Top left: Lena for our method, Top middle:  Lena for JPEG2000, Top right: Lena for SPIHT 

Center left: Peppers for our method, Center middle: Peppers for JPEG2000, Center right: Peppers for SPIHT 
Bottom left: Mandrill for our method, Bottom middle: Mandrill for JPEG2000, Bottom right: Mandrill for SPIHT 

 
 
 

Fig.11 presents the subjective qualities of Lena, Peppers 
and Mandrill decoded at 0.08 bpp for our method, for 
JPEG2000 and for SPIHT codec.   

These results show that our method is competitive with 
JPEG2000 Tool as well in objective quality as in 
subjective quality, and significant gains are obtained in 
terms of PSNR in dB, particularly for the chrominance 
components.  We have also shown that the proposed 

method gives significant gains in dB compared to some 
recent published works [23, 24, 27, 28] for Lena in grey 
scale. 
 

 
 



     

 

4. Mathematical analysis of the entropy sign 
coding 
4.1 Analysis of the variations of the sign entropy 
coding 
To explain the performance of the proposed method, we 
present the analysis of separate coding of sign information. 
Let us consider x, the probability to find the significant 
positive coefficient which we call a POS event. A 
significant negative coefficient is the complementary of the 
POS event and is called the NEG event. POS and NEG 
form a set of two events. Let us consider p(POS) and 
p(NEG) the probabilities of the POS and NEG events 
respectively. The probability density law allows the 
equation (3). 

( ) ( ) 1=+ NEGpPOSp                                                     (3)                                                 

Where 
( )
( )




−=
=

xNEGp

xPOSp

1
                                                             (4) 

With  10 ≤≤ x  
In equation (4), x = 1 concerns the absence of negative 
coefficients and x = 0 concerns the absence of positive 
coefficients. Let us consider the entropy H of the positive 
or negative sign information: 

( ) ( )
( ) ( ) ( )




−−−=
−=

absentisPOSifxxxH

absentisNEGifxxxH

1log1

log

2

2                 (5) 

In this case (x = 1 or x = 0), the entropy of sign information 
is equal to zero bit; this case is not  interesting.  
Let us consider the case where x is neither equal to zero 
nor equal to one, precisely 10 << x ; in this case the POS 
and NEG invents are both present: it is the case where  
both the low frequency subbands coefficients and the high 
frequency subbands coefficients are superior or equal to 
the current threshold. The entropy of the sign information 
is given by equation (6). 

( ) ( )xxxxH −−−−= 1log)1(log 22                                  (6) 

The entropy H depends of the probability x, we will 
represent H(x) using the neperian logarithm function and 
the equation (6) is replaced by equation (7). 

( ) ( ) ( ) ( )( )xxxxxxH −−−+−= 1ln1lnlnβ ,                     (7) 

Where ( )2ln/1=β  

Let us consider f(x), the first derivative of H(x). This 
function is given by equation (8). 

( ) ( ) ( ) ( )( )xx
dx

xdH
xf ln1ln −−== β                                 (8)                                

In equation (8), the first derivative of the entropy of the 
sign information f(x) is such that: 
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Fig.12 Variations of the entropy H(x) 

 
Fig.12 shows the variations of the entropy of the sign 
information. Fig.13 is the graphical representation of the 
entropy H(x) versus the probability x of the sign 
information for [ ]99999.0;00001.0∈x . 

Fig.12 shows that the maximum value of the entropy is 
equal to one bit and for x = 0.5; this means that the coast of 
the positive and negative sign information coding is at 
most one bit. Therefore, for x < 0.5 and x > 0.5, the 
entropy H(x) is less than 1 bit. For example, if x = 0.99999, 
then H(x) = 0.00018 bit and if x = 0.00001 then H(x) = 
0.00018 bit (we may notice the symmetrical behavior of 
the entropy’s curve for x = 0.5). We may also see that 
Fig.12 and 13 are in accordance with the results presented 
from fig. 2 to fig. 4.  
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Fig.13 Entropy of positive and negative sign information 

 
We can see that the entropy curve H(x) is concave and has 
a maximum at 5.0=x . Mathematically, a function H(x) is 
concave and has a maximum at 0x  if and only if 

( )
0=

dx

xdH
 at this point and

( )
0

²

² <
dx

xHd
. To prove this 

observation, let us consider g(x) the second derivative of 
the entropy H(x); this function is given by equation (9): 
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Fig.12 shows that 
( )

0=
dx

xdH
for 5.00 =x and 

( )
²

²

dx

xHd
 is 

strictly negative because 10 << x  and ( ) 02ln/1 >=β . 

Then, the entropy behavior curve in figure 13 is 
mathematically proved. 
Figure 13 shows that the entropy of the image wavelet 
coefficients sign coding may be modeled by the parabolic 
approximation, precisely by the second order polynomial 
function. Let us consider ( )xP the polynomial function, 

defined by equation (10) where x is the probability of the 
sign information 

( ) ²210 xaxaaxP ++=                                                   (10) 

The polynomial approximation will consist to determine 
,0a ,1a and .2a If we consider figure 12, we can establish 

three equations necessary for the determination of 
,0a ,1a and .2a Let us consider ,00 =x ,5.01 =x and 

12 =x  
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The resolution of equation (12) gives 
,00 =a ,41 =a and 42 −=a ; hence the parabolic 

approximation function is given by equation (13). 
( ) ²44 xxxP −=                                                              (13) 

Fig.14 a shows that: 
- in red curve the experimental result obtained for 

Lena image; 
-  in blue curve the theoretical result obtained by  

equation (7); 
-  in green curve the model result obtained by 

equation (13). 
Fig.14 b shows:  

- in red curve the experimental result obtained for 
Boat image; 

-  in blue curve the theoretical result obtained by the 
equation (7); 

-  in green curve the model result obtained by the 
equation (13). 
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Fig.14 Entropy of positive and negative sign information and its model: 
(a) for Lena, (b)  for Boat 

 

This analysis proves that a separate sign information 
coding requires a minimum bit budget. Consequently, for a 
same reconstruction quality, the proposed method uses a 
minimum bit allocation and it explains the performance in 
terms of PSNR of our method over the JPEG2000 standard 
and SPIHT codec. Therefore, the observation of figures 2 
to 4 is confirmed by this mathematical analysis. 
 

5. Conclusion  
We have proposed a new method based on separate 

entropy coding of sign and magnitude of wavelet 
coefficients. An algorithm is developed and the 
probabilities of magnitude, sign and refinement 
information are calculated online, bit-plane by bit-plane for 
the luminance, blue chrominance, red chrominance and 
these data are entropy encoded using arithmetic coding. 
We show that the sign information of wavelet coefficients 
as well for the luminance as for the chrominance 



     

 

components may not be encoded by an estimated 
probability of 0.5; the encoding of the sign information of 
wavelet coefficients using estimated probability of 0.5 may 
be used only after a few bit planes.  

We also show that the refinement information 
coefficients for the luminance and the chrominance 
components may not be encoded by the estimated 
probability of 0.5. In fact, the probabilities of the quantized 
wavelet coefficients of the luminance and the chrominance 
components to be set in the low interval or in the high 
interval in the refinement processing present symmetry 
with the probability value of 0.5.  

All the informations (magnitude, sign and refinement) 
are encoded using arithmetic coding. Three standard color 
images are compressed using our method. The JPEG2000 
Tool (jpeg2000 J2K-Tool) [15] and the SPIHT codec 
[5][29] are run for the same test images. The obtained 
results are compared to JPEG2000 standard tool and 
SPIHT codec in terms of objective quality (PSNR) for 
Lena, Peppers, and Mandrill color test images.  

The comparison is also done in terms of subjective 
quality (visual quality) with JPEG2000 standard tool and 
SPIHT codec for the same standard color test images 
decoded at 0.08 bpp. We show that the proposed method 
outperforms the JPEG2000 standard tool and significant 
gains in terms of PSNR in dB are obtained on JPEG2000. 
Our method outperforms the SPIHT codec except for the 
chrominance of Peppers at high bit rate; however in 
average, significant gains are obtained by our method on 
SPIHT codec. The proposed method gives also significant 
gains in dB compared to some recent published works [23, 
24, 27, and 28] for Lena in grey scale (the luminance 
component). 

Furthermore, we have proposed an original 
mathematical analysis which proves that the coast of the 
sign information requires a minimum bit budget allocation 
and consequently, explains the performance in terms of 
PSNR obtained by our method on JPEG2000 and SPIHT 
codec. Finally, we have shown that it is possible to operate 
the modeling of the positive and negative signs entropy by 
a parabolic approximation.  
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