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DEVIATION INEQUALITIES, MODERATE DEVIATIONS AND

SOME LIMIT THEOREMS FOR BIFURCATING MARKOV CHAINS

WITH APPLICATION

By S. Valère Bitseki Penda, Hacène Djellout and

Arnaud Guillin

Université Blaise Pascal

First, under a geometric ergodicity assumption, we provide some
limit theorems and some probability inequalities for the bifurcating
Markov chains (BMC). The BMC model was introduced by Guyon to
detect cellular aging from cell lineage, and our aim is thus to complete
his asymptotic results. The deviation inequalities are then applied to
derive first result on the moderate deviation principle (MDP) for a
functional of the BMC with a restricted range of speed, but with a
function which can be unbounded. Next, under a uniform geometric
ergodicity assumption, we provide deviation inequalities for the BMC
and apply them to derive a second result on the MDP for a bounded
functional of the BMC with a larger range of speed. As statistical
applications, we provide superexponential convergence in probabil-
ity and deviation inequalities (for either the Gaussian setting or the
bounded setting), and the MDP for least square estimators of the
parameters of a first-order bifurcating autoregressive process.

1. Introduction. Bifurcating Markov chains (BMC) are an adaptation
of (usual) Markov chains to the data of a regular binary tree; see below for
a more precise definition. In other terms, it is a Markov chain for which the
index set is a regular binary tree. They are appropriate, for example, in the
modeling of cell lineage data when each cell in one generation gives birth
to two offspring in the next. Recently, they have received a great deal of
attention because of the experiments of biologists on aging of Escherichia
Coli; see [15, 20]. E. Coli is a rod-shaped bacterium which reproduces by
dividing in the middle, thus producing two cells, one which already existed,
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that we call old pole progeny, and the other which is new, that we call new
pole progeny. The aim of their experiments was to look for evidence of aging
in E. Coli. In this section, we will introduce the model that allowed the
authors of [15] to study the aging of E. Coli and we refer to their works for
further motivations and insights on the data leading to the model studied
here. This model is a typical example of bifurcating Markovian dynamics,
and it has been the motivation for the rigorous mathematical study of BMC
in [14]. This also motivates Sections 2 and 3 in the sequel, where we give
a rigorous asymptotic (and nonasymptotic) study of BMC under geometric
ergodicity and uniform geometric ergodicity assumptions.

1.1. The model. Let T be a binary regular tree in which each vertex is
seen as a positive integer different from 0; see Figure 1. For r ∈N, let

Gr = {2r,2r +1, . . . ,2r+1 − 1}, Tr =

r
⋃

q=0

Gq,

Fig. 1. The binary tree T.
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which denote, respectively, the rth column and the first (r + 1) columns
of the tree. Then, the cardinality |Gr| of Gr is 2r and that of Tr is |Tr|=
2r+1− 1. A column of a given integer n is Grn with rn = ⌊log2 n⌋, where ⌊x⌋
denotes the integer part of the real number x.

The genealogy of the cells is described by this tree. In the sequel we
will thus see T as a given population. Then the vertex n, the column Gr

and the first (r + 1) columns Tr designate, respectively, individual n, the
rth generation and the first (r + 1) generations. The initial individual is
denoted 1.

Guyon et al. [14, 15] proposed the following linear Gaussian model to
describe the evolution of the growth rate of the population of cells derived
from an initial individual:

L(X1) = ν and ∀n≥ 1

{

X2n = α0Xn + β0 + ε2n,
X2n+1 = α1Xn + β1 + ε2n+1,

(1.1)

where Xn is the growth rate of individual n, n is the mother of 2n (the new
pole progeny cell) and 2n+1 (the old pole progeny cell), ν is a distribution
probability on R, α0, α1 ∈ (−1,1); β0, β1 ∈R and ((ε2n, ε2n+1), n≥ 1) forms
a sequence of i.i.d. bivariate random variables with law N2(0,Γ), where

Γ = σ2

(

1 ρ
ρ 1

)

, σ2 > 0, ρ ∈ (−1,1).

The processes (Xn) defined by (1.1) are typical examples of BMC which
are called the first-order bifurcating autoregressive processes [BAR(1)]. The
BAR(1) processes are an adaptation of autoregressive processes, when the
data have a binary tree structure. They were first introduced by Cowan
and Staudte [6] for cell lineage data where each individual in one generation
gives rise to two offspring in the next generation. We will not discuss here
extensions to m-ary tree, which follow more or less from the same method,
or Markov chains on Galton–Watson trees that are left for an other study.

In [14], Guyon, after establishing the first results on the theory of BMC,
proves laws of large numbers and central limit theorem for the least-square

estimators θ̂r = (α̂r0, β̂
r
0 , α̂

r
1, β̂

r
1) of the 4-dimensional parameter θ = (α0, β0,

α1, β1); see Section 4 for a more precise definition. He also gives some sta-
tistical tests which allow to check if the model is symmetric or not (roughly
α0 = α1 or not), and if the new pole and the old pole populations are even
distinct in mean, which allows him to conclude a statistical evidence in aging
in E. Coli. Let us also mention [4], where Bercu et al., using the martingale
approach, give asymptotic analysis of the least squares estimators of the
unknown parameters of a general asymmetric pth-order BAR processes.

In this paper, we will give moderate deviation principle (MDP) for this es-
timator and the statistical tests done by Guyon. We will also give deviation
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inequalities for θ̂r − θ, which are important for a rigorous (nonasymptotic)
statistical study. This will be done in two cases: the Gaussian case as de-
scribed above and the case where the noise and the initial state X1 are
assumed to take values in a compact set. Note that the latter case implies
that the BAR(1) process defined by (1.1) valued in compact set.

We are now going to give a rigorous definition of BMC. We refer to [14]
for more detail.

1.2. Definitions. For an individual n ∈ T, we are interested in the quan-
tity Xn (it may be the weight, the growth rate, . . .) with values in the metric
space S endowed with its Borel σ-field S .

Definition 1.1 (T-transition probability, see [14]). We call T-transition
probability any mapping P :S ×S2 → [0,1] such that:

• P (·,A) is measurable for all A ∈ S2;
• P (x, ·) is a probability measure on (S2,S2) for all x ∈ S.

For a T-transition probability P on S ×S2, we denote by P0, P1 and Q,
respectively, the first and the second marginal of P , and the mean of P0 and
P1, that is, P0(x,B) = P (x,B×S), P1(x,B) = P (x,S×B) for all x ∈ S and

B ∈ S and Q= P0+P1
2 .

For p≥ 1, we denote by B(Sp) [resp., Bb(Sp)], the set of all Sp-measurable
(resp., Sp-measurable and bounded) mappings f :Sp→R. For f ∈ B(S3), we
denote by Pf ∈ B(S) the function

x 7→ Pf(x) =

∫

S2

f(x, y, z)P (x,dy, dz) when it is defined.

Definition 1.2 (Bifurcating Markov chains; see [14]). Let (Xn, n ∈ T)
be a family of S-valued random variables defined on a filtered probability
space (Ω,F , (Fr, r ∈N),P). Let ν be a probability on (S,S) and P be a T-
transition probability. We say that (Xn, n ∈ T) is a (Fr)-bifurcating Markov
chain with initial distribution ν and T-transition probability P if:

• Xn is Frn-measurable for all n ∈ T;
• L(X1) = ν;
• for all r ∈N and for all family (fn, n ∈Gr)⊆Bb(S3)

E

[

∏

n∈Gr

fn(Xn,X2n,X2n+1)
/

Fr
]

=
∏

n∈Gr

Pfn(Xn).

In the following, when unspecified, the filtration implicitly used will be
Fr = σ(Xi, i ∈ Tr). We denote by (Yr, r ∈ N) the Markov chain on S with
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Y0 =X1 and transition probability Q. The chain (Yr, r ∈N) corresponds to
a random lineage taken in the population.

We denote by G the set of all permutations of N∗ that leaves each Gr

invariant. We draw a permutation Π uniformly on G, independently of
X = (Xn, n ∈ T). Drawing Π “uniformly” on G means drawing the restric-
tion of Π on Gr uniformly among the (2r)! permutations of Gr. In particular,
(Π(2r),Π(2r + 1), . . . ,Π(2r+1 − 1)) can be viewed as a random drawing of
all the elements of Gr without replacement. Notice that Π allows one to
define a random order on T which preserves the genealogical order. For ex-
ample, (Π(i),1 ≤ i≤ n) denotes the set of the “first” n individuals of T. Π
was introduced by Guyon in order to sample over the “first” n individu-
als. As mentioned in [14], this choice of Π allows one to preserve the same
asymptotic behavior for the empirical means resulting from the sampling
over (say) the rth generation, the first (r + 1) generations or the “first” n
individuals. In general, the choice of another permutation does not preserve
the asymptotic behavior of these empirical means. We refer to [14], Section
2.2, for more detail.

Throughout the paper, we will denote by:

• f ⊗ g the mapping (x, y) 7→ f(x)g(y).
• Qp the pth iterated of Q recursively defined by the formulas Q0(x, ·) = δx

and Qp+1(x,B) =
∫

SQ(s, dy)Qp(y,B) for all B ∈ S ; Qp is a transition
probability in (S,S).

• νQ the distribution on (S,S) defined by νQ(B) =
∫

S ν(dx)Q(x,B); νQp

is the law of Yp.
• (Qf)(x) =

∫

S f(y)Q(x,dy) when it is defined.
• (νf) or (ν, f) the integral

∫

S f dν when it is defined.

For all i ∈ T, we set ∆i = (Xi,X2i,X2i+1). We introduce the following em-
pirical quantities:







































MGr(f) =
1

|Gr|
∑

i∈Gr

f(∆̃i),

MTr(f) =
1

|Tr|
∑

i∈Tr

f(∆̃i),

MΠ
n (f) =

1

n

n
∑

i=1

f(∆̃Π(i)),

(1.2)

where f(∆̃i) = f(∆i) = f(Xi,X2i,X2i+1) if f ∈ B(S3) and f(∆̃i) = f(Xi) if
f ∈ B(S).

Guyon in [14] studied limit theorems of the empirical means (1.2), namely
the law of large numbers (L2 and almost sure versions) and the central limit
theorems for (1.2) when f ∈ B(S3), but centered by the conditional expec-
tation rather than by the limit mean. An extension of the BMC has been
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proposed in [8], in which the authors studied a model of BMC with miss-
ing data. To take into account the possibility for a cell to die, the authors
of [8] use Galton–Watson tree instead of a regular tree. And they give a
weak law of large numbers, an invariance principle and the central limit
result for the average over one generation or up to one generation. As pre-
viously mentioned, this setting will be considered in incoming works. One
can also mention the work of De Saporta et al. [7] dealing with bifurcat-
ing autoregressive processes with missing data in the estimation procedure
of the parameters of the asymmetric BAR process. They use a two type
Galton–Watson process to model the genealogy and give convergence and
asymptotic normality of their estimators. It is important to remark that the
nonasymptotic study of deviation inequalities has not been considered at all
in these works, despite their practical interest.

1.3. Objectives. Our objectives in this paper are:

• to give some limit theorems for BMC that complete those done in [14]
(LLN, LIL, . . .);

• to give probability inequalities and deviation inequalities for the empirical
means (1.2), that is, for f ∈ B(S) and all x > 0

P(MTr(f)− (µ, f)≥ x)≤ e−C(x,r),

where C(x, r) will crucially depend on our set of assumptions on f and
on the ergodic property of Q but valid for (nearly) all r;

• to study moderate deviation principle (MDP) for BMC, that is, for some
range of speed

√
r ≪ br ≪ r (depending on assumptions) and for f ∈

Bb(S3) with Pf = 0

b2|Tr |
|Tr|

logP

(

1

b|Tr|
MTr(f)≥ x

)

∼− x2

2σ2
;

• to obtain the MDP and deviation inequalities for the estimator of bifurcat-
ing autoregressive process, which are important for a rigorous statistical
study.

All these results will be obtained under hypothesis of geometric ergodicity
or uniform geometric ergodicity, meaning that Qr converges (uniformly)
exponentially fast to a limiting measure.

The limit theorems, proved in this paper, include strong law of large
numbers for the empirical average MΠ

n (f) with f ∈ B(S) (this case is not
studied in [14]), the law of the iterated logarithm and the almost sure func-
tional central limit theorem. A strong law of large numbers will be obtained
via control of 4th order moments. We thus generalize the computation of 2nd
order moments made by Guyon in [14]. It will be noted that the technique
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we will use can be applied to compute the other higher-order moments, but
at the price of huge and tedious computations.

Deviation inequalities will be obtained in the setting of unbounded func-
tions, by using the classical Markov inequality and under geometric ergod-
icity assumption. The results are, however, at this point quite restrictive.

Exponential deviation inequalities will be shown for bounded functions
and under a uniform geometric ergodicity assumption. Their proof inten-
sively uses the Azuma–Bennett–Hoeffding inequality [1, 3, 16], which re-
quires bounded random variables. Extension to unbounded functions and
weaker ergodicity assumptions will be done in a further work, using trans-
portation inequalities in the spirit of [12].

The MDP will be mainly deduced from these inequalities and general
results on moderate deviations of martingales; see [11], recalled in the Ap-
pendix B. Their speed will depend on whether uniform geometric ergodicity
or only geometric ergodicity is satisfied.

Before presenting the plan of our paper, let us recall the definition of a
moderate deviation principle (MDP): let (bn)n≥0 be a positive sequence such
that

bn
n

−→
n→∞

0 and
b2n
n

−→
n→∞

∞.

We say that a sequence of centered random variables (Mn)n with topological
state space (S,S) satisfies a MDP with speed b2n/n and rate function I :S →
R
∗
+ if for each A ∈ S ,

− inf
x∈Ao

I(x)≤ lim inf
n→∞

n

b2n
logP

(

n

bn
Mn ∈A

)

≤ lim sup
n→∞

n

b2n
logP

(

n

bn
Mn ∈A

)

≤− inf
x∈A

I(x);

here Ao and A denote the interior and closure of A, respectively.
The MDP can thus be seen as an intermediate behavior between the

central limit theorem (bn = b
√
n) and large deviation (bn = bn). Usually,

the MDP exhibits a simpler rate function inherited from the approximated
Gaussian process, and holds for a larger class of dependent random variables
than the large deviation principle.

Our paper is organized as follows. Section 2 states the moments control
inequalities and their consequences. We shall state in this section a first re-
sult on the MDP for BMC in a general framework, but with a very restricted
range of speed. Section 3 deals with the exponential inequalities and their
consequences. In this section, we shall generalize the MDP done in Section
2, allowing for a larger range of speed, but under more stringent assump-
tions. In Section 4, we will focus particularly on the first order bifurcating
autoregressive processes. The proofs of some inequalities are technical so
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postponed in Appendix A. Appendix B is devoted to definitions and limit
theorems for martingales used intensively in the paper, and are included
here for completeness.

2. Moments control and consequences. Let F be a vector subspace of
B(S) such that:

(i) F contains the constants;
(ii) F 2 ⊂ F ;
(iii) F ⊗ F ⊂ L1(P (x, ·)) for all x ∈ S, and P (F ⊗ F )⊂ F ;
(iv) there exists a probability µ on (S,S) such that F ⊂ L1(µ) and

lim
r→∞

Ex[f(Yr)] = (µ, f)

for all x∈ S and f ∈ F ;
(v) for all f ∈ F , there exists g ∈ F such that for all r ∈N, |Qrf | ≤ g;
(vi) F ⊂L1(ν),

where we have used the notation F 2 = {f2/f ∈ F}, F ⊗F = {f⊗g/f, g ∈ F}
and PE = {Pf/f ∈E} whenever an operator P acts on a set E.

The following hypothesis is about the geometric ergodicity of Q:

(H1) Assume that for all f ∈ F such that (µ, f) = 0, there exists g ∈ F
such that for all r ∈ N and for all x ∈ S, |Qrf(x)| ≤ αrg(x) for some α ∈
(0,1); that is, the Markov chain (Yr, r ∈N) is geometrically ergodic.

Recall that under this hypothesis, Guyon [14] has shown the weak law of
large numbers for the three empirical average MGr(f), MTr(f) and MΠ

n (f)
(see [14], Theorem 11 when f ∈ F and Theorem 12 when f ∈ B(S3)) and the
strong law of large numbers only for MGr(f), MTr(f); see [14], Theorem 14
and Corollary 15 when f ∈ F and Theorem 18 when f ∈ B(S3).

When f ∈ B(S3) and under the additional hypothesis Pf2 and Pf4 exist
and belong to F , he proved the central limit theorem forMTr(f) andMΠ

n (f);
see [14], Theorem 19 and Corollary 21. Recall that the central limit theorem
for the three empirical means (1.2) when f ∈ B(S) is still an open question;
see [8] for more precision.

In this section, we complete these results by showing the strong law of
large numbers for MΠ

n (f), when f ∈ F . We prove also the law of the iterated

logarithm (LIL) and almost sure functional central limit theorem (ASFCLT)
for MΠ

n (f) when f ∈ B(S3).

2.1. Control of the 4th order moments. In order to establish limit theo-
rems below, let us state the following:
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Theorem 2.1. Let F satisfy (i)–(vi). Let f ∈ F such that (µ, f) = 0.
We assume hypothesis (H1). Then for all r ∈N,

E[(MGr(f))
4]≤











c( 14)
r, if α2 < 1

2 ,

cr2(14)
r, if α2 = 1

2 ,

cα4r, if α2 > 1
2 ,

(2.1)

where the positive constant c depends on α and f (and may differ line by
line).

Proof. First note that f(Xi) ∈L4 for all i ∈Gr. Indeed, let (z1, . . . , zr) ∈
{0,1}r the unique path in the binary tree from the root 1 to i. Then,

E[f4(Xi)] = νPz1 · · ·Pzrf4,

and from hypotheses (ii), (iii) and (vi) we conclude that νPz1 · · ·Pzrf4 <∞.
Now, the proof divides into two parts.

Part 1. Computation of E[(MGr(f))
4]. Independently of X , let us draw

four independent indices Ir, Jr, Kr and Lr uniformly from Gr. Then

E[(MGr(f))
4] = E[f(XIr)f(XJr)f(XKr)f(XLr)].

For all p ∈ {0, . . . , r}, let us define the following events:

• Ep
0 : The ancestors of Ir, Jr, Kr and Lr are different in Gp.

• Ep
1 : Exactly two of Ir, Jr, Kr and Lr have the same ancestor in Gp.

• Ep
2 : Ir, Jr , Kr and Lr have the same ancestor two by two in Gp.

• Ep
3 : Exactly three of Ir, Jr, Kr and Lr have the same ancestor in Gp.

• Ep
4 : Ir, Jr , Kr and Lr have the same ancestor in Gp.

We also consider the following events whose for each fixed p≤ r, probability
depend only on p.

• E′p
0 : Draw uniformly four independent indices from Gp which are different.

• E′p
1 : Draw uniformly four independent indices from Gp such that two are

the same, and the others are different.

• E′p
2 : Draw uniformly four independent indices from Gp which are the same,

two by two.

• E′p
3 : Draw uniformly four independent indices from Gp such that exactly

three are the same.

• E′p
4 : Draw uniformly four independent indices from Gp which are all the

same.
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In the sequel we do the convention that Er+1
0 is a certain event. Then after

successive conditioning by events Ep
i for p ∈ {0, . . . , r} and i ∈ {0, . . . ,4}, we

have

E[f(XIr)f(XJr)f(XKr)f(XLr)]

= E[f(XIr)f(XJr)f(XKr)f(XLr)/E
2
0 ]× P(E2

0)

+

r
∑

p=2

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
p+1
0 ,Ep

1 ]× P(Ep
1 ∩Ep+1

0 )

(2.2)

+
r
∑

p=2

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
p+1
0 ,Ep

2 ]× P(Ep
2 ∩Ep+1

0 )

+E[f(XIr)f(XJr)f(XKr)f(XLr )/E
r
3 ]× P(Er

3)

+E[f(XIr)f(XJr)f(XKr)f(XLr )/E
r
4 ]× P(Er

4).

Let us notice that

• for all i ∈ {1,2,3,4}, Er
i and E′r

i have the same probability;

• the realization of “Ep
1 ∩ Ep+1

0 ” can be seen as “draw uniformly four in-
dependent indices from Gp such that two are the same and others are
different, and the two indices which are the same take different paths at
Gp+1.” Thus “Ep

1 ∩Ep+1
0 ” has the same probability that “E′p

1 ∩Ap,p+1,”
where “Ap,p+1” is the event, “the indices which are the same in Gp take
different paths at Gp+1”;

• similarly, the realization of “Ep
2 ∩ Ep+1

0 ” may be interpreted as, “draw
uniformly four independent indices from Gp which are the same two by

two, and all the indices take different paths at Gp+1.” Thus “Ep
2 ∩Ep+1

0 ”
has the same probability that “E′p

2 ∩Ap,p+1,” where “Ap,p+1” is the event,
“the indices which are the same in Gp take different paths at Gp+1”;

• for all p ∈ {0, . . . , r}, we have

P(E′p
1 ) =

6(2p − 1)(2p − 2)

23p
, P(E′p

2 ) =
3(2p − 1)

23p
,

P(E′p
3 ) =

4(2p − 1)

23p
, P(E′p

4 ) =
1

23p
.

We may then deduce that

P(E2
0) =

3

32
, P(Er

3) =
4(2r − 1)

23r
, P(Er

4) =
1

23r

and for p ∈ {2, . . . , r− 1},

P(Ep
1 ∩Ep+1

0 ) = P(E′p
1 )P(Ap,p+1/E

′p
1 ) =

3(2p − 1)(2p − 2)

23p
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and

P(Ep
2 ∩Ep+1

0 ) = P(E′p
2 )P(Ap,p+1/E

′p
2 ) =

3

4

2p − 1

23p
.

We are now going to compute each term which appears in (2.2). We have
the following convention: P (Q−1f ⊗Q−1f) = f2. In the sequel, we will use
intensively, with a slight modification, the calculations made by Guyon [14]
in order to compute conditional expectations related to the event, “draw
uniformly two independent indices from Gp,” for p ∈ {0, . . . , r}.

(a) We have that

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
r
4 ] = νQrf4.

(b) Conditionally on Er
3 , we may assume that the indices Ir, Kr and Lr

are the same. We then have, using the calculations made by Guyon [14],

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
r
3 ]

= E[f3(XIr)f(XJr)/E
r
3 ]

=
2r

2r − 1

{

r−1
∑

p=0

2−p−2νQpP (Qr−p−1f3 ⊗Qr−p−1f

+Qr−p−1f ⊗Qr−p−1f3)

}

.

(c) Let p ∈ {2, . . . , r}. Conditionally on Ep
2 and Ep+1

0 we may assume that
Ir and Jr have the same ancestor at Gp, and Kr and Lr have the same
ancestor at Gp. For simplification, we will use the following notation:

Qk
⊗f :=Qkf ⊗Qkf,(2.3)

and we thus have

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
p+1
0 ,Ep

2 ]

= E[E[E[f(XIr)f(XJr)f(XKr)f(XLr)/Fp+1]/Fp]/Ep+1
0 ,Ep

2 ]

= E[P (Qr−p−1
⊗ f)(XIr∧pJr)P (Qr−p−1

⊗ f)(XKr∧pLr)/E
p+1
0 ,Ep

2 ]

=
2p

2p − 1

p−1
∑

l=0

2−l−1νQlP ((Qp−l−1P (Qr−p−1
⊗ f))

⊗ (Qp−l−1P (Qr−p−1
⊗ f))),

where Ir ∧p Jr (resp., Kr ∧p Lr) denotes the common ancestor of Ir and Jr
which is in Gp (resp., the common ancestor of Kr and Lr which is in Gp).
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(d) Let p ∈ {2, . . . , r}. Now conditionally on Ep
1 and Ep+1

0 we may assume
that it is Kr and Lr which have the same ancestor in Gp. We denote by p(Ir)
and p(Jr), respectively, the ancestor of Ir and Jr which are in Gp. As before,
the common ancestor of Kr and Lr, which are in Gp, is denoted by Kr∧pLr.
At this step, we may repeat the successive conditioning that we have done
in the beginning but this time for indices p(Ir), p(Jr) and Kr ∧p Lr. This
leads us to

E[f(XIr)f(XJr
)f(XKr

)f(XLr
)/Ep+1

0 ,Ep
1 ]

= E[Qr−pf(Xp(Ir))Q
r−pf(Xp(Jr))P (Qr−p−1

⊗ f)(XKr∧pLr
)/Ep+1

0 ,Ep
1 ]

=
22p

(2p − 1)(2p − 2)

p−1
∑

l=1

1

2l+1

1

2

×
l−1
∑

m=0

2−m−1{νQmP ((Ql−m−1P (Qr−l−1
⊗

f))⊗Qp−m−1P (Qr−p−1
⊗ f))

+ νQmP ((Qp−m−1P (Qr−p−1
⊗ f))⊗ (Ql−m−1P (Qr−l−1

⊗
f)))

+ νQmP ((Ql−m−1P (Qr−l−1f ⊗Qp−l−1P (Qr−p−1
⊗ f)))⊗ (Qr−m−1f))

+ νQmP (Qr−m−1f ⊗ (Ql−m−1P (Qr−l−1f ⊗Qp−l−1P (Qr−p−1
⊗ f))))

+ νQmP ((Ql−m−1P (Qp−l−1P (Qr−p−1
⊗ f)⊗Qr−l−1f))⊗ (Qr−m−1f))

+ νQmP ((Qr−m−1f)⊗ (Ql−m−1P (Qp−l−1P (Qr−p−1
⊗ f)⊗Qr−l−1f)))}.

(e) Finally,

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
2
0 ]

= E[E[E[f(XIr)f(XJr)f(XKr)f(XLr)/F2]/F1]/E
2
0 ]

= E[P (Qr−2
⊗ f)(X2)P (Qr−2

⊗ f)(X3)/E
2
0 ]

= νP (P (Qr−2
⊗ f)⊗P (Qr−2

⊗ f)).

Gathering together all of these terms, each multiplied by their respective
probability, we obtain an explicit expression for E[(MGr(f))

4].

Part 2. Rate. We are now going to give some rates for the different terms
that appear in the expression of E[(MGr(f))

4].
Throughout this part, we will use intensively the following to bound quan-

tities which appear in the expression of E[(MGr(f))
4]:

• Let f ∈ F such that (µ, f) = 0. Then from (i)–(vi) and hypothesis (H1),
there exists a positive constant c such that ∀l,m,n∈N,

νQlP (Qmf ⊗Qnf)≤ αm+nνQlP (g⊗ g)≤ cαm+n,

where g is given in hypothesis (H1).
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In the sequel, c denotes a positive constant which depends on f , and c1
denotes a positive constant which depends on α. The constants c and c1
may vary from one line to another and from one expression to another.

(a) For the first term appearing in (2.2), we have

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
2
0 ]× P(E2

0)≤ c1cα
4r.

(b) For the fifth term appearing in (2.2), we have

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
r
4 ]× P(Er

4)≤ c( 12)
3r,

where, from (ii), (v) and (vi), c is such that νQrf4 < c.
(c) For the fourth term appearing in (2.2), we have

E[f(XIr)f(XJr)f(XKr)f(XLr )/E
r
3 ]× P(Er

3)≤ cc1α
r

(

1

4

)r r−1
∑

p=0

(

1

2α

)p

,

where, from (ii), (iii), (v) and (vi), c is such that for all p, q ∈N

max(νQpP (Qqf3 ⊗ g), νQpP (g ⊗Qqf3))< c,

and from hypothesis (H1), g is such that for all p ∈ {1, . . . , r− 1}
Qr−p−1f ≤ αr−p−1g.(2.4)

Now depending on the value of α, we obtain that

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
r
3 ]× P(Er

3)

≤















c1c

((

α

4

)r

+

(

1

23

)r)

, if α 6= 1

2
,

c1cr

(

1

23

)r

, if α=
1

2
.

(d) Let us denote the third term appearing in (2.2) by

Ar :=

r
∑

p=2

E[f(XIr)f(XJr)f(XKr)f(XLr )/E
p+1
0 ,Ep

2 ]× P(Ep
2 ∩Ep+1

0 ).

So we have

Ar ≤ c1c

(

(

1

4

)r

+ α4r
r−1
∑

p=2

(

1

4α4

)p
)

,

where, from (ii), (iii), (v) and (vi), c is such that for all p ∈ {2, . . . , r − 1},
q ∈ {0, . . . , r− 1}, l ∈ {0, . . . , p− 1}

max(νQqP (Qr−q−1
⊗ f2), νQlP (Qp−l−1

⊗ P (g⊗ g)))< c,

and g is defined as before (2.4) and the notation Q⊗ is given in (2.3).
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Now depending on the value of α, we obtain that:

• if α2 6= 1
2 , then Ar ≤ c1c((

1
4 )
r + α4r);

• if α2 = 1
2 , then Ar ≤ c1c(r− 1)(14 )

r.

(e) For the second term appearing in (2.2), we have when p= r:

• if α= 1
2 , then

E[f(XIr)f(XJr)f(XKr)f(XLr )/E
r
1 ]× P(Er

1)≤ c1c(
1
4)
r;

• if α 6= 1
2 :

– if α2 = 1
2 , then

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
r
1 ]× P(Er

1)≤ c1(r− 1)( 14)
r;

– if α2 6= 1
2 , then

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
r
1 ]× P(Er

1)

≤ c1c

((

α2

2

)r

+

(

1

4

)r)

,

where, from (ii), (iii), (v) and (vi), c is such that for all l ∈ {2, . . . , r − 1},
q ∈ {0, . . . , l− 1}

max(νQqP (Ql−q−1P (g⊗ g)⊗Qr−q−1f2),

νQqP (Ql−q−1P (g⊗Qr−l−1f2)⊗ g))< c

and g is defined as before (2.4).
(f) For the second terms appearing in (2.2), and for the remaining term

in the sum (p 6= r), let us denote by

Br :=
r−1
∑

p=2

E[f(XIr)f(XJr)f(XKr)f(XLr)/E
p+1
0 ,Ep

1 ]× P(Ep
1 ∩Ep+1

0 ).

So we have:

• if α= 1
2 , then Br ≤ c1c(

1
4 )
r;

• if α 6= 1
2 :

– if α2 = 1
2 , then Br ≤ c1cr

2(14)
r ;

– if α2 6= 1
2 , then Br ≤ c1c(α

4r + (α
2

2 )r + (14)
r),

where c is defined in the same way as before.
Now the results of the Theorem 2.1 follow from (a)–(f) of part 2. �

It leads us to an extension of Theorem 2.1 to the two empirical averages
MTr (f) and MΠ

n (f).
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Corollary 2.2. Let F satisfy (i)–(vi). Let f ∈ F such that (µ, f) = 0.
We assume that hypothesis (H1) is fulfilled. Then for all r ∈N and n ∈N,

E[(MTr(f))
4]≤











c(14)
r+1, if α2 < 1

2 ,

cr2(14)
r+1, if α2 = 1

2 ,

cα4(r+1), if α2 > 1
2 ,

(2.5)

and

E[(MΠ
n (f))

4]≤











c(14 )
rn+1, if α2 < 1

2 ,

cr2n(
1
4 )
rn+1, if α2 = 1

2 ,

cα4(rn+1), if α2 > 1
2 ,

(2.6)

where the positive constant c depends on α and f and may differ line by
line.

Proof. The proof follows the same steps as in the proof of parts 2 and
3 of Theorem 2.11, and uses the results of the proof of Theorem 2.5 to get
the control of the 4th order moment in incomplete generation. See Sections
2.2 and A.1 for more detail. �

Remark 2.3. If f ∈ B(S3) is such that Pf2 and Pf4 exist and belong to
F , with Pf = 0, then we have for all r ∈N and for some positive constant c,

E[(MGr(f))
4]≤ c

|Gr|2
.(2.7)

Indeed, let MGr(f) =
∑

i∈Gr
f(∆i). We have

E[(MGr(f))
4] = E[MGr(f

4)] + 6E

[

∑

i 6=j∈Gr

f2(∆i)f
2(∆j)

]

+4E

[

∑

i 6=j∈Gr

f3(∆i)f(∆j)

]

+12E

[

∑

i 6=j 6=k∈Gr

f2(∆i)f(∆j)f(∆k)

]

+24E

[

∑

i 6=j 6=k 6=l∈Gr

f(∆i)f(∆j)f(∆k)f(∆l)

]

= E

[

∑

i∈Gr

Pf4(Xi)

]

+ 6E

[

∑

i 6=j∈Gr

Pf2(Xi)Pf2(Xj)

]

,
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where the last equality was obtained after conditioning by Fr and using the
fact that Pf = 0. Now, dividing by |Gr|4 leads us to

E[(MGr(f))
4] =

6

|Gr|2
E

[

1

|Gr|2
∑

i 6=j∈Gr

Pf2(Xi)Pf2(Xj)

]

+
1

|Gr|3
E

[

1

|Gr|
∑

i∈Gr

Pf4(Xi)

]

≤ 6

|Gr|2
E[(MGr(Pf2))2]

+
1

|Gr|3
E[MGr(Pf4)],

and (2.7) then follows from the control of

(E[(MGr(Pf2))2])r and (E[MGr(Pf4)])r;

see [14].

Remark 2.4. From Remark 2.3, we deduce that if f ∈ B(S3) is such
that Pf2 and Pf4 exist and belong to F , with Pf = 0, then we have for all
r ∈N and for some positive constant c,

E[(MTr(f))
4]≤ c( 14)

r+1.(2.8)

Indeed, from the equality

MTr(f) =
r
∑

q=0

|Gq|
|Tr|

MGq (f),

we deduce that

E[(MTr(f))
4]≤

(

r
∑

q=0

|Gq|
|Tr|

‖MGq(f)‖4

)4

,

where ‖ · ‖4 stands for the L4-norm. We then infer from (2.7) that

E[(MTr(f))
4]≤ c

(

r
∑

q=0

(
√
2)q

2r+1

)4

for some positive constant c. (2.8) then follows from the last inequality.

2.2. Strong law of large numbers on incomplete subtree. We now turn to
prove the strong law of large numbers for MΠ

n (f), completing the work of
Guyon [14], where the LLN was proved only for the two averages MTr(f)
and MGr(f).
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Theorem 2.5. Let F satisfy (i)–(vi). Let f ∈ F such that (µ, f) = 0.

We assume that hypothesis (H1) is fulfilled with α ∈ (0,
4√8
2 ). Then MΠ

n (f)
almost surely converges to 0 as n goes to ∞.

Proof. From the decomposition

MΠ
n (f) =

rn−1
∑

q=0

2q

n
MGq(f) +

1

n

n
∑

i=2rn

f(XΠ(i)),

it is enough to check that

∞
∑

n=1

E

[(

1

n

n
∑

i=2rn

f(XΠ(i))

)4]

<∞.

Indeed, since MGq(f) almost surely converges to 0 (Corollary 15 in [14]), we
deduce that the first term on the right-hand side of the previous decompo-
sition almost surely converges to 0 (Lemma 13 in [14]). We have

E

[(

1

n

n
∑

i=2rn

f(XΠ(i))

)4]

=
1

n4
E

[

n
∑

i=2rn

f4(XΠ(i))

]

+
6

n4
E

[

n
∑

i,j=2rn ;i 6=j
f2(XΠ(i))f

2(XΠ(j))

]

(2.9)

+
4

n4
E

[

n
∑

i,j=2rn ;i 6=j
f3(XΠ(i))f(XΠ(j))

]

+
12

n4
E

[

n
∑

i,j,k=2rn ;i 6=j 6=k
f2(XΠ(i))f(XΠ(j))f(XΠ(k))

]

+
24

n4
E

[

n
∑

i,j,k,l=2rn ;i 6=j 6=k 6=l
f(XΠ(i))f(XΠ(j))f(XΠ(k))f(XΠ(l))

]

.

We will control each term appearing in decomposition (2.9). For the first
term on the right-hand side of (2.9), using (ii), (v) and (vi) we have for
some positive constant c,

E

[

n
∑

i=2rn

f4(XΠ(i))

]

= (n− 2rn + 1)νQrnf4 ≤ c(n− 2rn +1),

which implies that

1

n4
E

[

n
∑

i=2rn

f4(XΠ(i))

]

=O

(

1

n3

)

.(2.10)
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Recall the following: for i, j, k and l ∈ {2rn , . . . , n}:
• If i 6= j, then rn ≥ 1. Independently on (X,Π), draw two independent

indices Irn and Jrn uniformly from Grn . Then the law of (Π(i),Π(j)) is
the conditional law of (Irn , Jrn) given {Irn 6= Jrn}.

• If i 6= j 6= k, then rn ≥ 2. Independently on (X,Π), draw three inde-
pendent indices Irn , Jrn and Krn uniformly from Grn . Then the law of
(Π(i),Π(j),Π(k)) is the conditional law of (Irn , Jrn ,Krn) given {Irn 6=
Jrn 6=Krn}.

• If i 6= j 6= k 6= l, then rn ≥ 2. Independently on (X,Π), draw four indepen-
dent indices Irn , Jrn ,Krn and Lrn uniformly from Grn . Then the law of
(Π(i),Π(j),Π(k)),Π(l)) is the conditional law of (Irn , Jrn ,Krn ,Lrn) given
{Irn 6= Jrn 6=Krn 6= Jrn}.

Now we have to control the second and third terms of (2.9). We have to
check that

1

n4
E

[

n
∑

i,j=2rn ;i 6=j
f2(XΠ(i))f

2(XΠ(j))

]

=O

(

1

n2

)

(2.11)

and

1

n4
E

[

n
∑

i,j=2rn ;i 6=j
f3(XΠ(i))f(XΠ(j))

]

= o

(

1

n2

)

.(2.12)

Indeed, from the previous reminder and (i)–(vi), we have for some positive
constant c,

E

[

n
∑

i,j=2rn ;i 6=j
f2(XΠ(i))f

2(XΠ(j))

]

=
(n− 2rn)(n− 2rn +1)

(1− 2−rn)

×
rn−1
∑

p=0

2−p−1νQpP (Qrn−p−1
⊗ f2)

≤ c(n− 2rn)(n− 2rn +1),

which implies (2.11). In the same way and using in addition hypothesis (H1),
we obtain that

E

[

n
∑

i,j=2rn ;i 6=j
f3(XΠ(i))f(XΠ(j))

]

=
(n− 2rn)(n− 2rn + 1)

(1− 2−rn)
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×
rn−1
∑

p=0

2−p−2νQpP (Qrn−p−1f3 ⊗Qrn−p−1f

+Qrn−p−1f ⊗Qrn−p−1f3)

≤











c2−rn(n− 2rn)(n− 2rn +1), if α < 1
2 ,

crn2
−rn(n− 2rn)(n− 2rn +1), if α= 1

2 ,

cαrn(n− 2rn)(n− 2rn +1), if α > 1
2 ,

which implies (2.12).
Let us deal with the remaining term of (2.9):

1

n4
E

[

n
∑

i,j,k=2rn;i 6=j 6=k
f2(XΠ(i))f(XΠ(j))f(XΠ(k))

]

=
(n− 2rn − 1)(n− 2rn)(n− 2rn +1)

P(Irn 6= Jrn 6=Krn)× n4

× E[f2(XIrn )f(XJrn )f(XKrn
)1{Irn 6=Jrn 6=Krn}].

Then, we get an explicit expression for the last expectation similar to that
obtained in part (d) of the calculus of E[(MGr(f))

4] with a slight modifica-
tion of the functions. Calculating the rate of this expression, we obtain

∞
∑

n=4

1

n4
E

[

n
∑

i,j,k=2rn ;i 6=j 6=k
f2(XΠ(i))f(XΠ(j))f(XΠ(k))

]

≤ c
∞
∑

n=1

1

n
α2rn + c

∞
∑

n=1

rn−1
∑

p=2

p−1
∑

l=0

1

n

1

2p
1

2l+1
α2rn−2p

+ c

∞
∑

n=1

rn−1
∑

p=2

p−1
∑

l=0

1

n

1

2p
1

2l+1
α2rn−p−l

for some positive c. Now it is not hard to see that the right-hand side is
finite.

Finally, to check that the series of general term

1

n4
E

[

n
∑

i,j,k,l=2rn;i 6=j 6=k 6=l
f(XΠ(i))f(XΠ(j))f(XΠ(k))f(XΠ(l))

]

is finite, it is enough, according to the calculation of rates we have done in
part 2 of the proof of Theorem 2.1, to check that

∑∞
n=1α

4rn <∞, which is

the case if α ∈ (0,
4√8
2 ), and this completes the proof of Theorem 2.5. �
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Remark 2.6. Note that this theorem can be improved, but the price to
pay is enormous computations related to the calculation of higher moments.
If f is bounded, this result is true for every α ∈ (0,1), as we will see in
Section 3.

2.3. Law of the iterated logarithm (LIL). Using the LIL for martingales
(see Theorem B.3 of Stout in Appendix B), we are going to prove a LIL
for the BMC. This will be done when f depends on the mother-daughters
triangle (∆i). We use the notation MΠ

n (f) =
∑n

i=1 f(∆Π(i)) and MTr(f) =
∑

i∈Tr
f(∆i).

Theorem 2.7. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf = 0,
Pf2 and Pf4 exist and belong to F . We assume that hypothesis (H1) is
fulfilled. Then

lim sup
n→∞

MΠ
n (f)

√

2〈MΠ(f)〉n log log〈MΠ(f)〉n
= 1 a.s.

And in particular,

lim sup
r→∞

MTr (f)
√

2|Tr| log log |Tr|
=
√

(µ,Pf2) a.s.

Proof. We will check the hypothesis of Stout Theorem’s B.3. Let f ∈
B(S3). We introduce the filtration (Hn)n≥0 defined by H0 = σ(X1) andHn =
σ(∆Π(i),Π(i + 1),1 ≤ i ≤ n). Let (MΠ

n (f))n≥0 defined by MΠ
0 (f) = 0 and

MΠ
n (f) =

∑n
i=1 f(∆Π(i)). Then since Pf = 0, (MΠ

n (f)) is a Hn-martingale

with E[MΠ
1 (f)] = 0. The bracket of the above martingale is given by

〈MΠ(f)〉n =
n
∑

i=0

Pf2(XΠ(i)) =MΠ
n (Pf2).

We have the following decomposition:

〈MΠ(f)〉n
n

=MΠ
n (Pf2) =

rn−1
∑

q=0

2q

n
MGq(Pf2) +

1

n

n
∑

i=2rn

Pf2(XΠ(i)).

Since

∀q ≤ rn − 1
2q

2rn+1
≤ 2q

n
≤ 2q

2rn
and

1

n

n
∑

i=2rn

Pf2(XΠ(i))≤MGrn
(Pf2),

we deduce that
rn−1
∑

q=0

2q

2rn+1
MGq(Pf2)≤MΠ

n (Pf2)≤
rn
∑

q=0

2q

2rn
MGq(Pf2).
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From the strong law of large numbers of MGq(Pf2) (see [14], Corollary 15)
and from Lemma 5.2 of [7], we infer that

rn−1
∑

q=0

2q

2rn+1
MGq(Pf2)

a.s.−→ (µ,Pf2)

2
and

rn
∑

q=0

2q

2rn
MGq (Pf2)

a.s.−→ 2(µ,Pf2).

Using these results, we thus deduce that 〈MΠ(f)〉n = O(n) and n =
O(〈MΠ(f)〉n) a.s. This implies in particular that 〈MΠ(f)〉n −→

n→∞
∞ a.s.

Now let Kn =
√
2√

log log(n)
in Theorem B.3, and we have

R :=

∞
∑

n=1

2 log log〈MΠ(f)〉n
K2
n〈MΠ(f)〉n

×E[f2(∆Π(n))1{f2(∆Π(n))>K2
n〈MΠ(f)〉n/(2 log log〈MΠ(f)〉n)}/Hn−1]

≤
∞
∑

n=1

4(log log〈MΠ(f)〉n)2
K4
n(〈MΠ(f)〉n)2

Pf4(XΠ(n)) a.s.,

since 〈MΠ(f)〉n = O(n) a.s., so that for R <∞ a.s., it is enough to check
that

∞
∑

n=1

Pf4(XΠ(n))

nδ
<∞ a.s. with any 1< δ < 2.(2.13)

Now, according to (v) and (vi), there exists a positive constant c such that
for all n ≥ 1, E[Pf4(XΠ(n))] = νQrnPf4 ≤ c, and (2.13) follows. Applying
Theorem B.3, we have

limsup
n→∞

MΠ
n (f)

√

2〈MΠ(f)〉n log log〈MΠ(f)〉n
= 1 a.s.

Now, for n= |Tr|, we have the following:

MTr(f)
√

2〈MΠ(f)〉|Tr| log log〈MΠ(f)〉|Tr |

=

√

|Tr|〈MΠ(f)〉|Tr |/|Tr|
2 log log〈MΠ(f)〉|Tr |

× MTr(f)

|Tr|〈MΠ(f)〉|Tr |/|Tr|

and since
〈MΠ(f)〉|Tr |

|Tr | =MTr(Pf2) −→
r→∞

(µ,Pf2) a.s. (see Theorem 18 in [14]),

we get

lim sup
r→∞

MTr(f)
√

2|Tr| log log |Tr|
=
√

(µ,Pf2) a.s.,

which completes the proof. �
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Remark 2.8. Let us note that using Theorem 2.5, we can prove that if

hypothesis (H1) is fulfilled with α ∈ (0,
4√8
2 ), then

limsup
n→∞

MΠ
n (f)√

2n log logn
=
√

(µ,Pf2) a.s.,

and via the computation of 2kth order moments of MGr(g), with k > 2 and
g ∈ B(S), it is possible to prove the latter for all α ∈ (0,1). But, as already
emphasized, this comes at the price of enormous computations.

2.4. Almost-sure functional central limit theorem (ASFCLT). We are
now going to prove an ASFCLT theorem for the BMC (Xn, n ∈ T). Here
again, this will be done when f depends on the mother-daughters triangle
by using the ASFCLT for discrete time martingale. We refer to Chaabane,
Theorem B.4, Appendix B, for the definition of an ASFCLT.

Theorem 2.9. Let F satisfy (i)–(vi). Let f ∈ B(S3) such that Pf = 0,
Pf2 and Pf4 exist and belong to F . We assume that hypothesis (H1) is

fulfilled with α ∈ (0,
4√8
2 ). Then MΠ

n (f) verifies an ASFCLT, when n goes
to ∞.

Proof. We use Theorem B.4. Let (Hn)n∈N be the filtration defined
as in Section 2.3. Then (MΠ

n (f)) is a Hn martingale. We have to check the
hypotheses of Theorem B.4. For all n≥ 1, let Vn = s

√
n where s2 = (µ,Pf2).

Then according to Theorem 2.5,

〈MΠ(f)〉n
V 2
n

= V −2
n MΠ

n (Pf2) −→
n→∞

1 a.s.

Let ε > 0. We have
∑

n≥1

1

V 2
n

E[f2(∆Π(n))1{|f(∆Π(n))|>εVn}/Hn−1]

≤ 1

ε2s4

∑

n≥1

Pf4(XΠ(n))

n2
a.s.

According to (v) and (vi), there exists a positive constant c such that for all
n≥ 1, E[Pf4(XΠ(n))] = νQrnPf4 ≤ c, and therefore, ∀ε > 0

∑

n≥1

1

V 2
n

E[f2(∆Π(n))1{|f(∆Π(n))|>εVn}/Hn−1]<∞ a.s.

Finally, we have

∑

n≥1

1

V 4
n

E[f4(∆Π(n))1{|f(∆Π(n))|≤Vn}/Hn−1]≤
1

s4

∑

n≥1

Pf4(XΠ(n))

n2
a.s.,

which as before is a.s. finite, and the proof is then complete. �
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Remark 2.10. As before, let us note that this result can be extended to
the general case α ∈ (0,1), but at the price of enormous computation related
to the computation of 2k-order moments, k > 2, for MGr(g), g ∈ B(S).

2.5. Deviation inequalities for BMC. We are now going to give some
deviation inequalities under (i)–(vi) and (H1) for the empirical means (1.2)
when f ∈ B(S) with (µ, f) = 0 and when f ∈ B(S3) with (µ,Pf) = 0. This
will help us in the sequel to obtain a MDP result in a general framework,
that is, for functional of BMC with unbounded test functions. Let us recall
that the main disadvantage of this “weak” set of assumptions is that the
range of speed for the MDP is very restricted. However, we still work under
geometric ergodicity assumption and general test function, which will not
be the case when we would want to extend the MDP; see Section 3. Note
that we postpone to Appendix A nearly all the proofs of this section, these
proofs being quite long and technical.

Theorem 2.11. Let F satisfy conditions (i)–(vi). We assume that (H1)
is fulfilled. Let f ∈ F such that (µ, f) = 0. Then we have for all δ > 0 and
all r ∈N and all n ∈N,

P(|MGr(f)|> δ)≤































c

δ2

(

1

2

)r

, if α2 <
1

2
;

c

δ2
r

(

1

2

)r

, if α2 =
1

2
;

c

δ2
α2r, if α2 >

1

2
;

(2.14)

P(|MΠ
n (f)|> δ)≤



































c

δ2

(

1

2

)rn+1

, if α2 <
1

2
;

c

δ2
rn

(

1

2

)rn+1

, if α2 =
1

2
;

c

δ2
α2(rn+1), if α2 >

1

2
;

(2.15)

and

P(|MTr(f)|> δ)≤



































c

δ2

(

1

2

)r+1

, if α2 <
1

2
;

c

δ2
r

(

1

2

)r+1

, if α2 =
1

2
;

c

δ2
α2(r+1), if α2 >

1

2
;

(2.16)

where the positive constant c depends on f and α and may differ term by
term.
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Proof. See Section A.1 in Appendix A. �

We shall also need an extension of Theorem 2.11 to the case when f
does not only depend on an individual Xi, but on the mother-daughters
triangle (∆i).

Theorem 2.12. Let F satisfy conditions (i)–(vi). We assume that (H1)
is fulfilled. Let f ∈ B(S3) such that Pf and Pf2 exist and belong to F and
(µ,Pf) = 0. Then we have the same conclusion as in Theorem 2.11 for the
three empirical averages given in (1.2): MGr(f), MTr (f) and MΠ

n (f).

Proof. See Section A.2 in Appendix A. �

We thus have the following first result on the superexponential conver-
gence in probability, whose definition we present now:

Definition 2.13. Let (E,d) a metric space. Let (Zn) be a sequence of
random variables valued in E, Z be a random variable valued in E and (vn)
be a rate. We say that Zn converges vn-superexponentially fast in probability
to Z if for all δ > 0,

lim sup
n→∞

1

vn
logP(d(Zn,Z)> δ) =−∞.

This “exponential convergence” with speed vn will be shortened as

Zn
superexp−→

vn
Z.

We may now set:

Proposition 2.14. Let F satisfy conditions (i)–(vi). Let f ∈ B(S3)
such that Pf and Pf2 exist and belong to F and (µ,Pf) = 0. We assume
that (H1) is fulfilled. Let (bn) be a sequence of increasing positive real num-
bers such that

bn√
n
−→+∞,

bn√
n logn

−→ 0,
n

bn
is nondecreasing.(2.17)

Then

MΠ
n (f)

superexp−→
b2n/n

0.

Proof. The proof is a direct consequence of Theorem 2.12. �

2.6. Moderate deviations for BMC. Now, using the MDP for martingale
(see, e.g., [11, 24]), we are going to prove a MDP for BMC. We will use
Proposition B.5, in Appendix B.
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Theorem 2.15. Let F satisfy conditions (i)–(vi). We assume that (H1)
is satisfied. Let f ∈ B(S3) such that Pf2 and Pf4 exist and belong to F . As-
sume that Pf = 0. Let (bn) be a sequence of increasing positive real numbers
satisfying (2.17). If

lim sup
n→∞

n

b2n
log(n ess sup

1≤k≤c−1(bn+1)

P(|f(∆Π(k))|> bn/Hk−1)) =−∞,(2.18)

where c−1(bn+1) := inf{k ∈N : kbk ≥ bn+1}, then (MΠ
n (f)/bn) satisfies a MDP

in R with the speed b2n/n and the rate function I(x) = x2

2(µ,Pf2) .

Proof. First, note that under the hypothesis,MΠ
n (f) is aHn-martingale,

with H0 = σ(X1) and Hn = σ(∆Π(i),Π(i+ 1),1 ≤ i≤ n). From Proposition
B.5 in Appendix B, we only have to check conditions (C1) and (C3).

On one hand, (2.15) applied to Pf4 − (µ,Pf4) implies that for all δ > 0,

lim sup
n→∞

n

b2n
logP

(

1

n

n
∑

i=1

Pf4(XΠ(i))> (µ,Pf4) + δ

)

=−∞,

and this implies the exponential Lindeberg condition (see, e.g., [24]), that
is, condition (C3).

On the other hand, we have 〈MΠ(f)〉n =MΠ
n (Pf2) and (2.15) applied to

Pf2 − (µ,Pf2) implies that

MΠ
n (Pf2 − (µ,Pf2))

superexp−→
b2n/n

0,

that is, condition (C1). �

Remark 2.16. One of the main difficulties in the application of this
Theorem lies in the verification of (2.18). Note, however, that in the range
of speed considered it is sufficient to have some uniform control in Xi of some
moment of f(Xi,X2i,X2i+1) conditionally on Xi, which leads to condition
of the type P |f |k bounded for some k ≥ 2. It is, of course, the case if f is
bounded.

Remark 2.17. In the special case of model (1.1), we have (see Sec-
tion 4), for f such that Pf = 0 and for all k,

E

[

exp

(

λ
bn
n
f(∆Π(k))

)

/

Hk−1

]

= exp

(

b2n
n

(

λ2Pf2

2n

)

(XΠ(k))

)

.

This condition implies that a MDP is satisfied for (MΠ
n (f)/bn). Indeed, if

this relation is satisfied, we then have that for λ ∈R the quantity

Gn(λ) =
λ2

2n

n
∑

k=1

Pf2(XΠ(k)) =
λ2

2
MΠ

n (Pf2)
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is an upper and lower cumulant (see, e.g., [24]), and we may apply Gärtner–
Ellis-type methodology. In addition, due to (2.15) applied to Pf2− (µ,Pf2),
we have for λ ∈R,

Gn(λ)
superexp−→
b2n/n

λ2(µ,Pf2)

2
,

which implies that (MΠ
n (f)/bn) satisfies a MDP in R with the speed b2n/n

and the rate function I(x) = x2

2(µ,Pf2)
.

3. Exponential deviation inequalities for BMC and consequences. We
give here stronger deviation inequalities than the one obtained in Section
2, namely exponential deviation inequalities. Of course, it requires more
stringent assumptions.

3.1. Exponential deviation inequalities. Let us consider the following hy-
pothesis.

(H2) There exists a probability µ on (S,S) such that, for all f ∈ Bb(S)
with (µ, f) = 0, there exists a positive constant c such that

|Qrf(x)| ≤ cαr for some α ∈ (0,1) and for all x∈ S.

One can easily check that, under hypothesis (H2), Bb(S) fulfills hypothesis
(i)–(vi) of the previous section.

Under this assumption, we will prove exponential deviation inequalities
for MGr(f), MTr(f) and MΠ

n (f) when f ∈ Bb(S) with (µ, f) = 0 [resp.,
f ∈ Bb(S3) with (µ,Pf) = 0].

Theorem 3.1. Assume that (H2) is satisfied. Let f ∈ Bb(S) such that
(µ, f) = 0. Then we have for all δ > 0,

P(MGr(f)> δ)
(3.1)

≤























































































exp(c′′δ) exp(−c′δ2|Gr|),
∀r ∈N, if α≤ 1

2
,

exp(−c′δ2|Gr|),
∀r ∈N such that r > r0, if

1

2
< α<

√
2

2
,

exp

(

−c′δ2
|Gr|
r

)

,

∀r ∈N such that r > r0, if α2 =
1

2
,

exp

(

−c′δ2
1

α2r

)

,

∀r ∈N such that r > r0, if α2 >
1

2
,
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P(MTr(f)> δ)
(3.2)

≤



















































































































exp(c′′δ) exp(−c′δ2|Tr|),
∀r ∈N, if α<

1

2
,

exp(2c′δ(r +1)) exp(−c′δ2|Tr|),
∀r ∈N, if α=

1

2
,

exp(−c′δ2|Tr|),
∀r ∈N such that r > r0 − 1, if

1

2
< α<

√
2

2
,

exp

(

−c′δ2
|Tr|
r+ 1

)

,

∀r ∈N such that r > r0 − 1, if α=

√
2

2
,

exp

(

−c′δ2
1

α2(r+1)

)

,

∀r ∈N
∗ such that r > r0 − 3, if α>

√
2

2
,

and

P(MΠ
n (f)> δ)

(3.3)

≤



















































































































exp(c′′δ) exp(−c′δ2n),

∀n ∈N, if α<
1

2
,

exp(2c′δ(rn + 1)) exp(−c′δ2n),

∀n ∈N, if α=
1

2
,

exp(−c′δ2n),

∀n ∈N such that rn > r0, if
1

2
< α<

√
2

2
,

exp

(

−c′δ2
n

rn +1

)

,

∀n ∈N such that rn > r0, if α=

√
2

2
,

exp

(

−c′δ2
1

α2(rn+1)

)

,

∀n ∈N
∗ such that rn > r0 − 2, if α>

√
2

2
,

where r0 := log( δc0 )/ log(α), and c0, c
′ and c′′ are positive constants which

depend on α and f , and differ line by line; see the proofs for the dependence.
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Proof. The details of the proof are in Section A.3 in Appendix A. It re-
lies mainly on successive conditioning, using carefully the uniform geometric
ergodicity assumption to get rid of the conditioning. �

The condition about α less than 1/2 or greater is of course linked to the
binary structure of the tree. The extension to m-ary tree will follow from
the same ideas.

Theorem 3.2. Assume that (H2) is satisfied. Let f ∈ Bb(S3) such that
(µ,Pf) = 0. Then we have the same conclusions, for the three empirical
averages MGr(f), M

Π
n (f) and MTr(f), as in the Theorem 3.1.

Proof. See Section A.4 in Appendix A. �

Now, using the Borel–Cantelli Theorem and (3.3), we state easily the
following:

Corollary 3.3. Assume that (H2) is satisfied. Let f ∈ Bb(S) such that
(µ, f) = 0 [resp., f ∈ Bb(S3) and (µ,Pf) = 0]. Then MΠ

n (f) almost surely
converges to 0 as n goes to ∞.

Remark 3.4. Of course uniform ergodicity and bounded test functions
are surely a very strong set of assumptions, but it is not so difficult to verify if
the Markov chain’s daughters lie in a compact set. We are convinced that it is
possible to consider the geometric ergodic case and bounded test functions,
but for the price of tedious calculations that we will pursue in an other
work. We will also investigate the use of transportation inequalities, leading
to deviation inequality for Lipschitz test functions under some Wasserstein
contraction property for the kernel P , in the spirit of the Theorems 2.5 or
2.11 in [12].

3.2. Moderate deviation principle for BMC. We introduce the following
assumption on the speed of the MDP.

Assumption 1. Let (bn) be an increasing sequence of positive real num-
bers such that

bn√
n
−→+∞

and:

• if α2 < 1
2 , the sequence (bn) is such that bn/n−→ 0;

• if α2 = 1
2 , the sequence (bn) is such that (bn logn)/n−→ 0;

• if α2 > 1
2 , the sequence (bn) is such that (bnα

rn+1)/
√
n−→ 0.
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Using the MDP for martingale with bounded jumps (see, e.g., [9, 11]), we
can now state the following:

Theorem 3.5. Assume that (H2) is satisfied. Let f ∈ Bb(S3) such that
Pf = 0. Let (bn) be a sequence of real numbers satisfying the Assumption 1;
then (MΠ

n (f)/bn) satisfies a MDP in S with the speed b2n/n and rate function

I(x) = x2

2(µ,Pf2)
.

Proof. The proof easily follows from the previous exponential proba-
bility inequalities and the MDP for martingale with bounded jumps; see, for
example, [9, 11, 24]. �

Remark 3.6. Taking particularly n= |Tr| and (bn) as a sequence of real
numbers satisfying Assumption 1, we get that for all f ∈ Bb(S3), (MTr (f)/
b|Tr |) satisfies a MDP in R with the speed b2|Tr |/|Tr| and the rate function

I(x) = x2

2(µ,Pf2)
.

4. Application: First order Bifurcating autoregressive processes. In this
section, we seek to apply the results of the previous sections to the following
bifurcating autoregressive process with memory 1 defined by

L(X1) = ν and ∀n≥ 1

{

X2n = α0Xn + β0 + ε2n,
X2n+1 = α1Xn + β1 + ε2n+1,

(4.1)

where α0, α1 ∈ (−1,1); β0, β1 ∈ R, ((ε2n, ε2n+1), n ≥ 1) forms a sequence of
i.i.d. bivariate random variables and ν a probability measure on R.

Several extensions of the model have been proposed and various esti-
mators are studied in the literature for the unknown parameters; see, for
instance, [2, 17–19, 25, 26]. See [4] for a relevant references.

Throughout this section, we assume that the distribution ν has finite
moments of all orders.

In the sequel, we will study (4.1) in two settings:

• the Gaussian setting which corresponds to the case where ((ε2n, ε2n+1), n≥
1) forms a sequence of i.i.d. bivariate random variables with law N2(0,Γ)
with

Γ = σ2

(

1 ρ
ρ 1

)

, σ2 > 0, ρ ∈ (−1,1);(4.2)

• the bounded setting which corresponds to the case where X1 and ((ε2n,
ε2n+1), n≥ 1), which forms a sequence of centered i.i.d. bivariate random
variables, take their values in a compact set. Let us note that in this case,
(Xn, n ∈ T) takes its values in a compact set.
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Our main goal is to give deviation inequalities and MDP for the estima-
tor of the 4-dimensional unknown parameter θ = (α0, β0, α1, β1) and for the
statistical test defined in [14].

To estimate the 4-parameter θ = (α0, β0, α1, β1), as well as σ2 and ρ,
assume we observe a complete subtree Tr+1. The least square estimator
θ̂r = (α̂r0, β̂

r
0 , α̂

r
1, β̂

r
1) of θ is given by (see [14]), for η ∈ {0,1},















α̂rη =
|Tr|−1

∑

i∈Tr
XiX2i+η − (|Tr|−1

∑

i∈Tr
Xi)(|Tr|−1

∑

i∈Tr
X2i+η)

|Tr|−1
∑

i∈Tr
X2
i − (|Tr|−1

∑

i∈Tr
Xi)2

,

β̂rη = |Tr|−1
∑

i∈Tr

X2i+η − α̂rη|Tr|−1
∑

i∈Tr

Xi.
(4.3)

Notice that in the Gaussian case, this least square estimator corresponds to
the maximum likelihood estimator.

We also need to introduce the estimators of the conditional variance σ2

and the conditional sister–sister correlation ρ. These estimators are naturally
given by



















σ̂2
r =

1

2Tr

∑

i∈Tr

(ε̂22i + ε̂22i+1),

ρ̂r =
1

σ̂2
r

∑

i∈Tr

ε̂2iε̂2i+1,
(4.4)

where the residues are defined by ε̂2i+η =X2i+η− α̂rηXi− β̂rη , with η ∈ {0,1}.
Let us denote by Cpol(R) [resp., Cpol(R3)] the set of all continuous functions

f :R→R (resp., f :R3 →R) such that |f | is bounded above by a polynomial.
From [14], we know that Cpol(R) fulfills hypotheses (i)–(vi).

We will take F = C1
pol(R) the set of all C1 functions f :R→ R such that

|f |+ |f ′| is bounded above by a polynomial. Then, one can check that F
fulfills hypotheses (i)–(vi). Moreover, for all f ∈ F , hypothesis (H1) holds
with α=max(|α0|, |α1|). Let µ be the unique stationary distribution of the
induced Markov chain (Yr, r ∈N); see [14] for more details.

Let us denote by C1
pol(R

3) the set of all C1 functions f :R3 →R such that

|f |+ |f ′| is bounded above by a polynomial. We shall denote by x (resp.,

x2, xy, y, . . .) the element of C1
pol(R

3) defined by (x, y, z) 7→ x (resp., x2, xy,

y, . . .).
We define two continuous functions µ1 :Θ→ R and µ2 :Θ× R

∗
+ → R by

writing

(µ,x) = µ1(θ) and (µ,x2) = µ2(θ,σ
2),(4.5)

where θ = (α0, β0, α1, β1) ∈Θ= (−1,1)×R× (−1,1)×R.
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To segregate between H0 = {(α0, β0) = (α1, β1)} and its alternative H1 =
{(α0, β0) 6= (α1, β1)}, we shall use the test statistic

χ(1)
r =

|Tr|
2σ̂2

r (1− ρ̂r)
{(α̂r0 − α̂r1)

2(µ̂2,r − µ̂2
1,r) + ((α̂r0 − α̂r1)µ̂1,r + β̂r0 − β̂r1)

2},

where we write µ̂1,r = µ1(θ̂
r) and µ̂2,r = µ2(θ̂r, σ̂r).

As usual the Gaussian setting has specific properties that allow easier
calculations and more general assumptions.

4.1. The Gaussian setting. We introduce the following assumption on
the speed of the MDP. Let (bn) be an increasing sequence of positive real
numbers such that

bn√
n
−→+∞ and

bn√
n logn

→ 0.(4.6)

Proposition 4.1. Let (bn) be a sequence of real numbers satisfying
(4.6). Then

θ̂r
superexp−→
b2
|Tr |

/|Tr |
θ.

Proof. We will treat the case of α̂r0 given in (4.3). The others, β̂r0 , α̂
r
1

and β̂r1 , given in (4.3), may be treated in a similar way. Note that α̂r0 =
Cr
Br

,
where

Cr =MTr(xy)−MTr(x)MTr(y) and Br =MTr(x
2)−MTr(x)

2.

Now, using Lemma B.2 and Proposition 2.14, it follows that

α̂r0
superexp−→
b2
|Tr |

/|Tr |
α0.

�

We recall that in the BAR model (4.1), we use α=max{|α0|, |α1|}, and
b := µ2(θ,σ

2)− µ1(θ)
2, where µ1 and µ2 are given in (4.5), so we have the

following deviation inequality:

Proposition 4.2. For all δ > 0, for all r ∈N and for all γ <min( c1b1+δ ,
c1b

1+
√
δ
, c1b

1+
4√
δ
), where c1 is a positive constant which depends on µ1, we have

P(‖θ̂r − θ‖> δ)≤































c

γ4qδ4−p

(

1

4

)r+1

, if α2 <
1

2
,

c

γ4qδ4−p
r2
(

1

4

)r+1

if α2 =
1

2
,

c

γ4qδ4−p
α4(r+1), if α2 >

1

2
,

(4.7)
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where the constant c depends on α, µ1, µ2 and differs line by line, p= p(δ) ∈
{0,2,4} and q = q(δ) ∈ {0,1}.

Remark 4.3. The values of p and q in Proposition 4.2 depend on the
order of δ. For example, if δ is small enough, we have p= 0 and q = 0.

Proof. See Section A.5 in Appendix A. �

Remark 4.4. Proposition 4.2 can be improved by calculating the 2kth
order moments, with k > 2, as in the proof of Theorem 2.1. But, as we have
said, this comes at the price of enormous computation.

Proposition 4.5. Let (bn) be a sequence of real numbers satisfying
(4.6). Then

(σ̂2
r , ρ̂r)

superexp−→
b2
|Tr |

/|Tr|
(σ2, ρ).

Proof. Let us first deal with σ2
r given in (4.4). We have (see, e.g., [14])

σ̂2
r =

1
2MTr(f(·, θ)) +Dr,

where f(x, y, z, θ) = (y− α0x− β0)
2 + (z − α1x− β1)

2 and

Dr =
1

2|Tr|
∑

i∈Tr

(f(∆i, θ̂
r)− f(∆i, θ)).

By the Taylor–Lagrange formula, we can find g ∈ Cpol(R3) such that (see [14])

|Dr| ≤ 1
2‖θ̂r − θ‖(1 + ‖θ‖+ ‖θ̂r − θ‖)MTr(g).

Now, Propositions 2.14 and 4.1 lead us to

σ̂2
r

superexp−→
b2
|Tr |

/|Tr |
σ2.

The proof for ρ̂r given in (4.4) is similar. �

Proposition 4.6. Let (bn) be a sequence of real numbers satisfying

(4.6). Then the sequence (|Tr|(θ̂r − θ)/b|Tr|) satisfies the MDP on R
4 with

the speed b2|Tr |/|Tr| and the rate function I given by

I(x) = 1
2x

t(Σ′)−1x,

where

Σ′ = σ2

(

K ρK
ρK K

)

with

K =
1

µ2(θ,σ2)− µ1(θ)2

(

1 −µ1(θ)

−µ1(θ) µ2(θ,σ
2)

)

.
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Proof. We first observe that

|Tr|
b|Tr|

(θ̂r − θ) =M(Ar,Br).
U r(f)

b|Tr |
,

where f = (f1, f2, f3, f4)
t = (xy,y,xz,z)t, U r(f) =MTr (f−Pf),Ar =MTr(x),

Br =MTr(x
2)−MTr (x)

2 and

M(Ar,Br) =























1

Br

−Ar
Br

0 0

−Ar
Br

Br +A2
r

Br
0 0

0 0
1

Br

−Ar
Br

0 0
−Ar
Br

Br +A2
r

Br























.

For the sake of simplicity we wrote Pf = (Pf1, Pf2, Pf3, Pf4)
t, where P

denotes the T-transition probability associated to BAR(1) process in the
Gaussian case, which is given by

P (x,dy, dz) =
1

2πσ2(1− ρ2)

× exp

(

−1

2

(

y −α0x− β0
z −α1x− β1

)t

Γ−1

(

y− α0x− β0
z −α1x− β1

))

dy dz,

where Γ is the covariance matrix defined in (4.2).
On one hand, from Proposition 2.14,

Ar
superexp−→
b2
|Tr |

/|Tr |
a := µ1(θ) and Br

superexp−→
b2
|Tr |

/|Tr |
b := µ2(θ,σ

2)− µ1(θ)
2,

so that by Lemma B.2, we obtain

M(Ar,Br)
superexp−→
b2
|Tr |

/|Tr |
M(a, b) :=

(

K 0
0 K

)

.

On the other hand, let λ= (λ1, λ2, λ3, λ4)
t ∈R

4. For all x ∈R, we have that

P exp(λt(f −Pf))(x)

=

∫

R2

exp

(

4
∑

i=1

λi(fi −Pfi)

)

(x, y, z)P (x,dy, dz)

=

∫

R2

exp






λt







xy− x(α0x+ β0)
y −α0x− β0

xz − x(α1x+ β1)
z −α1x− β1












P (x,dy, dz)
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= exp

(

−
(

α0x+ β0
α1x+ β1

)t(
λ1x+ λ2

λ3x+ λ4

))

×
∫

R2

exp

((

λ1x+ λ2

λ3x+ λ4

)t(
y
z

))

P (x,dy, dz).

We know that
∫

R2

exp

((

λ1x+ λ2

λ3x+ λ4

)t(
y
z

))

P (x,dy, dz)

= exp

((

α0x+ β0
α1x+ β1

)t(
λ1x+ λ2

λ3x+ λ4

))

× exp

(

1

2

(

λ1x+ λ2

λ3x+ λ4

)t

Γ

(

λ1x+ λ2

λ3x+ λ4

))

.

Let Ξ(x) denote the square matrix with entries (Pfifj − PfiPfj)(x), for
1≤ i, j ≤ 4. So we obtain that

P exp(λt(f −Pf))(x) = exp

(

1

2

(

λ1x+ λ2

λ3x+ λ4

)t

Γ

(

λ1x+ λ2

λ3x+ λ4

))

= exp

(

1

2

4
∑

i,j=1

λiλj(Pfifj − PfiPfj)(x)

)

= exp

(

1

2
λtΞ(x)λ

)

.

Recall that the filtration (Hn)n≥0 is defined by H0 = σ(X1) and Hn =
σ(∆Π(i),Π(i+ 1),1 ≤ i ≤ n). Therefore, from the previous calculations, we
deduce that for all k ∈N,

E[exp(λt(f − Pf)(∆Π(k)))/Hk−1] = P (exp(λt(f −Pf)))(XΠ(k))

= exp( 12λ
tΞ(XΠ(k))λ).

Now, recall that (MΠ
n (f − Pf))n∈N is a (Hn)-martingale and by straight-

forward calculations, its increasing process is given by 〈MΠ(f − Pf)〉n =
∑n

k=1Ξ(XΠ(k)). From the foregoing, we infer that
(

exp

(

λtMΠ
n (f −Pf)− λt〈MΠ(f − Pf)〉nλ

2

))

n∈N

is a (Hn)-martingale. It then follows that for all λ ∈R
4,Gn(λ) =

1
2nλ

t〈MΠ(f−
Pf)〉nλ is an upper and lower cumulant. Moreover, from Proposition 2.14
and Lemma B.2,

Gn(λ)
superexp−→
b2
|Tr |

/|Tr |
1
2λ

tΣλ where Σ= σ2

(

K−1 ρK−1

ρK−1 K−1

)

.
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We thus deduce that (see, e.g., [24]) (MΠ
n (f)/bn) satisfies a MDP on R

4 with
speed b2n/n and the rate function

J(x) = 1
2x

tΣ−1x.(4.8)

Taking n = |Tr|, it follows that (U r(f)/b|Tr |) satisfies a MDP with speed

b2|Tr |/|Tr| and the rate function J given in (4.8). Finally, using the contraction

principle (see, e.g., [10]) as in [23], we get the result. �

Let us now consider the test statistic.

Proposition 4.7. Let (bn) a sequence of real numbers satisfying (4.6).

Then under the null hypothesis H0 = {(α0, β0) = (α1, β1)}, |Tr |1/2
b|Tr |

(χ
(1)
r )1/2

satisfies a MDP on R with speed b2|Tr|/|Tr| and the rate function

I ′(y) =







y2

2
, if y ∈R+,

+∞, otherwise.

Under the alternative hypothesis H1 of H0, we have for all A> 0,

lim sup
r→∞

|Tr|
b2|Tr |

logP(χ(1)
r <A) =−∞.

Proof. We have

H0 = {g(θ) = 0} where g(θ) = (α0 −α1, β0 − β1)
t.

From Proposition 4.6, (|Tr|(θ̂r − θ)/b|Tr |) satisfies a MDP on R
4 with speed

b2|Tr |/|Tr| and the rate function I(x) = 1
2x

t(Σ′)−1x. So that, using the delta

method for the MDP (see, e.g., [13], Theorem 3.1) we conclude that

(|Tr|(g(θ̂r) − g(θ))/b|Tr |) satisfies a MDP on R
2 with speed b2|Tr|/|Tr| and

the rate function

J(y) = inf{I(x);y = g′(θ)x}.
Identification of this rate function by usual optimization argument leads us
to

J(x) = 1
2x

t(Σ′′)−1x where Σ′′ = 2σ2(1− ρ)K.(4.9)

Under the null hypothesis H0, we have g(θ) = 0, so that (|Tr|g(θ̂r)/b|Tr |) sat-
isfies a MDP on R

2 with speed b2|Tr |/|Tr| and rate function J given in (4.9).

Now, since K = K(θ,σ) is a continuous function of (θ,σ) (see [14]), so

that, letting K̂r = K(θ̂r, σ̂r), Lemma B.2, Propositions 4.6 and 4.5 entail
that

Σ̂′′
r = 2σ̂2

r (1− ρ̂r)K̂r
superexp−→
b2
|Tr |

/|Tr |
Σ′′.
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It follows using the contraction principle (see, e.g., [23]) that

(|Tr|Σ̂′′
r
−1/2g(θ̂r)/b|Tr |)

satisfies a MDP on R
2 with speed b2|Tr |/|Tr| and the rate function J ′(y) =

‖y‖2
2 .
In particular,

∥

∥

∥

∥

|Tr|
b|Tr|

Σ̂′′
r
−1/2g(θ̂r)

∥

∥

∥

∥

=
|Tr|1/2
b|Tr |

√

χ
(1)
r

satisfies a MDP with speed b2|Tr |/|Tr| and the rate function I ′ given in the

Proposition 4.7.
Now, under the alternative hypothesis H1,

χ
(1)
r

|Tr|
= g(θ̂r)tΣ̂′′

r
−1g(θ̂r)

superexp−→
b2
|Tr |

/|Tr|
g(θ)t(Σ′′)−1g(θ)> 0,

so that χ
(1)
r converges

b2
|Tr |

|Tr| -superexponentially fast to +∞. This concludes

the proof of the Proposition 4.7. �

4.2. Compact case: The uniformly ergodic setting. We recall that the
model under study in this section is the model (4.1) where we assume that
the noise and initial state X1 take their values in a compact set. The results
will be given without proofs, since the proofs are similar to those done in the
previous section. The novelty here is that the range of speed is improved in
comparison to the previous section. However, we suppose that the process
takes its values in a compact set, which is not the case in the previous
section.

We take F = C1
b (R) the set of all C1 functions bounded on R. Therefore,

one can easily check (as in [14], proof of Proposition 28) that hypothesis
(H2) is satisfied with α = max(|α0|, |α1|). We use the same notation as in
the previous section.

Let us begin by the fact that the estimator of θ converges super exponen-
tially fast to the true parameter.

Proposition 4.8. Let (bn) a sequence of real numbers satisfying the
Assumption 1. Then we have

θ̂r
superexp−→
b2
|Tr |

/|Tr |
θ.

We may now refine this result by proving deviation inequality.

Proposition 4.9. For all δ > 0 and for all γ <min( c1b1+δ ,
c1b

1+
√
δ
, c1b

1+
4√
δ
),

where c1 is a positive constant which depends on µ1, and for r0 :=
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log(γqδ1−p/2/c0)
logα , we have

P(‖θ̂r − θ‖> δ) ≤































































































































c2 exp(c
′′γqδ1−p/2) exp(−c′γ2qδ2−p|Tr|),

∀r ∈N, if α<
1

2
,

c2 exp(c
′γqδ1−p/2(r+1)− c′γ2qδ2−p|Tr|),

∀r ∈N, if α=
1

2
,

c2 exp(−c′γ2qδ2−p|Tr|),

∀r > r0, if
1

2
< α<

√
2

2
,

c2 exp

(

−c′γqδ2−p
|Tr|
r+ 1

)

,

∀r > r0, if α=

√
2

2
,

c2 exp

(

−c′γ2qδ2−p
1

α2(r+1)

)

,

∀r > r0, if α>

√
2

2
,

(4.10)

where c2 is a positive constant, c′ and c′′ depend on α, and c and may
differ line by line, c0 depends on α, c and γ, and may differ line by line,
p ∈ {0,1,3/2} and q ∈ {0,1}.

We have now to consider super exponential convergence of the estimators
of the other parameters.

Proposition 4.10. Let (bn) a sequence of real numbers satisfying As-
sumption 1. Then we have

(σ̂2
r , ρ̂r)

superexp−→
b2
|Tr |

/|Tr|
(σ2, ρ).

As previously we may now prove MDP for the estimator of θ.

Proposition 4.11. Let (bn) a sequence of real numbers satisfying the

Assumption 1. Then (|Tr|(θ̂r − θ)/b|Tr|) satisfies the MDP on R
4 with the

speed b2|Tr |/|Tr| and rate function

I(x) = 1
2x

t(Σ′)−1x,

where

Σ′ = σ2

(

K ρK
ρK K

)
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with

K =
1

µ2(θ,σ2)− µ1(θ)2

(

1 −µ1(θ)
−µ1(θ) µ2(θ,σ

2)

)

.

Remark 4.12. Notice that the proof of Proposition 4.11 does not need
the cumulant method as in the proof of Proposition 4.6. Indeed, since we are
in the bounded case, from MDP of martingale with bounded jumps (see [9]),
we need only to prove the superexponential convergence of increasing process
of the martingale. This convergence is easily obtained from Theorem 3.2.

Let us give us our last result by considering a MDP for the test statistic.

Proposition 4.13. Let (bn) a sequence of real numbers satisfying the
Assumption 1. Then under the null hypothesis H0 = {(α0, β0) = (α1, β1)},
|Tr |1/2
b|Tr |

(χ
(1)
r )1/2 satisfies a MDP on R with speed b2|Tr |/|Tr| and the rate func-

tion

I ′(y) =







y2

2
, if y ∈R+,

+∞, otherwise.

Under the alternative hypothesis H1 of H0, we have for all A> 0,

lim sup
r→∞

|Tr|
b2|Tr |

logP(χ(1)
r <A) =−∞.

APPENDIX A: PROOF OF THE EXPONENTIAL INEQUALITIES

This section is devoted to the proofs of Theorems 2.11, 2.12, 3.1, 3.2 and
Proposition 4.2.

A.1. Proof of Theorem 2.11. Let f ∈ F such that (µ, f) = 0. We shall
study the three empirical averages MGr(f),M

Π
n (f) andMTr(f) successively.

Part 1. Let us first deal with MGr(f). By the Markov inequality, we get,
for all δ > 0,

P(|MGr(f)|> δ) = P(|MGr(f)|2 > δ2)≤ 1

δ2
E[(MGr(f))

2].

By Guyon (see [14]), we have

E[(MGr(f))
2] =

r
∑

p=0

2−p−1p<rνQpP (Qr−p−1f ⊗Qr−p−1f).



DEVIATION INEQUALITIES AND LIMIT THEOREMS FOR BMC 39

Hypothesis (H1) implies that there exists g ∈ F and α ∈ (0,1) such that for
all p ∈ {0,1, . . . , r},

νQpP (Qr−p−1f ⊗Qr−p−1f)≤ α2(r−p−1)νQpP (g ⊗ g).

Next, hypotheses (iii), (v) and (vi) imply that there is a positive constant c
such that for all p ∈ {0,1, . . . , r},

α2(r−p−1)νQpP (g⊗ g)≤ cα2(r−p−1).

This leads us to

E[(MGr(f))
2]≤ c

r
∑

p=0

2−p−1p<rα2(r−p−1)

(A.1)

=















c

(

1

2

)r

+ c
α2r − (1/2)r

2α2 − 1
, if α2 6= 1

2
,

cr

(

1

2

)r

, if α2 =
1

2
,

and therefore (2.14) follows.

Part 2. Let us now consider MΠ
n (f). By the Markov inequality and the

triangle inequality, we get, for all δ > 0,

P(|MΠ
n (f)|> δ)

= P(|MΠ
n (f)|2 > δ2)≤ 1

δ2
E[(MΠ

n (f))
2](A.2)

≤ 2

δ2
E

[(

rn−1
∑

q=0

2q

n
MGq(f)

)2]

+
2

δ2
E

[(

1

n

n
∑

i=2rn

f(XΠ(i))

)2]

.

In the last inequality (A.2), we have used the decomposition

MΠ
n (f) =

rn−1
∑

q=0

2q

n
MGq(f) +

1

n

n
∑

i=2rn

f(XΠ(i)).

In what follows, the constant c may be slightly different from that of part 1
and may differ term by term. For the first term appearing in (A.2), we have

E

[(

rn−1
∑

q=0

2q

n
MGq(f)

)2]

=

∥

∥

∥

∥

∥

rn−1
∑

q=0

2q

n
MGq(f)

∥

∥

∥

∥

∥

2

2

≤
(

rn−1
∑

q=0

2q

n
‖MGq(f)‖2

)2

.
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Using (A.1), we get that

rn−1
∑

q=0

2q

n
‖MGq(f)‖2 ≤















































c

n

rn−1
∑

q=0

(
√
2)q ≤ c

√
2
rn

n
, if α2 <

1

2
,

c

n

rn
∑

q=0

q1/2
√
2
q ≤ c

r
1/2
n

√
2
rn

n
, if α2 =

1

2
,

c

n

rn−1
∑

q=0

(2α)q ≤ cαrn , if α2 >
1

2
,

which implies that

E

[(

rn−1
∑

q=0

2q

n
MGq(f)

)2]

≤































c
2rn

n2
≤ c

(

1

2

)rn+1

, if α2 <
1

2
,

c
rn

2rn+1
, if α2 =

1

2
,

cα2(rn+1), if α2 >
1

2
.

(A.3)

Now, we have to control the second term in (A.2). As in Guyon [14], we have
that

E

[(

1

n

n
∑

i=2rn

f(XΠ(i))

)2]

≤ n− 2rn +1

n2
νQrnf2

+
(n− 2rn)(n− 2rn +1)

n2(1− 2−rn)

rn−1
∑

p=0

2−p−1νQpP (Qrn−p−1f ⊗Qrn−p−1f)

≤ c

n
+ c

rn−1
∑

p=0

2−p−1α2rn−2p−2.

Discussing following the value of α, we obtain that

E

[(

1

n

n
∑

i=2rn

f(XΠ(i))

)2]

≤



























c
1

2rn+1
, if α2 <

1

2
,

c
rn

2rn+1
, if α2 =

1

2
,

cα2(rn+1), if α2 >
1

2
.

(A.4)

Inequality (2.15) then follows from (A.3) and (A.4).

Part 3. The case of MTr(f) can be deduced from the previous by taking
n= |Tr|.
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A.2. Proof of Theorem 2.12. Let f ∈ B(S3) such that Pf and Pf2 exist
and belong to F and (µ,Pf) = 0. We shall study the three empirical averages

MGr(f), M
Π
n (f) and MTr(f) successively.

Part 1. Let us first deal with MGr(f). By the Markov inequality, we get
for all δ > 0,

P(|MGr(f)|> δ)≤ 1

δ2
E[(MGr(f))

2]

=
1

δ2
E[(MGr(Pf))2] +

1

δ2
1

|Gr|
E[MGr(Pf2 − (Pf)2)]

≤ 1

δ2
E[(MGr(Pf))2] +

c

δ2

(

1

2

)r

.

The last inequality follows from the convergence of the sequence
(E[MGr(Pf2 − (Pf)2)])r (see [14]).

Now, using part 1 of the proof of Theorem 2.11 with Pf instead of f
leads us to a similar inequality (2.14) in Theorem 2.12 for f ∈ B(S3).

Part 2. Let us now treat MΠ
n (f). Using the two equalities

MΠ
n (f) =

rn−1
∑

q=0

|Gq|
n

MGq (f) +
1

n

n
∑

i=2rn

f(∆Π(i)),

E

[(

1

n

n
∑

i=2rn

f(∆Π(i))

)2]

= E

[(

1

n

n
∑

i=2rn

Pf(XΠ(i))

)2]

+
1

n
E

[

1

n

n
∑

i=2rn

(Pf2 − (Pf)2)(XΠ(i))

]

,

and part 2 of the proof of Theorem 2.11 with Pf instead of f leads us to a
similar inequality (2.15) in Theorem 2.12 for f ∈ B.

Part 3. The case of MTr(f) can be deduced from the previous by taking
n= |Tr|.

A.3. Proof of Theorem 3.1. Let f ∈ Bb(S) such that (µ, f) = 0. We shall

study the three empirical averages MGr(f),M
Π
n (f) andMTr(f) successively.

Part 1. Let us first deal with MGr(f). We have for all λ > 0 and for all
δ > 0

P(MGr(f)> δ)≤ exp(−λδ|Gr|)E
[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

.(A.5)
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By subtracting and adding terms, we get

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

= E

[

E

[

∏

i∈Gr−1

exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))

×
∏

i∈Gr−1

exp(2λQf(Xi))/Fr−1

]]

.

Now using the fact that conditionally to the (r − 1) first generations the
sequence {∆i, i ∈Gr−1} is a sequence of independent random variables, we
have that

E

[

E

[

∏

i∈Gr−1

exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))

×
∏

i∈Gr−1

exp(2λQf(Xi))/Fr−1

]]

= E

[

∏

i∈Gr−1

exp(2λQf(Xi))

×
∏

i∈Gr−1

E[exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))/Fr−1]

]

.

Using the Azuma–Bennett–Hoeffding inequalities [1, 3, 16] (see Lemma B.1
for more detail), we get according to (H2), for all i ∈Gr−1,

E[exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))/Fr−1]≤ exp(2λ2c2(1 +α)2).

This leads us to

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp(λ2c2(1 + α)2|Gr|)E
[

∏

i∈Gr−1

exp(2λQf(Xi))

]

.

Doing the same thing for E[
∏

i∈Gr−1
exp(2λQf(Xi))] with Qf replacing f ,

we get

E

[

∏

i∈Gr−1

exp(2λQf(Xi))

]

≤ exp(2λ2c2(α+α2)2|Gr|)E
[

∏

i∈Gr−2

exp(22λQ2f(Xi))

]

.
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Iterating this procedure, we get

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ E[exp(2rλQrf(X1))]

×
r
∏

k=1

exp(2k−1λ2c2(αk−1 + αk)2|Gr|).

Once again, according to (H2), we have

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp(λcαr|Gr|)×exp

(

λ2c2(1+α)2|Gr|
r
∑

k=1

(2α2)k−1

)

.

Hence:

• if α2 6= 1
2 , then

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp

(

λ2c2(1+α)2
1− (2α2)r

1− 2α2
|Gr|

)

×exp(λcαr|Gr|);

• if α2 = 1
2 , then

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp(λ2c2(1 +α)2r|Gr|)× exp

(

λc

(
√
2

2

)r

|Gr|
)

.

We then consider three cases:

(a) If α2 < 1
2 , then

1−(2α2)r

1−2α2 < 1
1−2α2 for all r. Taking λ= (1−2α2)δ

2c2(1+α)2
in (A.5)

leads us to

P(MGr(f)> δ)≤ exp

(

−
(

(1− 2α2)δ2

4c2(1 + α)2
−αr

(1− 2α2)δ

2c(1 + α)2

)

|Gr|
)

.

• If α≤ 1
2 , then (2α)r ≤ 1 for all r ∈N. We then have for all r ∈N,

P(MGr(f)> δ)≤ exp

(

(1− 2α2)δ

2c(1 + α)2

)

exp

(

−(1− 2α2)δ2|Gr|
4c2(1 +α)2

)

.

• If 1
2 < α <

√
2
2 , then for all r ∈ N such that r > log( δ4c )/ logα, we have

(δ − 2cαr)> δ
2 , and it then follows that

P(MGr(f)> δ)≤ exp

(

−(1− 2α2)δ2|Gr|
8c2(1 + α)2

)

.

(b) If α2 = 1
2 , then for all λ > 0,

P(MGr(f)> δ)≤ exp((−δλ+ c2(1 +α)2rλ2)|Gr|)

× exp

(

λc

(
√
2

2

)r

|Gr|
)

.
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Taking λ= δ
2c2(1+α)2r , we are led to

P(MGr(f)> δ)≤ exp

(

− δ|Gr|
4c2(1 + α)2r

(

δ − 2c

(
√
2

2

)r))

.

For all r ∈N such that r > log( δ4c)/ log(
√
2
2 ), we have (δ− 2c(

√
2
2 )r)> δ

2 and
for such r, it follows that

P(MGr(f)> δ)≤ exp

(

−δ2|Gr|
18c2r

)

.

(c) If α2 > 1
2 , then for all λ> 0,

P(MGr(f)> δ)≤ exp(−λδ|Gr|)× exp

(

λ2c2(1 + α)2
(2α2)r − 1

2α2 − 1
|Gr|

)

× exp(λcαr|Gr|)

≤ exp

(

−|Gr|
(

λδ − λ2c2(1 +α)2

2α2 − 1
(2α2)r

))

× exp(λcαr|Gr|).

Taking λ= (2α2−1)δ
2c2(1+α)2(2α2)r

leads us to

P(MGr(f)> δ)≤ exp

(

− (2α2 − 1)δ

4c2(1 +α)2α2r
(δ− 2cαr)

)

.

Now for all r ∈N such that r > log( δ4c)/ logα, we have

P(MGr(f))≤ exp

(

− (2α2 − 1)δ2

8c2(1 +α)2α2r

)

.

Part 2. Let us now deal with MTr(f). We have for all λ> 0 and all δ > 0,

P(MTr(f)> δ)≤ exp(−λδ|Tr|)E
[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

.(A.6)

By subtracting and adding terms, we get

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

= E

[

E

[

∏

i∈Gr−1

exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))

×
∏

i∈Gr−1

exp(2λQf(Xi))×
∏

i∈Tr−1

exp(λf(Xi))/Fr−1

]]
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= E

[

E

[

∏

i∈Gr−1

exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))

×
∏

i∈Gr−1

exp(λ(f +2Qf)(Xi))×
∏

i∈Tr−2

exp(λf(Xi))/Fr−1

]]

.

The fact that conditionally to the (r − 1) first generations the sequence
{∆i, i ∈Gr−1} is a sequence of independent random variables and Azuma–
Bennett–Hoeffding inequality (see Lemma B.1) lead us according to (H2) to

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

≤ exp(2λ2c2(1 +α)2|Gr−1|)

× E

[

∏

i∈Gr−1

exp(λ(f + 2Qf)(Xi))
∏

i∈Tr−2

exp(λf(Xi))

]

.

Doing the same things for

E

[

∏

i∈Gr−1

exp(λ(f +2Qf)(Xi))
∏

i∈Tr−2

exp(λf(Xi))

]

with f + 2Qf replacing f , we get

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

≤ exp(2λ2c2(1 +α)2|Gr−1|)× exp(2λ2c2(1 + 3α+ 2α2)2|Gr−2|)

×E

[

∏

i∈Gr−2

exp(λ(f +2Qf +22Q2f)(Xi))
∏

i∈Tr−3

exp(λf(Xi))

]

.

Iterating this procedure leads us to

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

≤ exp

(

2λ2c2(1 +α)2
r
∑

q=1

(

q−1
∑

k=0

(2α)k

)2

|Gr−q|
)

× E[exp(λ(f + 2Qf +22Q2f + · · ·+2rQrf)(X1))].

Using (H2) we get

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]
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≤ exp

(

λc
r
∑

k=0

(2α)k + 2λ2c2(1 +α)2
r
∑

q=1

(

q−1
∑

k=0

(2α)k

)2

|Gr−q|
)

.

Now for α 6= 1
2 and α2 6= 1

2 we have

P(MTr(f)> δ)

≤ exp(−λδ|Tr|) exp
(

2λ2c2(1 +α)2
(

2r − 1

(1− 2α)2
− α(1−αr)2r+1

(1− 2α)2(1−α)

+
2α2(1− (2α2)r)2r

(1− 2α)2(1− 2α2)

))

× exp

(

λc
1− (2α)r+1

1− 2α

)

≤ exp

(

−|Tr|
(

λδ − λ2c2(1 +α)2

(1− 2α)2

(

1 +
4α2(1− (2α2)r)

1− 2α2

)))

× exp

(

λc
1− (2α)r+1

1− 2α

)

.

Taking λ= δ
(2c2(1+α)2/(1−2α)2)(1+4α2(1−(2α2)r)/(1−2α2))

leads us to

P(MTr(f)> δ)

≤ exp

(

−|Tr|
(1− 2α)2δ2

4c2(1 +α)2(1 + 4α2(1− (2α2)r)/(1− 2α2))

)

× exp

(

(1− 2α)2δ

2c(1 +α)2(1 + 4α2(1− (2α2)r)/(1− 2α2))

1− (2α)r+1

1− 2α

)

.

• If α< 1
2 , then

1−(2α2)r

1−2α2 < 1
1−2α2 for all r ∈N,

P(MTr(f)> δ)≤ exp

(

1− 2α

2c(1 +α)2
δ

)

× exp

(

−(1− 2α2)(1− 2α)2δ2

4c2(1 + α)2(1 + 2α2)
|Tr|

)

.

• If 1
2 < α<

√
2
2 , then 1−(2α2)r

1−2α2 < 1
1−2α2 for all r ∈N,

P(MTr(f)> δ)

≤ exp

(

−(1− 2α2)(2α− 1)2δ|Tr|
4c2(1 +α)2(1 + 2α2)

(

δ − 2c(1− 2α2)αr+1

(2α− 1)(1 + 2α2)

))

.
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Now for all r ∈ N such that r + 1 > log( (2α−1)(1+2α2)δ
4c(1−2α2)

)/ logα, we have

δ − 2c(1−2α2)αr+1

(2α−1)(1+2α2)
> δ

2 so that for such r, we have

P(MTr(f)> δ)≤ exp

(

−(1− 2α2)(2α− 1)2δ2|Tr|
8c2(1 +α)2(1 + 2α2)

)

.

• If α2 > 1
2 , then for all r ≥ 1, we have

P(MTr(f)> δ)

≤ exp

(

−(2α− 1)2(2α2 − 1)δ

32c2(1 + α)2α2(r+1)

(

δ− 16α2cαr+1

(2α2 − 1)(2α− 1)

))

.

For all r ∈ N
∗ such that r + 3 > log( (2α

2−1)(2α−1)δ
32c )/ logα, we have δ −

16α2cαr+1

(2α2−1)(2α−1)
> δ

2 so that

P(MTr(f)> δ)≤ exp

(

−(1− 2α)2(2α2 − 1)δ2

64c2(1 + α)2

(

1

α2

)r+1)

.

Now if α= 1
2 , then

∑r
q=1

q2

2q <
∑∞

q=1
q2

2q = 6. Then for all λ > 0,

P(MTr(f)> δ)≤ exp(−(λδ− 27c2λ2)|Tr|)× exp(λc(r+1)).

Taking λ= δ
54c2

leads us to

P(MTr(f)> δ)≤ exp

(

− δ2

108c2
|Tr|

)

× exp

(

δ

54c
(r+1)

)

.

Finally, if α2 = 1
2 , in the same way as previously, for all r ∈ N such that

r+1> log( (
√
2−1)δ
4c )/ log(

√
2
2 ), we have

P(MTr(f)> δ)≤ exp

(

− (
√
2− 1)2δ2

4c2(1 +
√
2)2

|Tr|
r+1

)

.

Part 3. Eventually, let us look at MΠ
n (f). We have for all δ > 0

P

(

1

n
MΠ
n (f)> δ

)

≤ P

(

1

n

∑

i∈Trn−1

f(Xi)>
δ

2

)

+ P

(

1

n

n
∑

i=2rn

f(XΠ(i))>
δ

2

)

.
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On the one hand, (3.2) leads us to

P

(

1

n

∑

i∈Trn−1

f(Xi)>
δ

2

)

≤



















































































































exp(c′′δ) exp(−c′δ2n),

∀n ∈N, if α<
1

2
,

exp(2c′δ(rn +1)) exp(−c′δ2n),

∀n ∈N, if α=
1

2
,

exp(−c′δ2n),

∀rn > r0, if
1

2
< α<

√
2

2
,

exp

(

−c′δ2
n

rn +1

)

,

∀rn > r0, if α=

√
2

2
,

exp

(

−c′δ2
1

α2(rn+1)

)

,

∀rn > r0 − 2, if α >

√
2

2
,

(A.7)

where r0 := log( δc0 )/ logα and c0, c′ and c′′ are positive constants which

depend on α, ‖f‖∞ and c. c0, c
′and c′′ differ line by line. On the other

hand, for all λ > 0,

P

(

1

n

n
∑

i=2rn

f(XΠ(i))>
δ

2

)

≤ exp

(

−λδ

2
n

)

E

[

exp

(

λ

n
∑

i=2rn

f(XΠ(i))

)]

.

Now let:

• Orn = {Π(2rn),Π(2rn +1), . . . ,Π(n)};
• O1

rn−1 the set of individuals of generation Grn−1 which are ancestors of

one individual in Orn ;

• O2
rn−1 the set of individuals of generation Grn−1 which are ancestors of

two individuals in Orn ;
• O′

rn the set of individuals of Orn whose parents belong to O1
rn−1;

• Orn−1 =O1
rn−1 ∪O2

rn−1.

We introduce the filtration F̃r := σ(Fr,Π(i),1≤ i≤ T). Then we have

E

[

exp

(

λ

n
∑

i=2rn

f(XΠ(i))

)]

= E

[

exp

(

λ
∑

i∈O2
rn−1

2Qf(Xi) + λ
∑

i∈O1
rn−1

Qf(Xi)

)
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×E

[

exp

(

λ
∑

i∈O′
rn

f(Xi)−Qf(X[i/2])

)

/

F̃rn−1

]

×E

[

exp

(

λ
∑

i∈O2
rn−1

f(X2i) + f(X2i+1)− 2Qf(Xi)

)

/

F̃rn−1

]]

.

Using the Azuma–Bennett–Hoeffding inequality, as in part 1, we get

E

[

exp

(

λ
∑

i∈O′
rn

f(Xi)−Qf(X[i/2])

)

/

F̃rn−1

]

≤ exp

(

λ2c2(1 +α)2

2
|O′

rn |
)

and

E

[

exp

(

λ
∑

i∈O2
rn−1

f(X2i) + f(X2i+1)− 2Qf(Xi)

)

/

F̃rn−1

]

≤ exp(2λ2c2(1 +α)2|O2
rn−1|).

Now, we have

exp

(

λ2c2(1 + α)2

2
|O′

rn |
)

+ exp(2λ2c2(1 +α)2|O2
rn−1|)

= exp

(

λ2c2(1 +α)2
(

2|O2
rn−1|+

|O′
rn |
2

))

≤ exp(λ2c2(1 + α)2n).

This leads us to

E

[

exp

(

λ

n
∑

i=2rn

f(XΠ(i))

)]

≤ exp(λ2c2(1 +α)2n)E

[

exp

(

λ
∑

i∈O2
rn−1

2Qf(Xi) + λ
∑

i∈O1
rn−1

Qf(Xi)

)]

.

Now let:

• O1,1
rn−2 the set of individuals of Grn−2 which are ancestors of one individual

in Orn−1 and one individual in Orn ;

• O1,2
rn−2 the set of individuals of Grn−2 which are ancestors of one individual

in Orn−1 and two individuals in Orn ;

• O2,2
rn−2 the set of individuals of Grn−2 which are ancestors of two individ-

uals in Orn−1 and two individuals in Orn ;

• O2,3
rn−2 the set of individuals of Grn−2 which are ancestors of two individ-

uals in Orn−1 and three individuals in Orn ;
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• O2,4
rn−2 the set of individuals of Grn−2 which are ancestors of two individ-

uals in Orn−1 and four individuals in Orn ;

• O′
rn−1 the set of individuals of Orn−1 whose parents belong to O1,1

rn−2;

• O′′
rn−1 the set of individuals of Orn−1 whose parents belong to O1,2

rn−2.

Then we have

E

[

exp

(

λ
∑

i∈O2
rn−1

2Qf(Xi) + λ
∑

i∈O1
rn−1

Qf(Xi)

)]

= E[I1 × I2 × I3 × I4 × I5 × I6 × I7],

where

I1 = exp

(

λ
∑

i∈O1,1
rn−2

Q2f(Xi) + λ
∑

i∈O1,2
rn−2

2Q2f(Xi) + λ
∑

i∈O2,2
rn−2

2Q2f(Xi)

+ λ
∑

i∈O2,3
rn−2

3Q2f(Xi) + λ
∑

i∈O2,4
rn−2

4Q2f(Xi)

)

,

I2 = E

[

exp

(

λ
∑

i∈O′
rn−1

Qf(Xi)−Q2f(X[i/2])

)

/

F̃rn−2

]

,

I3 = E

[

exp

(

2λ
∑

i∈O′′
rn−1

Qf(Xi)−Q2f(X[i/2])

)

/

F̃rn−2

]

,

I4 = E

[

exp

(

λ
∑

i∈O2,2
rn−1

Qf(X2i) +Qf(X2i+1)− 2Q2f(Xi)

)

/

F̃rn−2

]

,

I5 = E

[

exp

(

λ

2

∑

i∈O2,3
rn−1

2Qf(X2i) +Qf(X2i+1)− 3Q2f(Xi)

)

/

F̃rn−2

]

,

I6 = E

[

exp

(

λ

2

∑

i∈O2,3
rn−1

Qf(X2i) + 2Qf(X2i+1)− 3Q2f(Xi)

)

/

F̃rn−2

]

,

I7 = E

[

exp

(

λ
∑

i∈O2,4
rn−1

2Qf(X2i) + 2Qf(X2i+1)− 4Q2f(Xi)

)

/

F̃rn−2

]

.

Using the Azuma–Bennett–Hoeffding inequality, we get

I2 × I3 × I4 × I5 × I6 × I7

≤ exp

(

λ2c2(α+α2)2
( |O′

rn−1|
2

+ 2|O′′
rn−1|+2|O2,2

rn−1|
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+
9|O2,3

rn−1|
2

+ 8|O2,4
rn−1|

))

≤ exp(2λ2c2(α+ α2)2n),

hence

E

[

exp

(

λ

n
∑

i=2rn

f(XΠ(i))

)]

≤ exp(λ2c2(1+α)2n) exp(2λ2c2(α+α2)2n)E[I1].

Now, iterating this procedure we get

E

[

exp

(

λ
n
∑

i=2rn

f(XΠ(i))

)]

≤ exp

(

λ2c2(1 +α)2n

rn
∑

p=0

(2α2)p
)

exp(λcαrnn).

Then it follows as in part 1 that

P

(

1

n

n
∑

i=2rn

f(XΠ(i))>
δ

2

)

(A.8)

≤



























































































exp(c′′δ) exp(−c′δ2n),

∀n ∈N, if α≤ 1

2
,

exp(−c′δ2n),

∀n ∈N such that rn > r0, if
1

2
< α<

√
2

2
,

exp

(

−c′δ2
n

rn

)

,

∀n ∈N such that rn > r0, if α2 =
1

2
,

exp

(

−c′δ2
(

1

α

)2rn)

,

∀n ∈N such that rn > r0, if α2 >
1

2
,

where r0 := log( δc0 )/ log(α) and the positive constants c0, c
′ and c′′ depend

on α, δ, c and differ line to line. Finally (A.7) and (A.8) lead us to (3.3).

A.4. Proof of Theorem 3.2. Let f ∈ Bb(S3) such that (µ,Pf) = 0.
Part 1. Let us first deal with MGr(f). We have for all δ > 0 and λ> 0,

P(MGr(f)> δ)≤ exp(−λδ|Gr|)E
[

exp

(

λ
∑

i∈Gr

f(∆i)

)]

.

Conditioning and using Bennett–Hoeffding inequality gives us

E

[

exp

(

λ
∑

i∈Gr

f(∆i)

)]

≤ exp(2λ2‖f‖∞|Gr|)E
[

exp

(

λ
∑

i∈Gr

Pf(Xi)

)]

.



52 S. V. BITSEKI PENDA, H. DJELLOUT AND A. GUILLIN

Now, applying part 1 of the proof of the Theorem 3.1 to Pf , we get (3.1)
for f ∈ Bb(S3).

Part 2. Let us now treat MTr(f). We have for all δ > 0,

P(MTr(f)> δ)≤ P

(

MTr(f −Pf)>
δ

2

)

+ P

(

MTr(Pf)>
δ

2

)

.(A.9)

Now, since (MΠ
n (f − Pf))n≥1 is a Hn-martingale with bounded jumps, the

Azuma inequality [1] gives us for some positive constant c′,

P

(

MTr(f −Pf)>
δ

2

)

≤ exp(−c′δ2|Tr|).

For the second term on the right-hand side of (A.9), we use inequalities
(3.2) with Pf instead of f . Gathering these inequalities, we get (3.2) for all
r large enough.

Part 3. The proof for the case MΠ
n (f) follows the same lines as the proof

of part 2.

A.5. Proof of Proposition 4.2. We will prove the deviation inequality
for |α̂r0 − α0|. The other deviation inequalities for |β̂r0 − β0|, |α̂r1 − α1| and
|β̂r1 − β1| may be treated in a similar way.

One easily checks that

α̂r0 −α0 =
(MTr(xy)−MTr(P (xy)))− (MTr(x))(MTr(y)−MTr(P (y)))

Br
.

We then have, for all δ > 0,

P(|α̂r0 −α0|> δ)

≤ P

( |MTr(xy−P (xy))|
Br

>
δ

2

)

+ P

( |MTr(x)||MTr(y− P (y))|
Br

>
δ

2

)

.

On one hand, for all γ1 > 0 we have

P

( |MTr(xy−P (xy))|
Br

>
δ

2

)

(A.10)

≤ P(Br < γ1) + P

(

|MTr(xy−P (xy))|> δγ1
2

)

.
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Now, for b= µ2(θ,σ
2)−µ1(θ)

2, where µ1 and µ2 are given in (4.5), we have

P(Br < γ1)≤ P

(

−MTr(x
2 − µ2)>

b− γ1
3

)

+ P

(

|MTr (x− µ1)|>
√
b− γ1√

3

)

+ P

(

MTr(x− µ1)>
b− γ1
6|µ1|

)

.

We choose γ1 < min{ 2b
2+3δ ,

−4+
√
48bδ2+16
6δ2

, b
1+3δ|µ1|} so that δγ1

2 <max{ b−γ13 ,
√
b−γ1√
3

, b−γ16|µ1|}. Then we have

P(Br < γ1)≤ P

(

MTr(µ2 − x2)>
δγ1
2

)

+2P

(

|MTr(x− µ1)|>
δγ1
2

)

,

and therefore we get

P

( |MTr(xy− P (xy))|
Br

>
δ

2

)

≤ 2P

(

|MTr(x− µ1)|>
δγ1
2

)

+ P

(

MTr(µ2 − x2)>
δγ1
2

)

+ P

(

|MTr(xy− P (xy))|> δγ1
2

)

.

On the other hand, we have

P

( |MTr(x)||MTr(y− P (y))|
Br

>
δ

2

)

≤ P

( |MTr(x− µ1)||MTr(y−P (y))|
Br

>
δ

4

)

+ P

( |MTr(y−P (y))|
Br

>
δ

4|µ1|

)

.

The last term of the previous inequality can be dealt with in the same way
as inequality (A.10), using γ3 > 0 such that

γ3 <min

{

4b|µ1|
4|µ1|+3δ

,
2|µ1|(−4 +

√

24bδ2/|µ1|+ 16)

3δ2
,

2b

2 + 3δ

}

.

For the second term, we have

P

( |MTr(x− µ1)||MTr(y−P (y))|
Br

>
δ

4

)

≤ P

(

|MTr (x− µ1)|>
√
δ

2

)

+ P

( |MTr(y−P (y))|
Br

>

√
δ

2

)

.
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Let γ2 > 0 such that γ2 <min{ 2b
2+3

√
δ
, −4+

√
48bδ+16
bδ , b

1+3
√
δ|µ1|

}, in such a way

that we obtain γ2
√
δ

2 <max{ b−γ23 ,
√
b−γ2√
3

, b−γ26|µ1|}. We thus have

P

( |MTr(x− µ1)||MTr(y− P (y))|
Br

>
δ

4

)

≤ P

(

|MTr(x− µ1)|>
√
δ

2

)

+ P

(

|MTr (x
2 − µ2)|>

γ2
√
δ

2

)

+ P

(

|MTr(y−P (y))|> γ2
√
δ

2

)

+ 2P

(

|MTr(x− µ1)|>
γ2
√
δ

2

)

.

From the foregoing, we deduce that for all γ > 0 such that γ <min(γ1, γ2, γ3),

P(|α̂(r)
0 − α0|> δ)

≤ 2P

(

|MTr(x− µ1)|>
δγ

2

)

+ P

(

MTr(µ2 − x2)>
δγ

2

)

+ P

(

|MTr(xy−P (xy))|> δγ

2

)

+ P

(

|MTr (x− µ1)|>
√
δ

2

)

+ P

(

|MTr(x
2 − µ2)|>

γ
√
δ

2

)

+ P

(

|MTr(y− P (y))|> γ
√
δ

2

)

+2P

(

|MTr(x− µ1)|>
γ
√
δ

2

)

+2P

(

|MTr(x− µ1)|>
δγ

4|µ1|

)

+ P

(∣

∣

∣

∣

MTr(µ2 − x2)>
δγ

4|µ1|

∣

∣

∣

∣

)

+ P

(

|MTr(y−P (y))|> δγ

4|µ1|

)

.

Now, using (2.8) and Markov’s inequality we get

P

(

|MTr (xy− P (xy))|> δγ

2

)

≤ c

δ4γ4

(

1

4

)r+1

,

P

(

|MTr(y− P (y))|> δγ

4|µ1|

)

≤ cµ4
1

δ4γ4

(

1

4

)r+1

and

P

(

|MTr(y−P (y))|> γ
√
δ

2

)

≤ c

δ2γ4

(

1

4

)r+1

,

where the constant c can be found as in Remark 2.4.
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Finally, the other terms, that is, the terms related to MTr (x
2 − µ2) and

MTr (x − µ1), can be bounded as in Corollary 2.2 and this completes the
proof.

APPENDIX B

Let us gather here, for the convenience of the readers, various theorems
useful to establish LIL, ASFCLT, deviation inequalities and MDP.

First, let us enunciate the Azuma–Bennett–Hoeffding inequality [1, 3, 16].

Lemma B.1. Let X be a real-valued and centered random variable such
that a≤X ≤ b a.s., with a < b. Then for all λ > 0, we have

E[exp(λX)]≤ exp

(

λ2(b− a)2

8

)

.

Lemma B.2. Let (E,d) a metric space. Let (Zn) a sequence of random
variables values in E, (vn) a rate and g :DE ⊂E →R continuous. Let z ∈E
be a deterministic value:

If Zn
superexp
=⇒
vn

z then g(Zn)
superexp
=⇒
vn

g(z).

Proof. For all δ > 0, there exists (see, e.g., [22], proof of Theorem 2.3)
α0(δ)> 0

P(|g(Zn)− g(z)|> δ)≤ P(d(Zn, z)> α0(δ)).(B.1)

Indeed, since g is continuous, for all δ > 0, there exists α0(δ)> 0 such that

|g(x)− g(z)| ≤ δ whenever d(x, z)≤ α0(δ).

We then have

{ω :d(Zn(ω), z)≤ α0(δ)} ⊂ {ω : |g(Zn(ω))− g(z)| ≤ δ}
and therefore inequality (B.1). Now, the result of the lemma follows since

Zn
superexp
=⇒
vn

z. �

Let M = (Mn,Hn, n≥ 0) be a centered square integrable martingale de-
fined on a probability space (Ω,H,P) and (〈M〉n) its bracket. We recall some
limit theorems for martingale used intensively in this paper.

We recall the following result due to W. F. Stout (Theorem 3 in [21]).

Theorem B.3. Let (Mn) such that M0 = 0. If 〈M〉n →∞ a.s. and
∞
∑

n=1

2 log log〈M〉n
K2
n〈M〉n

E[(Mn −Mn−1)
21{(Mn−Mn−1)2>K2

n〈Mn〉/(2 log log〈M〉n)}/Hn−1]

<∞ a.s.,
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where Kn are Hn−1 measurable and Kn → 0 a.s., then
lim sup Mn√

2〈M〉n log log〈M〉n
= 1 a.s.

We recall the following result due to Chaabane (Corollary 2.2 in [5]).

Theorem B.4. Let (Vn) be a (Hn)-predictable increasing process such
that:

H-1 V −2
n 〈M〉n −→

n→∞
1, a.s.;

H-2 for all ε > 0,
∑

n≥1 V
−2
n E[(Mn−Mn−1)

21|Mn−Mn−1|>εVn/Hn−1]<∞,
a.s.;

H-3 for some a > 1,
∑

n≥1V
−2a
n E[(Mn−Mn−1)

2a1|Mn−Mn−1|≤Vn/Hn−1]<
∞, a.s.

Then Mn satisfies an ASFCLT; that is, for almost all ω, the weighted random
measures

WN (ω,•) = (logV 2
N )

−1
N
∑

n=1

(

1− V 2
n

V 2
n+1

)

δ{ψn(ω)∈•}

associated to the continuous processes Ψn(ω) = {Ψn(ω, t),0≤ t≤ 1} defined
by

Ψn(ω, t) = V −1
n {Mk + (V 2

k+1 − V 2
k )

−1(tV 2
n − V 2

k )(Mk+1 −Mk)},
when V 2

k ≤ tV 2
n < V 2

k+1, 0≤ k ≤ n− 1, weakly converge to the Wiener mea-
sure on C([0,1],R).

Let us enunciate the following which corresponds to the unidimensional
case of Theorem 1 in [11].

Proposition B.5. Let (bn) a sequence satisfying

bn is increasing,
bn√
n
−→+∞,

bn
n

−→ 0,

such that c(n) := n/bn is nondecreasing, and define the reciprocal function
c−1(t) by

c−1(t) := inf{n ∈N : c(n)≥ t}.
Under the following conditions:

(C1) there exists Q ∈R
∗
+ such that 〈M〉n

n

superexp−→
b2n/n

Q;

(C2) lim supn→+∞
n
b2n

log(n ess sup1≤k≤c−1(bn+1)P(|Mk − Mk−1| > bn/

Hk−1)) =−∞;
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(C3) for all a > 0 1
n

∑n
k=1E(|Mk − Mk−1|21{|Mk−Mk−1|≥an/bn}/

Hk−1)
superexp−→
b2n/n

0;

(Mn/bn)n∈N satisfies the MDP in R with the speed b2n/n and the rate function

I(x) = x2

2Q .
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nel pour les martingales. C. R. Acad. Sci. Paris Sér. I Math. 323 195–198.
MR1402542

[6] Cowan, R. and Staudte, R. G. (1986). The bifurcating autoregressive model in cell
lineage studies. Biometrics 42 769–783.

[7] de Saporta, B., Gégout-Petit, A. and Marsalle, L. (2011). Parameters esti-
mation for asymmetric bifurcating autoregressive processes with missing data.
Electron. J. Stat. 5 1313–1353. MR2842907

[8] Delmas, J.-F. and Marsalle, L. (2010). Detection of cellular aging in a Galton–
Watson process. Stochastic Process. Appl. 120 2495–2519. MR2728175

[9] Dembo, A. (1996). Moderate deviations for martingales with bounded jumps. Elec-
tron. Commun. Probab. 1 11–17 (electronic). MR1386290

[10] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications,
2nd ed. Applications of Mathematics 38. Springer, New York. MR1619036

[11] Djellout, H. (2002). Moderate deviations for martingale differences and applica-
tions to φ-mixing sequences. Stoch. Stoch. Rep. 73 37–63. MR1914978

[12] Djellout, H., Guillin, A. and Wu, L. (2004). Transportation cost-information
inequalities and applications to random dynamical systems and diffusions. Ann.
Probab. 32 2702–2732. MR2078555

[13] Gao, F. and Zhao, X. (2011). Delta method in large deviations and moderate de-
viations for estimators. Ann. Statist. 39 1211–1240. MR2816352

[14] Guyon, J. (2007). Limit theorems for bifurcating Markov chains. Application to the
detection of cellular aging. Ann. Appl. Probab. 17 1538–1569. MR2358633

[15] Guyon, J., Bize, A., Paul, G., Stewart, E., Delmas, J.-F. and Taddéi, F.
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