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DEVIATION INEQUALITIES, MODERATE DEVIATIONS

AND SOME LIMIT THEOREMS FOR BIFURCATING MARKOV CHAINS

WITH APPLICATION.

S.VALÈRE BITSEKI PENDA, HACÈNE DJELLOUT, AND ARNAUD GUILLIN

Abstract. Firstly, under geometric ergodicity assumption, we provide some limit theo-
rems and some probability inequalities for bifurcating Markov chains introduced by Guyon
to detect cellular aging from cell lineage, thus completing the work of Guyon. This prob-
ability inequalities are then applied to derive a first result on moderate deviation principle
for a functional of bifurcating Markov chains with a restricted range of speed, but with a
function which can be unbounded. Next, under uniform geometric ergodicity assumption,
we provide deviation inequalities for bifurcating Markov chains and apply them to derive a
second result on moderate deviation principle for bounded functional of bifurcating Markov
chains with a more larger range of speed. As statistical applications, we provide superex-
ponential convergence in probability and deviation inequalities (under the gaussian setting
or the bounded setting), and moderate deviation principle for least square estimators of the
parameters of a first order bifurcating autoregressive process.

Key words: Bifurcating Markov chains, limit theorems, ergodicity, deviation inequalities, mod-
erate deviation, martingale, first order bifurcating autoregressive process, cellular aging.
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1. Introduction

Bifurcating Markov chains (BMC) are an adaptation of (usual) Markov chains to the data of
regular binary tree (see below for a more precise definition). In other terms, it is a Markov
chain for which the index set is a regular binary tree. They are appropriate for example in
modeling of cell lineage data when each cell in one generation gives birth to two offspring
in the next one. Recently, they have received a great attention because of the experiments
made by biologists on aging of the Escherichia Coli (see [15], [13]). E. Coli is a rod-shaped
bacterium which reproduces by dividing in the middle, thus producing two cells, one which
already existed and that we call old pole progeny, and the other which is new and that we
call new pole progeny. The aim of their experiments were to look for evidence of aging in E.
Coli. In this section, we will introduce the model that allowed the authors of [13] to study the
aging of E. Coli and we refer to their works for further motivations and insights on the datas
leading to the model studied here. This model is a typical example of bifurcating markovian
dynamics and he has been the motivation for the study of BMC in [12]. This also motivates in
the sequel Section 2 and Section 3, where we give a rigorous asymptotic (and non asymptotic)
study of BMC under geometric ergodicity and uniform geometric ergodicity assumptions.

Date: November 30, 2011.
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1.1. The model.

Let T be a binary regular tree in which each vertex is seen as a positive integer different from
0, see Figure 1. For r ∈ N, let

Gr =
{

2r, 2r + 1, · · · , 2r+1 − 1
}

, Tr =

r
⋃

q=0

Gq,

which denote respectively the r-th column and the first (r + 1) columns of the tree.

1
2 4

5 n 2n2n+1
3 6

7
G0 G1 G2 Grn

Figure 1. The binary tree T

Then, the cardinality |Gr| of Gr is 2r and that of Tr is |Tr| = 2r+1 − 1. A column of a given
integer n is Grn with rn = ⌊log2 n⌋, where ⌊x⌋ denotes the integer part of the real number x.

The genealogy of the cells is described by this tree. In the sequel we will thus see T as a given
population. Then the vertex n, the column Gr and the first (r + 1) columns Tr designate
respectively individual n, the r-th generation and the first (r + 1) generations. The initial
individual is denoted 1.

Guyon & Al. ([13], [12]) have proposed the following linear gaussian model to describe the
evolution of the growth rate of the population of cells derived from an initial individual
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L(X1) = ν, and ∀n ≥ 1,







X2n = α0Xn + β0 + ε2n

X2n+1 = α1Xn + β1 + ε2n+1,
(1.1)

where Xn is the growth rate of individual n, n is the mother of 2n (the new pole progeny cell)
and 2n+ 1 (the old pole progeny cell), ν is a distribution probability on R, α0, α1 ∈ (−1, 1);
β0, β1 ∈ R and

(

(ε2n, ε2n+1), n ≥ 1
)

forms a sequence of i.i.d bivariate random variables with
law N2(0,Γ), where

Γ = σ2

(

1 ρ
ρ 1

)

, σ2 > 0, ρ ∈ (−1, 1).

The processes (Xn) define by (1.1) is a typical example of BMC which is called first order
bifurcating autoregressive processes (BAR(1)).

In [12], Guyon, using the theory of BMC, gives laws of large numbers and central limit theorem

for the least-square estimators θ̂r = (α̂r0, β̂
r
0 , α̂

r
1, β̂

r
1) of the 4-dimensional parameter θ =

(α0, β0, α1, β1), (see section (4) for a more precise definition). He also gives some statistical
tests which allow to test if the model is symmetric or not, and if the new pole and the
old poles populations are even distinct in mean, which allows him to conclude a statistical
evidence in aging in E. Coli. Let us also mention [3], where Bercu & Al. using the martingale
approach give asymptotic analysis of the least squares estimators of the unknown parameters
of a general asymmetric pth-order BAR processes.

In this paper, we will give moderate deviation principle (MDP) for this estimator and the

statistical tests done by Guyon. We will also give deviation inequalities for θ̂r − θ, which are
important for a rigorous (non asymptotic) statistical study. This will be done in two cases:
the gaussian case as described above and the case where the noise is assumed to take values
in a compact set. Note that the latter case implies that the BAR(1) process defined by (1.1)
values in compact set.

We are now going to give a rigorous definition of BMC. We refer to [12] for more details.

1.2. Definitions.

For an individual n ∈ T, we are interested in the quantity Xn(it may be the weight, the
growth rate,· · · ) with values in the metric space S endowed with its Borel σ-field S.

Definition 1.1 (T-transition probability, see ([12])). We call T-transition probability any
mapping P : S × S2 → [0, 1] such that

• P (., A) is measurable for all A ∈ S2,
• P (x, .) is a probability measure on (S2,S2) for all x ∈ S.

For a T-transition probability P on S ×S2, we denote by P0, P1 and Q respectively the first
and the second marginal of P , and the mean of P0 and P1, that is P0(x,B) = P (x,B × S),

P1(x,B) = P (x, S ×B) for all x ∈ S and B ∈ S and Q =
P0 + P1

2
.

For p ≥ 1, we denote by B(Sp)(resp. Bb(Sp), C(Sp), Cb(Sp)) the set of all Sp-measurable (resp.
Sp-measurable and bounded, continuous, continuous and bounded) mapping f : Sp → R. For
f ∈ B(S3), when it is defined, we denote by Pf ∈ B(S) the function
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x 7→ Pf(x) =

∫

S2

f(x, y, z)P (x, dydz).

Definition 1.2 (Bifurcating Markov Chains, see ([12])). Let (Xn, n ∈ T) be a family of S-
valued random variables defined on a filtered probability space (Ω,F , (Fr , r ∈ N),P). Let ν
be a probability on (S,S) and P be a T-transition probability. We say that (Xn, n ∈ T) is a
(Fr)-bifurcating Markov chain with initial distribution ν and T-transition probability P if

• Xn is Frn-measurable for all n ∈ T,
• L(X1) = ν,
• for all r ∈ N and for all family (fn, n ∈ Gr) ⊆ Bb(S3)

E

[

∏

n∈Gr

fn(Xn,X2n,X2n+1)
/

Fr
]

=
∏

n∈Gr

Pfn(Xn)

In the following, when unprecised, the filtration implicitely used will be Fr = σ(Xi, i ∈ Tr).
We denote by (Yr, r ∈ N) the Markov chain on S with Y0 = X1 and transition probability Q.
The chain (Yr, r ∈ N) corresponds to a random lineage taken in the population.

We denote by Ξ the set of all permutations of N∗ that leaves each Gr invariant. We draw
a permutation π uniformly on Ξ, independently of X = (Xn, n ∈ T). π allows to define a
random order on T which preserves the genealogical order.

For all i ∈ T, set ∆i = (Xi,X2i,X2i+1) and define the following empirical quantities























MGr(f) =
1

|Gr|
∑

i∈Gr

f(Xi)

MTr(f) =
1

|Tr|
∑

i∈Tr

f(Xi)

M
π
n(f) =

1
n

n
∑

i=1
f(Xπ(i))

if f ∈ B(S) (1.2)

and























MGr(f) =
1

|Gr|
∑

i∈Gr

f(∆i)

MTr(f) =
1

|Tr |
∑

i∈Tr

f(∆i)

M
π
n(f) =

1
n

n
∑

i=1
f(∆π(i))

if f ∈ B(S3). (1.3)

Guyon in [12] studied limit theorems of the empirical means (1.2), (1.3), namely law of large
numbers (in L2 and for some almost surely) and central limit theorems for (1.3) with a
conditional recentering. An extension of the BMC have been proposed in [6], in which the
authors study a model of the BMC with missing data. To take into accont the possibility
for a cell to die, the authors in [6] use Galton-Watson tree instead of a regular tree. And
they give a weak law of large number, an invariance principle and the central limit result for
the average over one generation or up to one generation. One can also mention the work of
De Saporta & Al. [5] dealing with bifurcating autoregressive processes with missing data in
the estimation procedure of the parameters of the asymmetric BAR process. They use a two
type Galton-Watson process to model the genealogy and give convergence and asymptotic
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normality of their estimators. Now, the previous work do not take into account the study of
the convergence speed.

1.3. Objectives.

Our objectives in this paper are:

• to give some limit theorems for BMC that complete those done in [12] (CLT, LIL,...);
• to give probability inequalities and deviation inequalities for the empirical means (1.2)

and (1.3), i.e. for f ∈ B(S) and all x > 0

P
(

MTr − (µ, f) ≥ x
)

≤ e−C(x)

where C(x) will crucially depends on our set of assumptions on f and on the ergodic
property of P ;

• to study moderate deviation principle (MDP) for BMC, i.e. for some range of speed√
r ≪ br ≪ r (depending on assumptions) and for f ∈ Cb(S3) with Pf = 0

b2
Tr

Tr
log P

(

1

bTr

MTr ≥ x

)

∼ − x2

2σ2
.

• to obtain the MDP and deviation inequalities for the estimator of bifurcating autore-
gressive process, which are important for a rigorous statistical study.

All these results will be obtained under hypothesis of geometric ergodicity or uniform geo-
metric ergodicity.

Limit theorems, given in this paper, include strong law of large numbers for the empirical av-
erage M

π
n(f) with f ∈ B(S) (this case is not studied in [12]), the law of the iterated logarithm

and the almost sure functional central limit theorem. Strong law of large numbers will be
done via calculation of 4th order moments. We thus generalize the computation of 2nd order
moments made by Guyon in [12]. It will be noted that the technique we will use can be applied
to compute the other higher order moments but at the price of huge and tedious computations.

Deviation inequalities will be obtained in the setting of unbounded functions, by using the
classical Markov inequality and under geometric ergodicity assumption. We will restrict our-
selves to the use of 2nd order moment (refing results of Guyon), sufficient to obtain the MDP
for a restricted range of speed, but it will be very clear that these inequalities may be im-
proved using higher order moments.

Exponential deviation inequalities will be done in the setting of bounded functions and un-
der uniform geometric ergodicity assumption, using intensively Azuma-Bennet-Hoeffding in-
equality [1], [2], [14], which we can only apply on bounded random variables. Extension to
unbounded functions and weaker ergodicity assumptions will be done in a further work.

The MDP will be deducted in large part from these inequalities. The speed will depend from
the fact that we are under hypothesis of geometric ergodicity or uniform geometric ergodicity.
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Before the presentation of the plan of our paper, let us recall the definition of a moderate
deviation principle (MDP): let (bn)n≥0 be a positive sequence such that

bn
n

−→
n→∞

0, and
b2n
n

−→
n→∞

∞.

We say that a sequence of centered random variables (Mn)n with topological state space

(S,S) satisfies a MDP with speed b2n
n and rate function I : S → R

∗
+ if for each A ∈ S,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

n

b2n
log P

(

n

bn
Mn ∈ A

)

≤ lim sup
n→∞

n

b2n
log P

(

n

bn
Mn ∈ A

)

≤ − inf
x∈A

I(x),

here Ao and A denote the interior and closure of A respectively.

The MDP is an intermediate behavior between the central limit theorem (bn = b
√
n) and

Large deviation (bn = bn). Usually, MDP has a simpler rate function inherited from the
approximated Gaussian process, and holds for a larger class of dependent random variables
than the large deviation principle.

The paper is then organised as follows. Section 2 states the moments control and its con-
sequences. We shall state in this section a first result on the MDP for BMC in a general
framework, but with small speed. Let us note that 2nd order moments are sufficient to ob-
tain this result. Section 3 deals with the exponential inequalities and its consequences. In
this section, we shall generalize the MDP done in section 2, but in a restricted framework. In
section 4, we will interest particularly to the first order bifurcating autoregressive processes.
Section 5 is devoted to recaling some definitions and some limit theorems for martingales used
intensively in the paper, we have included them here for completeness.

2. Moments control and consequences

Let F a vector subspace of B(S) such that

(i) F contains the constants,
(ii) F 2 ⊂ F ,
(iii) F ⊗ F ⊂ L1(P (x, .)) for all x ∈ S, and P (F ⊗ F ) ⊂ F ,

(iv) there exists a probability µ on (S,S) such that F ⊂ L1(µ) and lim
r→∞

Ex

[

f(Yr)
]

= (µ, f)

for all x ∈ S and f ∈ F ,
(v) for all f ∈ F , there exists g ∈ F such that for all r ∈ N, |Qrf | ≤ g,
(vi) F ⊂ L1(ν)

The following hypothesis is about the geometric ergodicity of Q:

(H1) Assume that for all f ∈ F such that (µ, f) = 0, there exists g ∈ F such that for all
r ∈ N and for all x ∈ S, |Qrf(x)| ≤ αrg(x) for some α ∈ (0, 1), that is the Markov chain
(Yr, r ∈ N) is geometrically ergodic.

Recall that under this hypothesis, Guyon [12] has shown the weak law of large numbers for the
three empirical average MGr(f), MTr(f) and M

π
n(f) (in [12]: see theorem 11 when f ∈ F and
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theorem 12 when f ∈ B(S3)) and the strong law of large numbers only for MGr(f), MTr(f)
(in [12]: see theorem 14 and corollary 15 when f ∈ F and theorem 18 when f ∈ B(S3)).

When f ∈ B(S3) and under the additional hypothesis Pf2 and Pf4 exist and belong to F ,

he proved the central limit theorem for MTr(f) and M
π
n(f) (in [12]: see theorem 19 and

corollary 21). Recall that the central limit theorem for the three empirical means (1.2) when
f ∈ B(S) is still an open question, see [6] for more precision.

In this section, we complete these results by showing the strong law of large numbers for
M

π
n(f), when f ∈ F . We prove also the law of the iterated logarithm (LIL) and almost sure

functional central limit theorem (ASFCLT) for M
π
n(f) when f ∈ B(S3).

2.1. Control of the 4-th order moments.

In order to establish limit theorems below, let us state the following

Theorem 2.1. Let F satisfy (i)-(vi). Let f ∈ F such that (µ, f) = 0. We assume hypothesis
(H1). Then for all r ∈ N

E

[

MGr(f)
4
]

≤































c
(

1
4

)r
if α2 < 1

2

cr2
(

1
4

)r
if α2 = 1

2

cα4r if α2 > 1
2

(2.1)

where the positive constant c depends on α and f (and may differ line by line).

Proof. First note that f(Xi) ∈ L4 for all i ∈ Gr. Indeed, let (z1, · · · , zr) ∈ {0, 1}r the unique
path in the binary tree from the root 1 to i. Then,

E

[

f4(Xi)
]

= νPz1 · · ·Pzrf4,

and from hypothesis (ii), (iii) and (vi) we conclude that νPz1 · · ·Pzrf4 < ∞.

Now, the rest of the proof divides into two parts.

Part 1. Computation of E

[

MGr(f)
4
]

.

Independently on X, let us draw four independent indices Ir, Jr, Kr and Lr uniformly from
Gr. Then

E

[

MGr(f)
4
]

= E

[

f(XIr)f(XJr)f(XKr)f(XLr)
]

.

For all p ∈
{

0, · · · , r
}

, let us define the following events:

• Ep
0 : "The ancestors of Ir, Jr, Kr and Lr are different in Gp".

• Ep
1 : "Exactly two of Ir, Jr, Kr and Lr have the same ancestor in Gp".

• Ep
2 : "Ir, Jr, Kr and Lr have the same ancestor two by two in Gp".

• Ep
3 : "Exactly three of Ir, Jr, Kr and Lr have the same ancestor in Gp".

• Ep
4 : "Ir, Jr, Kr and Lr have the same ancestor in Gp".
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In the sequel we do the convention that Er+1
0 is a certain event. Then after successive

conditioning by events Ep
i for p ∈

{

0, · · · , r
}

and i ∈
{

0, · · · , 4
}

, we have

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
]

= E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

E2
0

]

× P
(

E2
0

)

(2.2)

+
r
∑

p=2

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

1

]

× P
(

Ep
1

)

P
(

Ep+1
0

/

Ep
1

)

+

r
∑

p=2

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

2

]

× P
(

Ep
2

)

P
(

Ep+1
0

/

Ep
2

)

+E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
3

]

× P
(

Er
3

)

+E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
4

]

× P
(

Er
4

)

.

Now it is easy to see that

P
(

E2
0

)

=
3

32
; P
(

Er
1

)

= 3
2r − 1

22r
; P
(

Er
2

)

= 6
2r − 1

23r
; P
(

Er
3

)

= 4
2r − 1

23r
; P
(

Er
4

)

= 6
1

23r
;

and for p ∈
{

2, · · · , r − 1
}

,

P
(

Ep
1

)

P
(

Ep+1
0

/

Ep
1

)

=
3

2

2p − 1

22p
and P

(

Ep
2

)

P
(

Ep+1
0

/

Ep
2

)

=
6

4

2p − 1

23p
.

Indeed, the realization of ”Ep
1 ∩ Ep+1

0 ” can be seen as "draw uniformly four independent
indices from Gp such that two are the same and others are different and the two indices which

are the same take different paths at Gp+1". Similarly, the realization of ”Ep
2 ∩Ep+1

0 ” may be
interpreted as "draw uniformly four independent indices from Gp which are the same two by
two and all the indices take different path at Gp+1".

We are going now compute each term which appears in (2.2). We do the following convention
P (Q−1f ⊗Q−1f) = f2.

(a) E

[

f(XIr)f(XJr)f(XKr)f(XLr)/E
r
4

]

= νQrf4.

(b) Conditionally on Er
3 , we may assume that the indices Ir, Kr and Lr are the same. We

then have

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
3

]

= E

[

f3(XIr)f(XJr)
/

Er
3

]

= 1
2

r−1
∑

p=0
2−p−1νQpP

(

Qr−p−1f3 ⊗Qr−p−1f
)

+ 1
2

r−1
∑

p=0
2−p−1νQpP

(

Qr−p−1f ⊗Qr−p−1f3
)

.

(c) Let p ∈
{

2, · · · , r
}

. Conditionally on Ep
2 and Ep+1

0 we may assume that Ir and Jr have
the same ancestor at Gp and Kr and Lr have the same ancestor at Gp. We thus have
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E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

2

]

= E

[

E

[

E

[

f(XIr)f(XJr)f(XKr)f(XLr )
/

Fp+1

]/

Fp
]/

Ep+1
0 , Ep

2

]

= E

[

P
(

Qr−p−1f ⊗Qr−p−1f
)

(XIr∧pJr)P
(

Qr−p−1f ⊗Qr−p−1f
)

(XKr∧pLr)
/

Ep+1
0 , Ep

2

]

=
p−1
∑

l=0

2−l−1νQlP
((

Qp−l−1P
(

Qr−p−1f ⊗Qr−p−1f
))

⊗
(

Qp−l−1P
(

Qr−p−1f ⊗Qr−p−1f
)))

,

where Ir ∧p Jr(resp. Kr ∧p Lr) denotes the common ancestor of Ir and Jr which is in Gp

(resp. the common ancestor of Kr and Lr which is in Gp).

(d) Let p ∈
{

2, · · · , r
}

. Now conditionally on Ep
1 and Ep+1

0 we may assume that it is Kr

and Lr which have the same ancestor at Gp. We denote by p(Ir) and p(Jr) respectively the
ancestor of Ir and Jr which are in Gp. As before, the common ancestor of Kr and Lr which
are in Gp is denoted by Kr ∧p Lr. At this stage, we may repeat the successive conditioning
that we have done in the beginning but this time for indices p(Ir), p(Jr) and Kr ∧p Lr. This
leads us to

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

1

]

= E

[

Qr−pf(Xp(Ir))Q
r−pf(Xp(Jr))P

(

Qr−p−1f ⊗Qr−p−1f
)

(XKr∧pLr)
/

Ep+1
0 , Ep

1

]

=
p−1
∑

l=2

1
2
2l−1
22l

{

1
2

l−1
∑

m=0
2−m−1νQmP

((

Ql−m−1P
(

Qr−l−1f ⊗Qr−l−1f
))

⊗Qp−m−1P
(

Qr−p−1f ⊗Qr−p−1f
))

+ 1
2

l−1
∑

m=0
2−m−1νQmP

((

Qp−m−1P
(

Qr−p−1f ⊗Qr−p−1f
))

⊗
(

Ql−m−1P
(

Qr−l−1f ⊗Qr−l−1f
)))

+ 1
2

l−1
∑

m=0
2−m−1νQmP

((

Ql−m−1P
(

Qr−l−1f ⊗Qp−l−1P
(

Qr−p−1f ⊗Qr−p−1f
)))

⊗
(

Qr−m−1f
))

+1
2

l−1
∑

m=0
2−m−1νQmP

(

Qr−m−1f ⊗
(

Ql−m−1P
(

Qr−l−1f ⊗Qp−l−1P
(

Qr−p−1f ⊗Qr−p−1f
))))

+ 1
2

l−1
∑

m=0
2−m−1νQmP

((

Ql−m−1P
(

Qp−l−1P
(

Qr−p−1f ⊗Qr−p−1f
)

⊗Qr−l−1f
))

⊗
(

Qr−m−1f
))

+1
2

l−1
∑

m=0
2m−1νQmP

((

Qr−m−1f
)

⊗
(

Ql−m−1P
(

Qp−l−1P
(

Qr−p−1f ⊗Qr−p−1f
)

⊗Qr−l−1f
)))

}

+ 3
48

{

νP
(

P
(

Qr−2f ⊗Qr−2f
)

⊗Qp−1P
(

Qr−p−1f ⊗Qr−p−1f
))
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+ νP
(

Qp−1P
(

Qr−p−1f ⊗Qr−p−1f
)

⊗ P
(

Qr−2f ⊗Qr−2f
))

+ νP
(

P
(

Qr−2f ⊗Qp−2P
(

Qr−p−1f ⊗Qr−p−1f
))

⊗Qr−1f
)

+ νP
(

P
(

Qp−2P
(

Qr−p−1f ⊗Qr−p−1f
)

⊗Qr−2f
)

⊗Qr−1f
)

+ νP
(

Qr−1f ⊗ P
(

Qr−2f ⊗ P
(

Qr−p−1f ⊗Qr−p−1f
)))

+ νP
(

Qr−1f ⊗ P
(

Qp−2P
(

Qr−p−1f ⊗Qr−p−1f
)

⊗Qr−2f
))

}

.

(e) Finally,

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

E2
0

]

= E

[

E

[

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

F2

]/

F1

]/

E2
0

]

= E

[

P
(

Qr−2f ⊗Qr−2f
)

(X2)P
(

Qr−2f ⊗Qr−2f
)

(X3)
/

E2
0

]

= νP
(

P
(

Qr−2f ⊗Qr−2f
)

⊗ P
(

Qr−2f ⊗Qr−2f
))

.

Gathering together all these terms each multiplied by its probability, we obtain an explicit

expression for E

[

MGr(f)
4
]

.

Part 2. Rate.

We are now going to give some rate for the different terms that appear in the expression of

E

[

MGr(f)
4
]

. In the sequel c denotes a positive constant which depends on f ; it may vary

from one line to another. c1 and c2 are positives constants which depend on α. Then we have

(a) E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
4

]

× P
(

Er
4

)

≤ c 1
23r

,

where from (ii), (v) and (vi) c is such that νQrf4 < c.

(b) E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
3

]

× P
(

Er
3

)

≤ c 1
2αα

r
(

1
4

)r
r−1
∑

p=0

(

1
2α

)p
,

where from (ii), (iii), (v) and (vi), c is such for all p, q ∈ N

max
(

νQpP
(

Qqf3 ⊗ g
)

, νQpP
(

g ⊗Qqf3
))

< c,

and from hypothesis (H1), g is such that for all p ∈
{

1, · · · , r − 1
}

Qr−p−1f ≤ αr−p−1g. (2.3)

• If α 6= 1
2 , then E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
3

]

×P
(

Er
3

)

≤ 4
|2α−1|c

((

α
4

)r
+
(

1
23

)r)
.

• If α = 1
2 then, E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
3

]

× P
(

Er
3

)

≤ cr
(

1
23

)r
.

(c) E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

E2
0

]

× P
(

E2
0

)

≤ 3
32

1
α8α

4r.
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(d)
r
∑

p=2
E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

2

]

× P
(

Ep
2

)

P
(

Ep+1
0

/

Ep
2

)

≤ 6c
(

1
4

)r
+ 3c

2α4α
4r
r−1
∑

p=2

(

1
4α4

)p
.

where from (ii), (iii), (v) and (vi) c is such that for all p ∈ {2, · · · , r− 1}, q ∈ {0, · · · , r − 1},
l ∈ {0, · · · , p− 1}

max
(

νQqP
(

Qr−p−1f2 ⊗Qr−p−1f2
)

, νQlP
(

Qp−l−1P (g ⊗ g)⊗Qp−l−1P (g ⊗ g)
))

< c,

and g is defined as before (2.3).

• If α2 6= 1
2 then

r
∑

p=2
E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

2

]

× P
(

Ep
2

)

P
(

Ep+1
0

/

Ep
2

)

≤ c
(

6
(

1
4

)r
+ 3

8α8|4α4−1|α
4r + 6

|4α4−1|
(

1
4

)r
)

.

• If α2 = 1
2 then

r
∑

p=2
E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

2

]

× P
(

Ep
2

)

P
(

Ep+1
0

/

Ep
2

)

≤ 6c (r − 1)
(

1
4

)r
.

(e)

• If α = 1
2 then

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
1

]

× P
(

Er
1

)

≤ 12c

(

1

4

)r

.

• If α 6= 1
2

– if α2 = 1
2 then

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
1

]

× P
(

Er
1

)

≤ 3

4
c2(r − 1)

(

1

4

)r

;

– if α2 6= 1
2 then

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Er
1

]

× P
(

Er
1

)

≤ 3c2c
2α4|2α2−1|

(

α2

2

)r
+ 9c

8α4

(

α2

2

)r

+ 6c2c
|2α2−1|

(

1
4

)r
,

where from (ii), (iii), (v) and (vi) c is such that for all l ∈ {2, · · · , r − 1}, q ∈ {0, · · · , l − 1}

max
(

νQpP
(

Ql−q−1P (g ⊗ g)⊗Qr−q−1f2
)

, νQqP
(

Ql−q−1P
(

g ⊗Qr−l−1f2
)

⊗ g
))

< c,

and g is defined as before (2.3).

(f)
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• If α = 1
2 then

r−1
∑

p=2

E

[

f(XIr)f(XJr)f(XKr)f(XLr)
/

Ep+1
0 , Ep

1

]

× P
(

Ep
1

)

P
(

Ep+1
0

/

Ep
1

)

≤ 12c

(

1

4

)r

.

• If α 6= 1
2

– if α2 = 1
2 then

r−1
∑

p=2

E

[

f(XIr)f(XJr)f(XKr)f(XLr )
/

Ep+1
0 , Ep

1

]

× P
(

Ep
1

)

P
(

Ep+1
0

/

Ep
1

)

≤ 3c1cr
2

(

1

4

)r

;

– if α2 6= 1
2 then

r−1
∑

p=2
E

[

f(XIr)f(XJr)f(XKr)f(XLr

)/

Ep+1
0 , Ep

1

]

× P
(

Ep
1

)

P
(

Ep+1
0

/

Ep
1

)

≤
(

3c1c
8α8(2α2−1)2

+ 3c1c
4α6(2α2−1)2(2α2+1)

+ 3c(2α+1)
32α8|2α2−1|

)

α4r

+
(

3c1c
2α2(2α2−1)2 + c

8α4|2α2−1|

)(

α2

2

)r
+ 12α2c1c

(2α2−1)2(2α2+1)

(

1
4

)r
.

Where c is define in the same way as before.

Now the results of the theorem 2.1 follow from (a)-(f) of Part 2. �

We give an extension of theorem 2.1 to the two empirical averages MTr(f) and M
π
n(f).

Corollary 2.2. Let F satisfy (i)-(vi). Let f ∈ F such that (µ, f) = 0. We assume that
hypothesis (H1) is fulfilled. Then for all r ∈ N and n ∈ N

E

[

MTr(f)
4
]

≤































c
(

1
4

)r+1
if α2 < 1

2

cr2
(

1
4

)r+1
if α2 = 1

2

cα4(r+1) if α2 > 1
2

(2.4)

and

E

[

M
π
n(f)

4
]

≤































c
(

1
4

)rn+1
if α2 < 1

2

cr2n
(

1
4

)rn+1
if α2 = 1

2

cα4(rn+1) if α2 > 1
2

(2.5)

where the positive constant c depends on α and f and may differ line by line.

Proof. The proof follows the same steps as in the proof of Part 2 and Part 3 of theorem 2.10,
and uses the results of the proof of theorem 2.4 to get the control of the 4th order moment
in incomplete generation. See section 2.2 and 2.5 for more details. �
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Remark 2.3. If f ∈ B(S3) is such that Pf2 and Pf4 exist and belong to F , with Pf = 0,
then we have for some positive constant c

E

[

MGr(f)
4
]

≤ c

|Gr|2
. (2.6)

Indeed, we have

E

[

MGr(f)
4
]

= E

[

MGr(f
4)
]

+ 6E

[

∑

i 6=j∈Gr

f2(△i)f
2(△j)

]

+ 4E

[

∑

i 6=j∈Gr

f3(△i)f(△j)

]

+12E

[

∑

i 6=j 6=k∈Gr

f2(△i)f(△j)f(△k)

]

+ 24E

[

∑

i 6=j 6=k 6=l∈Gr

f(△i)f(△j)f(△k)f(△l)

]

= E

[

∑

i∈Gr

Pf4(Xi)

]

+ 6E

[

∑

i 6=j∈Gr

Pf2(Xi)Pf2(Xj)

]

,

where the last equality was obtained after conditioning by Fr−1 and using the fact that
Pf = 0. Now, dividing by |Gr|4 leads us to

E

[

MGr(f)
4
]

= 6
|Gr|2E

[

1
|Gr|2

∑

i 6=j∈Gr

Pf2(Xi)Pf2(Xj)

]

+ 1
|Gr|3E

[

1
|Gr|

∑

i∈Gr

Pf4(Xi)

]

≤ 12(µ,Pf2)
2

|Gr|2 + 12
|Gr|2E





(

1
|Gr|

∑

i∈Gr

Pf2(Xi)− (µ, Pf2)

)2


+ (µ,Pf4)
|Gr|3

and (2.6) then follows using Part 1 of the proof of theorem 2.10.

2.2. Strong law of large numbers on incomplete subtree.

We now turn to prove strong law of large numbers for M
π
n(f), completing the work of Guyon

[12], where the LLN was proved only for the two averages MTr(f) and MGr(f).

Theorem 2.4. Let F satisfy (i)-(vi). Let f ∈ F such that (µ, f) = 0. We assume that

hypothesis (H1) is fulfilled with α ∈
(

0,
4√8
2

)

. Then M
π
n(f) almost surely converges to 0 as n

goes to ∞.

Proof. From the decomposition

M
π
n(f) =

rn−1
∑

q=0

2q

n
MGq(f) +

1

n

n
∑

i=2rn

f(Xπ(i)),

it is enough to check that

∞
∑

n=1

E





(

1

n

n
∑

i=2rn

f
(

Xπ(i)

)

)4


 < ∞.
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Indeed, since MGq(f) almost surely converges to 0 (corollary 15 in [12]), we deduce that the
first term of the right hand side of the previous decomposition almost surely converges to 0
(lemma 13 in [12]).

We have

E

[

(

1
n

n
∑

i=2rn
f
(

Xπ(i)

)

)4
]

= c 1
n4E

[

n
∑

i=2rn
f4
(

Xπ(i)

)

]

+c 1
n4E

[

n
∑

i,j=2rn ;i 6=j
f2
(

Xπ(i)

)

f2
(

Xπ(j)

)

]

+c 1
n4E

[

n
∑

i,j=2rn ;i 6=j
f3
(

Xπ(i)

)

f
(

Xπ(j)

)

]

+c 1
n4E

[

n
∑

i,j,k=2rn ;i 6=i 6=k
f2(Xπ(i))f(Xπ(j))f(Xπ(k))

]

+c 1
n4E

[

n
∑

i,j,k,l=2rn;i 6=j 6=k 6=l
f
(

Xπ(i)

)

f
(

Xπ(j)

)

f
(

Xπ(k)

)

f
(

Xπ(l)

)

]

where the positive constant c mays differ line by line.

Recall the following: for i, j, k and l ∈ {2rn , · · · , n}

• If i 6= j, then rn ≥ 1. Independently on (X,π), draw two independent indices Irn
and Jrn uniformly from Grn . Then the law of (π(i), π(j)) is the conditional law of
(Irn , Jrn) given {Irn 6= Jrn}.

• If i 6= j 6= k, then rn ≥ 2. Independently on (X,π), draw three independent in-
dices Irn , Jrn and Krn uniformly from Grn . Then the law of (π(i), π(j), π(k)) is the
conditional law of (Irn , Jrn ,Krn) given {Irn 6= Jrn 6= Krn}.

• If i 6= j 6= k 6= l, then rn ≥ 2. Independently on (X,π), draw four independent indices
Irn , Jrn ,Krn and Lrn uniformly from Grn . Then the law of (π(i), π(j), π(k)), π(l)) is
the conditional law of (Irn , Jrn ,Krn , Lrn) given {Irn 6= Jrn 6= Krn 6= Jrn}.

Then we check that

1

n4
E

[

n
∑

i=2rn

f4
(

Xπ(i)

)

]

= O
( 1

n3

)

,

1

n4
E





n
∑

i,j=2rn ;i 6=j
f2
(

Xπ(i)

)

f2
(

Xπ(j)

)



 = O
( 1

n2

)

,

and

1

n4
E





n
∑

i,j=2rn ;i 6=j
f3
(

Xπ(i)

)

f
(

Xπ(j)

)



 = o
( 1

n2

)

.
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Let us deal with the remaining term

1

n4
E





n
∑

i,j,k=2rn ;i 6=i 6=k
f2(Xπ(i))f(Xπ(j))f(Xπ(k))



 =
(n− 2rn − 1)(n − 2rn)(n − 2rn + 1)

P(Irn 6= Jrn 6= Krn)× n4

×E

[

f2
(

XIrn

)

f
(

XJrn

)

f
(

XKrn

)

1{Irn 6=Jrn 6=Krn}
]

.

Then, we get an explicit expression for the last expectation similar to that obtained in part

(d) of the calculus of E
[

MGr(f)
4
]

with a slight modification of the functions. Calculating

the rate of this expression, we obtain

∞
∑

n=4

1

n4
E





n
∑

i,j,k=2rn ;i 6=i 6=k
f2(Xπ(i))f(Xπ(j))f(Xπ(k))



 ≤ c

∞
∑

n=1

1

n
α2rn

+c

∞
∑

n=1

rn−1
∑

p=2

p−1
∑

l=0

1

n

1

2p
1

2l+1
α2rn−2p

+c

∞
∑

n=1

rn−1
∑

p=2

p−1
∑

l=0

1

n

1

2p
1

2l+1
α2rn−p−l,

where the positive constant c differs term by term. Now it is no hard to see that the right
hand side is finite.

Finally, to check that the series of general term

1

n4
E





n
∑

i,j,k,l=2rn ;i 6=j 6=k 6=l
f
(

Xπ(i)

)

f
(

Xπ(j)

)

f
(

Xπ(k)

)

f
(

Xπ(l)

)





is finite, it is enough, according to the calculation of rates we have done in Part 2 of the

proof of theorem 2.1, to check that
∞
∑

n=1
α4rn < ∞, wich is the case if α ∈

(

0,
4√8
2

)

and this

ends the proof of theorem 2.4. �

Remark 2.5. Note that this theorem can be improved, but the price to pay is enormous
computations related to the calculation of higher moments, and stronger conditions on the
integrability of f . If f is bounded, this result is true for every α ∈ (0, 1) as we will see in
section 3.

2.3. Law of the iterated logarithm (LIL).

Now using the LIL for martingales (see Theorem 5.2 of Stout in the Appendix), we are going
to prove a LIL for the BMC. This will be done when f depends on the mother-daughters

triangle (△i). We use the notations Mπ
n (f) =

n
∑

i=1
f(△π(i)) and MTr(f) =

∑

i∈Tr

f(△i).

Theorem 2.6. Let F satisfy (i)-(vi). Let f ∈ B
(

S3
)

such that Pf = 0, Pf2 and Pf4 exist
and belong to F . We assume that hypothesis (H1) is fulfilled. Then
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lim sup
n→∞

Mπ
n (f)

√

2〈Mπ(f)〉n log log〈Mπ(f)〉n
= 1 a.s.

And particularly

lim sup
r→∞

MTr (f)
√

2|Tr| log log |Tr|
=
√

(µ, Pf2) a.s..

Proof. We will check the hypothesis of Stout Theorem’s 5.2. Let f ∈ B
(

S3
)

. We introduce

the following filtration (Hn)n≥0 defined by H0 = σ(X1) and Hn = σ
(

△π(i), 1 ≤ i ≤ n
)

. Let
(

Mπ
n (f)

)

n≥0
defined by Mπ

0 (f) = 0 and Mπ
n (f) =

n
∑

i=1
f(△π(i)). Then since Pf = 0,

(

Mπ
n (f)

)

is a Hn-martingale with E

[

Mπ
1 (f)

]

= 0. We have the following decomposition

〈Mπ(f)〉n
n

= M
π
n(Pf2) =

rn−1
∑

q=0

2q

n
MGq(Pf2) +

1

n

n
∑

i=2rn

Pf2(Xπ(i)).

On the one hand, we have

〈Mπ(f)〉n
n

≥
rn−1
∑

q=0

2q

n
MGq(Pf2).

Now, since
rn−1
∑

q=0

2q

n
MGq(Pf2) −→

n→∞
c(µ, Pf2) a.s.,

where c = lim
n→∞

2rn−1
n ; we deduce that n = O

(

〈Mπ(f)〉n
)

, so 〈Mπ(f)〉n −→
n→∞

∞ a.s..

On the other hand, we have

1

n

n
∑

i=2rn

Pf2(Xπ(i)) ≤ MGrn
(Pf2) −→

n→∞
(µ, Pf2),

we deduce from the previous decomposition also that 〈M〉n = O(n) a.s..

Now taking Kn =
√
2√

log log(n)
in the theorem 5.2, we have

R :=
∞
∑

n=1

2 log log〈Mπ(f)〉n
K2
n〈Mπ(f)〉n

E

[

f2(△π(n))1
{

f2(△π(n))>
K2

n〈Mπ(f)〉n
2 log log〈Mπ(f)〉n

}/Hn−1

]

≤
∞
∑

n=1

4(log log〈Mπ(f)〉n)2
K4
n(〈Mπ(f)〉n)2

Pf4(Xπ(n)) a.s.,

since 〈M〉n = O(n) a.s. so that for R < ∞ a.s., it is enough to check that
∞
∑

n=1

Pf4(Xπ(n))

n2
< ∞ a.s.. (2.7)
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Now, according to hypothesis (H1), there exists a positive constant c such that for all n ≥ 1,

E

[

Pf4
(

Xπ(n)

)

]

= νQrnPf4 ≤ c, and (2.7) follows. Applying theorem (5.2), we have

lim sup
n→∞

Mπ
n (f)

√

2〈Mπ(f)〉n log log〈Mπ(f)〉n
= 1 a.s..

Now, for n = |Tr| we have the following

MTr(f)
√

2〈M(f)〉Tr log log〈M(f)〉Tr

=

√

√

√

√

|Tr| 〈M(f)〉Tr
|Tr |

2 log log〈M(f)〉Tr

× MTr(f)

|Tr| 〈M(f)〉Tr
|Tr |

and since
〈M(f)〉Tr

|Tr | = MTr(Pf2) −→
r→∞

(µ, Pf2) a.s. (see theorem 18 in [12]) , we get

lim sup
r→∞

MTr(f)
√

2|Tr| log log |Tr|
=
√

(µ, Pf2)

which ends the proof. �

Remark 2.7. Let us note that using theorem 2.4, we can prove that if hypothesis (H1) is

fulfilled with α ∈
(

0,
4√8
2

)

then,

lim sup
n→∞

Mπ
n (f)√

2n log log n
=
√

(µ, Pf2) a.s.,

and via the computation of 2k-th order moments of MGr(g), with k > 2 and g ∈ B(S), it is
possible to prove the latter for all α ∈ (0, 1). But, as already emphasized, this comes at the
price of enormous computations.

2.4. Almost-sure functional central limit theorem (ASFCLT).

We are now going to prove an ASFCLT theorem for the BMC (Xn, n ∈ T). This will be
done when f depends on the mother-daughters triangle by using the ASFCLT for discrete
martingale. We refer to theorem 5.3 of Chaabane in the Appendix for the definition of an
AFSCLT..

Theorem 2.8. Let F satisfy (i)-(vi). Let f ∈ B(S3) such that Pf = 0, Pf2 and Pf4 exist

and belong to F . We assume that hypothesis (H1) is fulfilled with α ∈
(

0,
4√8
2

)

. Then Mπ
n (f)

verify an ASFCLT, when n goes to ∞.

Proof. We use Theorem 5.3. Let (Hn)n∈N be the filtration defined as in section (2.3). Then
(Mπ

n (f)) is a Hn martingale. We have to check the hypotheses of Theorem 5.3. For all n ≥ 1,
let Vn = s

√
n where s2 = (µ, Pf2). Then according to Theorem (2.4)

V −2
n 〈Mπ(f)〉n = V −2

n Mπ
n (Pf2) −→

n→∞
1 a.s.

Let ε > 0. We have

∑

n≥1

1

V 2
n

E

[

f2(△π(n))1{|f(△π(n))|>εVn}
/

Hn−1

]

≤ 1

ε2s4

∑

n≥1

Pf4
(

Xπ(n)

)

n2
.
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According to hypothesis (H1), there exists a positive constant c such that for all n ≥ 1,

E

[

Pf4
(

Xπ(n)

)

]

= νQrnPf4 ≤ c, and therefore, ∀ǫ > 0

∑

n≥1

1

V 2
n

E

[

f2(△π(n))1{|f(△π(n))|>εVn}
/

Hn−1

]

< ∞ a.s.

Finally, we have

∑

n≥1

1

V 4
n

E

[

f4
(

△π(n)

)

1{|f(△π(n))|≤Vn}
/

Hn−1

]

≤ 1

s4

∑

n≥1

Pf4
(

Xπ(n)

)

n2
,

which as before is a.s. finite and the proof is then complete. �

Remark 2.9. As before, let us note that this result can be extended to the general case
α ∈ (0, 1), but at the price of enormous computation related to the computation of 2k-order
moments, k > 2, for MGr(g), g ∈ B(S).

2.5. Some probability inequalities for BMC.

We are now going to give some probability inequalities under (i) − (vi) and (H1) for the
empirical means (1.2) with (µ, f) = 0 and (1.3) with (µ, Pf) = 0. This will help us in the
sequel to obtain a MDP result in a general framework, that is for functional of BMC with
unbounded test functions. Note that the use of 2nd order moment is sufficient for this work,
since the higher moments do not improve the speed of the moderate deviation and the speed
of superexponential convergence (see the Appendix for the definition). Recall that the main
disadvantage here is that the range of speed for the MDP is very restricted. However, we still
work under geometric ergodicity assumption and general test function, which will not be the
case when we would want to extend the MDP (see section 3).

Theorem 2.10. Let F satisfy conditions (i)-(vi). We assume that (H1) is fulfilled. Let
f ∈ B(S) such that (µ, f) = 0. Then we have for all δ > 0 and all r ∈ N and all n ∈ N

P

(

∣

∣MGr(f)
∣

∣ > δ
)

≤































c
δ2

(

1
2

)r
if α2 < 1

2 ;

c
δ2
r
(

1
2

)r
if α2 = 1

2 ;

c
δ2
α2r if α2 > 1

2 ;

(2.8)

P

(

∣

∣M
π
n(f)

∣

∣ > δ
)

≤































c
δ2

(

1
2

)rn+1
if α2 < 1

2 ;

c
δ2
rn
(

1
2

)rn+1
if α2 = 1

2 ;

c
δ2
α2(rn+1) if α2 > 1

2 ;

(2.9)

and
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P

(

∣

∣MTr(f)
∣

∣ > δ
)

≤































c
δ2

(

1
2

)r+1
if α2 < 1

2 ;

c
δ2 r
(

1
2

)r+1
if α2 = 1

2 ;

c
δ2α

2(r+1) if α2 > 1
2 ;

(2.10)

where the positive constant c depends on f and α and may differ term by term.

Proof. Let f ∈ B(S) such that (µ, f) = 0. We shall study the three empirical averages
MGr(f), M

π
n(f) and MTr(f) successively.

Part 1. Let us first deal with MGr(f). By Markov inequality, we get, for all δ > 0

P

(

∣

∣MGr(f)
∣

∣ > δ
)

= P

(

∣

∣MGr(f)
∣

∣

2
> δ2

)

≤ 1
δ2
E

[

(MGr(f))
2
]

.

By Guyon (see [12]), we have

E

[

(MGr(f))
2
]

=

r
∑

p=0

2−p−1p<rνQpP
(

Qr−p−1f ⊗Qr−p−1f
)

.

Hypothesis (H1) implies that there exists g ∈ F and α ∈ (0, 1) such that for all

p ∈
{

0, 1, · · · , r
}

νQpP (Qr−p−1f ⊗Qr−p−1f) ≤ α2(r−p−1)νQpP (g ⊗ g).

Next, hypothesis (iii), (v) and (vi) imply that there is a positive constant c such that for all
p ∈

{

0, 1, · · · , r
}

α2(r−p−1)νQpP (g ⊗ g) ≤ cα2(r−p−1).

This leads us to

E

[

(MGr(f))
2
]

≤ c
r
∑

p=0
2−p−1p<rα2(r−p−1) = c

(

1
2

)r
+ c

α2r−( 1
2)

r

2α2−1

and therefore (2.8) follows.

Part 2. Let us now consider M
π
n(f). By the Markov inequality, we get, for all δ > 0

P

(

∣

∣M
π
n(f)

∣

∣ > δ
)

= P

(

∣

∣M
π
n(f)

∣

∣

2
> δ2

)

≤ 1
δ2
E

[

(

M
π
n(f)

)2
]

≤ 2
δ2E





(

rn−1
∑

q=0

2q

n MGq (f)

)2


+ 2
δ2E

[

(

1
n

n
∑

i=2rn
f(Xπ(i))

)2
]

.

In the last inequality, we have used the decomposition

M
π
n(f) =

rn−1
∑

q=0

2q

n
MGq(f) +

1

n

n
∑

i=2rn

f(Xπ(i)).
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In what follows, the constant c may be slightly different from that of Part 1 and may differ
term by term.

E









rn−1
∑

q=0

2q

n
MGq(f)





2

 =

∥

∥

∥

∥

∥

∥

rn−1
∑

q=0

2q

n
MGq(f)

∥

∥

∥

∥

∥

∥

2

2

≤





rn−1
∑

q=0

2q

n

∥

∥MGq(f)
∥

∥

2





2

.

• If α2 < 1
2 then

rn−1
∑

q=0

2q

n

∥

∥MGq (f)
∥

∥

2
≤ c

n

rn−1
∑

q=0

(
√
2)q ≤ c

2
rn
2

n
,

so that

E









rn−1
∑

q=0

2q

n
MGq (f)





2

 ≤ c
2rn

n2
≤ c

(

1

2

)rn+1

.

• If α2 > 1
2 then

rn−1
∑

q=0

2q

n

∥

∥MGq(f)
∥

∥

2
≤ c

n

rn−1
∑

q=0

(2α)q ≤ cαrn ,

so that

E









rn−1
∑

q=0

2q

n
MGq(f)





2

 ≤ cα2(rn+1).

• If α2 = 1
2 then

rn−1
∑

q=0

2q

n

∥

∥MGq(f)
∥

∥

2
≤ c

n

rn−1
∑

q=0

q
√
2
q ≤ c

(rn − 1)
√
2
rn

n
,

so that

E









rn−1
∑

q=0

2q

n
MGq(f)





2

 ≤ c
r2n

2rn+1
.
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Now,

E

[

(

1
n

n
∑

i=2rn
f(Xπ(i))

)2
]

=

∥

∥

∥

∥

1
n

n
∑

i=2rn
f(Xπ(i))

∥

∥

∥

∥

2

2

≤ n−2rn+1
n2 νQrnf2

+ (n−2rn )(n−2rn+1)
n2(2rn−1)

rn−1
∑

p=0
2−p−1νQpP (Qrn−p−1f ⊗Qrn−p−1f)

≤ c
n + c

rn−1
∑

p=0
2−p−1α2rn−2p−2

= c
n + cα

2rn−2−rn

2α2−1
.

• If α2 < 1
2 then

E





(

1

n

n
∑

i=2rn

f(Xπ(i))

)2


 ≤ c

(

1

2

)rn+1

.

• If α2 > 1
2 then

E





(

1

n

n
∑

i=2rn

f(Xπ(i))

)2


 ≤ cα2(rn+1).

• If α2 = 1
2 then

E





(

1

n

n
∑

i=2rn

f(Xπ(i))

)2


 ≤ c
r2n

2rn+1
.

Inequality (2.9) then follows.

Part 3. The case of MTr(f) can be deduced from the previous by taking n = |Tr|.
�

We shall also need an extension of theorem 2.10 to the case when f does not only depend on
an individual Xi, but on the mother-daughters triangle (△i).

Theorem 2.11. Let F satisfy conditions (i)-(vi). We assume that (H1) is fulfilled. Let
f ∈ B

(

S3
)

such that Pf and Pf2 exists and belong to F and (µ, Pf) = 0. Then we have the

same conclusion as the theorem 2.10 for the three empirical averages given in (1.3): MGr(f),
MTr(f) and M

π
n(f).

Proof. Let f ∈ B
(

S3
)

such that Pf and Pf2 exist and belong to F and (µ, Pf) = 0. We

shall study the three empirical averages MGr(f), M
π
n(f) and MTr(f) successively.

Part 1. Let us first deal with MGr(f). By the Markov inequality, we get for all δ > 0
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P

(

∣

∣MGr(f)
∣

∣ > δ
)

≤ 1

δ2
E

[

(MGr(f))
2
]

=
1

δ2
E

[

(MGr(Pf))2
]

+
1

δ2
1

|Gr|
E

[

MGr

(

Pf2 − (Pf)2
)

]

≤ 1

δ2
E

[

(MGr(Pf))2
]

+
c

δ2

(

1

2

)r

.

The last inequality follows from the convergence of the sequence

(

E

[

MGr

(

Pf2 − (Pf)2
)

]

)

r
(see [12]).

Now, using the Part 1 of the proof of the theorem 2.10 with Pf instead of f leads us to a
similar inequality (2.8) in theorem 2.11 for f ∈ B

(

S3
)

.

Part 2. Let us now treat M
π
n(f). Using the two equalities

M
π
n(f) =

rn−1
∑

q=0

|Gq|
n

MGq(f) +
1

n

n
∑

i=2rn

f(△π(i)),

E





(

1

n

n
∑

i=2rn

f(△π(i))

)2


 = E

[

(

M
π
n(Pf)

)2
]

+
1

n
E

[

M
π
n

(

Pf2 − (Pf)2
)

]

,

and the Part 1 of the proof of the theorem 2.10 with Pf instead of f leads us to a similar
inequality (2.9) in theorem 2.11 for f ∈ B.

Part 3. The case of MTr(f) can be deduced from the previous by taking n = |Tr|.
�

We thus have the following first result on the superexponential convergence in probability,
whose defintion we present now

Definition 2.12. Let (E, d) a metric space. Let (Zn) be a sequence of random variables
values in E, Z be a random variable value in E and (vn) be a rate. We say that Zn converges
vn-superexponentially fast in probability to Z if for all δ > 0

lim sup
n→∞

1

vn
log P(d(Zn, Z) > δ) = −∞.

This "exponential convergence" with speed vn will be shortened as

Zn
superexp−→

vn
Z.

We may now set

Proposition 2.13. Let F satisfy conditions (i)-(vi).Let f ∈ B
(

S3
)

such that Pf and Pf2

exists and belong to F and (µ, Pf) = 0. We assume that (H1) is fulfilled. Let (bn) a sequence
of postive real numbers satisfying

(bn) is increasing,
bn√
n
→ +∞,

bn√
n log n

→ 0.
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Then

M
π
n(f)

superexp−→
b2n
n

0.

Proof. The proof is a direct consequence of Theorem 2.11. �

2.6. Moderate deviations for BMC.

Now, using the MDP for martingale (see e.g [9], [18]), we are going to prove a MDP for BMC.
We will use Proposition 5.4, in the Appendix.

Theorem 2.14. Let f ∈ B
(

S3
)

such that Pf2 and Pf4 exist and belong to F . Assume that
Pf = 0. Let (bn) be a sequence of positive real numbers satisfying

(bn) is increasing,
bn√
n
→ +∞,

bn√
n log n

→ 0.

If

lim sup
n→∞

n

b2n
log

(

n ess sup
1≤k≤c−1(bn+1)

P

(

∣

∣f
(

△π(k)

) ∣

∣ > bn
/

Hk−1

)

)

= −∞, (2.11)

where c−1(bn+1) := inf
{

k ∈ N : k
bk

≥ bn+1

}

; then
(

1
bn
Mπ
n (f)

)

satisfies a MDP in R with the

speed b2n
n and the rate function I(x) = x2

2(µ,Pf2) .

Proof. Firstly, note that under the hypothesis Mπ
n (f) is a Hn-martingale, with H0 = σ(X1)

and Hn = σ
(

△π(i), 1 ≤ i ≤ n
)

. From proposition 5.4 in the Appendix, it then suffices to
check conditions (C1) and (C3).

On the one hand, (2.9) applied to Pf4 − (µ, Pf4) implies that for all δ > 0,

lim sup
n→∞

n

b2n
log P

(

1

n

n
∑

i=1

Pf4(Xπ(i)) > (µ, Pf4) + δ

)

= −∞

and this implies the exponential Lindeberg condition (see for e.g [18]), that is condition (C3).

On the other hand, we have 〈Mπ(f)〉n = Mπ
n (Pf2) and (2.9) applied to Pf2 − (µ, Pf2)

implies that

M
π
n(Pf2 − (µ, Pf2))

superexp−→
b2n
n

0,

that is condition (C1). �

Remark 2.15. One of the main difficulty in the application of this Theorem lies in the
verification of (2.11). Note however that in the range of speed considered it is sufficient to
have some uniform control in Xi of some moment of f(Xi,X2i,X2i+1) conditionnally on Xi,
which leads to condition of the type P |f |k bounded for some k ≥ 2. It is of course the case
if f is bounded.

Remark 2.16. In the special case of model (1.1), we have (see section 4), for all k

E

[

exp

(

λ
bn
n
f
(

△π(k)

)

)/

Hk−1

]

= exp

(

b2n
n

(

λPf2

2n

)

(

Xπ(k)

)

)

.
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This condition implies that a MDP is satisfies for 1
bn
Mπ
n (f). Indeed, if this relation is satisfied,

we then have that for λ ∈ R the quantity

Gn(λ) =
λ2

2
M

π
n(Pf2) =

λ2

2n

n
∑

k=1

Pf2(Xπ(k))

is an upper and lower cumulant (see e.g [18]), and we may apply some Gärtner-Ellis type
methodology. In addition, due to (2.9) applied to Pf2 − (µ, Pf2), we have for λ ∈ R

Gn(λ)
superexp−→

b2n
n

λ2(µ, Pf2)

2
,

which implies that
(

1
bn
Mπ
n (f)

)

satisfies a MDP in R with the speed b2n
n and the rate function

I(x) = x2

2(µ,Pf2)
.

3. Exponential probability inequalities for BMC and consequences

We give here stronger deviation inequalities than the one obtained in the previous section,
namely exponential deviation inequalities. Of course, it requires strongest assumptions.

3.1. Exponential probability inequalities.

We assume that for all f ∈ Bb(S) such that (µ, f) = 0 the hypothesis (H1) is satisfied
uniformly for all x ∈ S, that is there exists a positive constant c such that

(H2) |Qrf(x)| ≤ cαr for some α ∈ (0, 1) and for all x ∈ S,

then, Bb(S) fulfills hypothesis (i)-(vi).

Under this assumption, we will examine exponential probability inequalities for MGr(f),

MTr(f) and M
π
n(f) when f ∈ Bb(S) with (µ, f) = 0 (resp. f ∈ Bb

(

S3
)

with (µ, Pf) = 0).

Theorem 3.1. Let f ∈ Bb(S) such that (µ, f) = 0. Assume that (H2) is satisfied. Then we
have for r and n large enough and for all δ > 0

P

(

MGr(f) > δ
)

≤



































exp
(

−c′δ2|Gr|
)

if α2 < 1
2

exp
(

−c′ |Gr|
r

)

if α2 = 1
2 ,

exp
(

−c′δ2
(

1
α

)2r
)

if α2 > 1
2

(3.1)
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P

(

MTr(f) > δ
)

≤







































































c′′ exp
(

−c′δ2|Tr|
)

if α < 1
2

exp
(

−c′δ2|Tr|
)

exp (2c′δ(r + 1)) if α = 1
2

2 exp
(

−c′δ2|Tr|
)

if 1
2 < α <

√
2
2

exp
(

−c′δ2 |Tr |
r+1

)

if α =
√
2
2 ,

exp
(

−c′δ2
(

1
α2

)r+1
)

if α >
√
2
2

(3.2)

and

P

(

M
π
n(f) > δ

)

≤







































































c′′ exp
(

−c′δ2n
)

if α < 1
2

exp
(

−c′δ2n
)

exp (2c′δ(rn + 1)) if α = 1
2

2 exp
(

−c′δ2n
)

if 1
2 < α <

√
2
2

exp
(

−c′δ2 n
rn+1

)

if α =
√
2
2 ,

exp
(

−c′δ2
(

1
α2

)rn+1
)

if α >
√
2
2

(3.3)

where c′ and c′′ are positive constants which depend on δ, α, ‖f‖∞ and c′, c′′ differs line by
line (see the proofs for the dependence).

Proof. Let f ∈ Bb(S) such that (µ, f) = 0. We shall study the three empirical averages
MGr(f), M

π
n(f) and MTr(f) successively.

Part 1. Let us first deal with MGr(f). We have for all λ > 0 and for all δ > 0

P(MGr(f) > δ) ≤ exp(−λδ|Gr|)E
[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

, (3.4)

By subtracting and adding terms, we get

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

= E

[

E

[

∏

i∈Gr−1

exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))
∏

i∈Gr−1

exp(2λQf(Xi))/Fr−1

]]

.
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Now using the fact that conditionally to the (r − 1) first generations the sequence {△i, i ∈
Gr−1} is a sequence of independent random variables, we have that

E

[

E

[

∏

i∈Gr−1

exp(λ(f(X2i) + f(X2i+1)− 2Qf(Xi)))
∏

i∈Gr−1

exp(2λQf(Xi))/Fr−1

]]

= E

[

∏

i∈Gr−1

exp (2λQf(Xi))
∏

i∈Gr−1

E [exp (λ(f(X2i) + f(X2i+1)− 2Qf(Xi))) /Fr−1]

]

.

Using the Azuma-Bennet-Hoeffding inequalities [1], [2], [14], we get according to (H2), for
all i ∈ Gr−1

E

[

exp
(

λ(f(X2i) + f(X2i+1)− 2Qf(Xi))
)

/Fr−1

]

≤ exp
(

2λ2c2(1 + α)2
)

.

This leads us to

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp
(

λ2c2(1 + α)2|Gr|
)

E





∏

i∈Gr−1

exp (2λQf(Xi))



 .

Doing the same thing for E

[

∏

i∈Gr−1

exp (2λQf(Xi))

]

with Qf replacing f , we get

E





∏

i∈Gr−1

exp (2λQf(Xi))



 ≤ exp
(

2λ2c2(α+ α2)2|Gr|
)

E





∏

i∈Gr−2

exp
(

22λQ2f(Xi)
)



 .

Iterating this procedure, we get

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp
(

λ2c2(1 + α)2|Gr|
)

× exp
(

2λ2c2(α+ α2)2|Gr|
)

× exp
(

22λ2c2(α2 + α3)2|Gr|
)

× · · · × exp
(

2r−1λ2c2(αr−1 + αr)2|Gr|
)

×E

[

exp
(

2rλQrf(X1)
)

]

.

Once again, according to (H2), we have

E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp
(

λ2c2(1 + α)2|Gr|
)

× exp
(

2λ2c2(α+ α2)2|Gr|
)

× exp
(

22λ2c2(α2 + α3)2|Gr|
)

× · · · × exp
(

2r−1λ2c2(αr−1 + αr)2|Gr|
)

× exp
(

λcαr|Gr|
)

.

Hence
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• if α2 6= 1
2 then E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp
(

λ2c2(1 + α)2 1−(2α2)r

1−2α2 |Gr|
)

× exp
(

λcαr|Gr|
)

;

• if α2 = 1
2 then E

[

exp

(

λ
∑

i∈Gr

f(Xi)

)]

≤ exp
(

λ2c2(1 + α)2r|Gr|
)

× exp
(

λc(
√
2
2 )r|Gr|

)

.

We then consider three cases.

(a) If α2 < 1
2 . Then, there exists a positive constant c′ such that 1−(2α2)r

1−2α2 < c′ for all r.

Taking λ = δ
2c2c′(1+α)2

in (3.4) leads us to

P

(

MGr(f) > δ
)

≤ exp

(

−
( δ2

4c2c′(1 + α)2
− αr

δ

4cc′(1 + α)2

)

|Gr|
)

.

Since

αr
δ

4cc′(1 + α)2
→ 0 as r → ∞,

there exists r0 ∈ N such that for r > r0,

αr
δ

4cc′(1 + α)2
<

δ2

8c2c′(1 + α)2
,

and hence for r > r0, we get

P

(

MGr(f) > δ
)

≤ exp
(

− δ2

8c2c′(1 + α)2
|Gr|

)

.

(b) If α2 = 1
2 . Then as in the previous case, there exists r0 ∈ N such that for r > r0

P

(

MGr(f) > δ
)

≤ exp

(

− δ2

8c2(1 + α)2
|Gr|
r

)

.

(c) If α2 > 1
2 . Then for all λ > 0

P

(

MGr(f) > δ
)

≤ exp
(

− λδ|Gr|
)

× exp
(

λ2c2(1 + α)2 (2α2)r−1
2α2−1

|Gr|
)

× exp
(

λcαr|Gr|
)

≤ exp
(

−|Gr|
(

λδ − λ2c2(1+α)2

2α2−1 (2α2)r
))

× exp
(

λcαr|Gr|
)

.

Taking λ = (2α2−1)δ
2c2(1+α)2(2α2)r

leads us to

P

(

MGr(f) > δ
)

≤ exp

(

−
(

(2α2 − 1)δ2

4c2(1 + α)2
− (2α2 − 1)δ

2c(1 + α)2
αr
)(

1

α

)2r
)

.

Since αr → 0 as r → ∞, there exists r0 ∈ N such that for all r > r0,

P

(

MGr(f) > δ
)

≤ exp

(

−(2α2 − 1)δ2

8c2(1 + α)2

(

1

α

)2r
)

.
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Part 2. Let us now deal with MTr(f). We have for all λ > 0 and all δ > 0

P

(

MTr(f) > δ
)

≤ exp
(

− λδ|Tr|
)

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

. (3.5)

By subtracting and adding terms, we get

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

= E

[

E

[

∏

i∈Gr−1

exp
(

λ
(

f(X2i) + f(X2i+1)− 2Qf(Xi)
)

)

× ∏

i∈Gr−1

exp
(

2λQf(Xi)
)

× ∏

i∈Tr−1

exp
(

λf(Xi)
)/

Fr−1

]]

= E

[

E

[

∏

i∈Gr−1

exp
(

λ
(

f(X2i) + f(X2i+1)− 2Qf(Xi)
)

)

× ∏

i∈Gr−1

exp
(

λ(f + 2Qf)(Xi)
)

× ∏

i∈Tr−2

exp
(

λf(Xi)
)/

Fr−1

]]

The fact that conditionally to the (r − 1) first generations the sequence {△i, i ∈ Gr−1} is a
sequence of independent random variables and Azuma-Bennet-Hoeffding inequalities leads us
according to (H2) to

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

≤ exp
(

2λ2c2(1 + α)2|Gr−1|
)

×E

[

∏

i∈Gr−1

exp
(

λ(f + 2Qf)(Xi)
)

∏

i∈Tr−2

exp
(

λf(Xi)
)

]

.

Doing the same things for

E





∏

i∈Gr−1

exp
(

λ(f + 2Qf)(Xi)
)

∏

i∈Tr−2

exp
(

λf(Xi)
)





with f + 2Qf replacing f we get

E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

≤ exp
(

2λ2c2(1 + α)2|Gr−1|
)

× exp
(

2λ2c2(1 + 3α+ 2α2)2|Gr−2|
)

× E





∏

i∈Gr−2

exp
(

λ(f + 2Qf + 22Q2f)(Xi)
)

∏

i∈Tr−3

exp
(

λf(Xi)
)



 .

Iterating this procedure leads us to
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E

[

exp

(

λ
∑

i∈Tr

f(Xi)

)]

≤ exp



2λ2c2(1 + α)2
r
∑

q=1

(

q−1
∑

k=0

(2α)2k

)2

|Gr−q|





× E

[

exp

(

λ
(

f + 2Qf + 22f + · · ·+ 2rQrf
)

(X1)

)

]

.

Now for α 6= 1
2 and α2 6= 1

2 we have

P

(

MTr(f) > δ
)

≤ exp
(

− λδ|Tr|
)

exp
(

2λ2c2(1 + α)2
(

2r−1
(1−2α)2

− α(1−αr)2r+1

(1−2α)2(1−α) +
2α2(1−(2α2)r)2r

(1−2α)2(1−2α2)

))

× exp
(

λc1−(2α)r+1

1−2α

)

≤ exp
(

−|Tr|
(

λδ − λ2c2(1+α)2

(1−2α)2

(

1 + 4α2(1−(2α2)r)
1−2α2

)))

exp
(

λc1−(2α)r+1

1−2α

)

.

Taking λ = δ
2c2(1+α)2

(1−2α)2

(

1+
4α2(1−(2α2)r)

1−2α2

) leads us to

P

(

MTr(f) > δ
)

≤ exp

(

−|Tr| (1−α)2δ2

4c2(1+α)2
(

1+ 4α2(1−(2α2)r)

1−2α2

)

)

× exp

(

(1−α)2δ
2c(1+α)2

(

1+
4α2(1−(2α2)r)

1−2α2

)

1−(2α)r+1

1−2α

)

.

• If α2 < 1
2 and α < 1

2 then for all r ∈ N

P

(

MTr(f) > δ
)

≤ exp

(

1− 2α

2c(1 + α)2
δ

)

× exp

(

− (1− 2α)2δ2

4c2(1 + α)2(1 + 4α2c′)
|Tr|

)

such that 1−(2α2)r

1−2α2 < c′.

• If α2 < 1
2 and 1

2 < α <
√
2
2 then there exists r0 ∈ N such that for all r > r0

P

(

MTr(f) > δ
)

≤ exp

(

− (1− 2α)2δ2

8c2(1 + α)2(1 + 4α2c′)
|Tr|

)

.

• If α2 > 1
2 then there exists r0 ∈ N such that for all r > r0

P

(

MTr(f) > δ
)

≤ exp

(

−(1− 2α)2(2α2 − 1)δ2

64c2(1 + α)2

(

1

α2

)r+1
)

.

Now if α = 1
2 then for all λ > 0

P

(

MTr(f) > δ
)

≤ exp

(

−(λδ − 9c2c′λ2

2
)|Tr|

)

× exp (λ(r + 1)) where c′ =
∞
∑

q=1

q2

2q
.
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Taking λ = δ
9c2c′

leads us to

P

(

MTr(f) > δ
)

≤ exp

(

− δ2

18c2c′
|Tr|

)

× exp

(

δ

9c2c′
(r + 1)

)

.

Finally, if α2 = 1
2 then there exists r0 ∈ N such that for all r > r0

P

(

MTr(f) > δ
)

≤ exp

(

− (1− 2α)2δ2

16c2(1 + α)2
|Tr|
r + 1

)

.

Part 3. Eventually, let us look at M
π
n(f). We have for all δ > 0

P

(

1

n
Mπ
n (f) > δ

)

≤ P





1

n

rn−1
∑

q=0

f (Xi) >
δ

2



+ P

(

1

n

n
∑

i=2rn

f
(

Xπ(i)

)

>
δ

2

)

.

On the one hand, (3.2) leads us for n large enough to

P





1

n

rn−1
∑

q=0

f (Xi) >
δ

2



 ≤







































































c1 exp
(

−c2δ
2n
)

if α < 1
2

2 exp
(

−c1δ
2n
)

if 1
2 < α <

√
2
2

exp
(

−c1δ
2
(

1
α2

)rn) if α2 > 1
2

exp
(

−c1δ
2n
)

exp (2c2δrn) if α = 1
2

exp
(

−c1δ
2 n
rn

)

if α2 = 1
2 ,

(3.6)

where c1 and c2 are positive constants which depend on δ, α, ‖f‖∞ and c; c1 differs line by
line. On the other hand, for all λ > 0,

P

(

1

n

n
∑

i=2rn

f
(

Xπ(i)

)

>
δ

2

)

≤ exp

(

−λδ

2
n

)

E

[

exp

(

λ

n
∑

i=2rn

f
(

Xπ(i)

)

)]

.

Now let

• Orn = {π(2rn), π(2rn + 1), · · · , π(n)},
• O1

rn−1 the set of individuals of generation Grn−1 which are ancestors of one individual
in Orn ,

• O2
rn−1 the set of individuals of generation Grn−1 which are ancestors of two individuals

in Orn ,

• O′

rn the set of individuals of Orn whose parents belong to O1
rn−1.

• Orn−1 = O1
rn−1 ∪ O2

rn−1.
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We have

E

[

exp

(

λ
n
∑

i=2rn
f
(

Xπ(i)

)

)]

= E



exp



λ
∑

i∈O2
rn−1

2Qf (Xi) + λ
∑

i∈O1
rn−1

Qf (Xi)





×E



exp



λ
∑

i∈O′
rn

f (Xi)−Qf
(

X[ i
2
]

)





/

Frn−1





× E



exp



λ
∑

i∈O2
rn−1

f (X2i) + f (X2i+1)− 2Qf
(

X[ i
2
]

)





/

Frn−1









Using Azuma-Bennett-Hoeffding inequality, as in Part 1, we get

E






exp






λ
∑

i∈O′
rn

f (Xi)−Qf
(

X[ i
2
]

)






/Frn−1






≤ exp

(

λ2c2(1 + α)2

2
|O′

rn |
)

,

and

E



exp



λ
∑

i∈O2
rn−1

f (X2i) + f (X2i+1)− 2Qf
(

X[ i
2
]

)



 /Frn−1



 ≤ exp
(

2λ2c2(1+α)2|O2
rn−1|

)

.

Now, we have

exp
(

λ2c2(1+α)2

2 |O′

rn |
)

+exp
(

2λ2c2(1 + α)2|O2
rn−1|

)

= exp

(

λ2c2(1 + α)2
(

2|O2
rn−1|+

|O′
rn

|
2

))

≤ exp
(

λ2c2(1 + α)2n
)

.

This leads us to

E

[

exp

(

λ
n
∑

i=2rn
f
(

Xπ(i)

)

)]

≤ exp
(

λ2c2(1 + α)2n
)

E



exp



λ
∑

i∈O2
rn−1

2Qf (Xi) + λ
∑

i∈O1
rn−1

Qf (Xi)







 .

Now let

• O1,1
rn−2 the set of individuals of Grn−2 which are ancestors of one individual in Orn−1

and one individual in Orn ,

• O1,2
rn−2 the set of individuals of Grn−2 which are ancestors of one individual in Orn−1

and two individuals in Orn ,

• O2,2
rn−2 the set of individuals of Grn−2 which are ancestors of two individuals in Orn−1

and two individuals in Orn ,
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• O2,3
rn−2 the set of individuals of Grn−2 which are ancestors of two individuals in Orn−1

and three individuals in Orn ,

• O2,4
rn−2 the set of individuals of Grn−2 which are ancestors of two individuals in Orn−1

and four individuals in Orn ,

• O′

rn−1 the set of individuals of Orn−1 whose parents belong to O1,1
rn−2,

• O′′

rn−1 the set of individuals of Orn−1 whose parents belong to O1,2
rn−2.

Then we have

E



exp



λ
∑

i∈O2
rn−1

2Qf (Xi) + λ
∑

i∈O1
rn−1

Qf (Xi)







 = E

[

I1 × I2 × I3 × I4 × I5 × I6 × I7

]

,

where

I1 = exp



λ
∑

i∈O1,1
rn−2

Q2f(Xi) + λ
∑

i∈O1,2
rn−2

2Q2f(Xi) + λ
∑

i∈O2,2
rn−2

2Q2f(Xi)

+λ
∑

i∈O2,3
rn−2

3Q2f(Xi) + λ
∑

i∈O2,4
rn−2

4Q2f(Xi)



 ,

I2 = E



exp



λ
∑

i∈O′
rn−1

Qf(Xi)−Q2f(X[ i
2
])





/

Frn−2



 ,

I3 = E



exp



2λ
∑

i∈O′′
rn−1

Qf(Xi)−Q2f(X[ i
2
])





/

Frn−2



,

I4 = E



exp



λ
∑

i∈O2,2
rn−1

Qf(X2i) +Qf(X2i+1)− 2Q2f(Xi)





/

Frn−2



,

I5 =
1
2E



exp



λ
∑

i∈O2,3
rn−1

2Qf(X2i) +Qf(X2i+1)− 3Q2f(Xi)





/

Frn−2



,

I6 =
1
2E



exp



λ
∑

i∈O2,3
rn−1

Qf(X2i) + 2Qf(X2i+1)− 3Q2f(Xi)





/

Frn−2



,

I7 = E



exp



λ
∑

i∈O2,4
rn−1

2Qf(X2i) + 2Qf(X2i+1)− 4Q2f(Xi)





/

Frn−2



.

Using Azuma-Bennett-Hoeffding inequality, we get

I2 × I3 × I4 × I5 × I6 × I7

≤ exp

(

λ2c2(α + α2)2
(

|O′

rn−1|
2 + 2|O′′

rn−1|+ 2|O2,2
rn−1|+

9|O2,3
rn−1|
2 + 8|O2,4

rn−1|
))

≤ exp
(

2λ2c2(α+ α2)2n
)

,
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hence

E

[

exp

(

λ

n
∑

i=2rn

f
(

Xπ(i)

)

)]

≤ exp
(

λ2c2(1 + α)2n
)

exp
(

2λ2c2(α+ α2)2n
)

E

[

I1

]

.

Now, iterating this procedure we get

E

[

exp

(

λ

n
∑

i=2rn

f
(

Xπ(i)

)

)]

≤ exp



λ2c2(1 + α)2n

rn
∑

p=0

(2α2)p



 exp
(

λcαrnn
)

.

Then it follows as in Part 1 that for n large enough

P

(

1

n

n
∑

i=2rn

f
(

Xπ(i)

)

>
δ

2

)

≤































exp
(

−c1δ
2n
)

if α2 < 1
2

exp
(

−c1δ
2
(

1
α2

)rn) if α2 > 1
2

exp
(

−c1
n
rn

)

if α2 = 1
2 ,

(3.7)

where the positive constant c1 depends on α, δ, c and differs line to line. Finally (3.6) and
(3.7) lead us to (3.3).

�

Theorem 3.2. Let f ∈ Bb
(

S3
)

such that (µ, Pf) = 0 . Assume that (H2) is satisfied. Then

we have the same conclusions, for the three empirical averages MGr(f), M
π
n(f) and MTr(f),

as in the theorem 3.1.

Proof. Let f ∈ Bb
(

S3
)

such that (µ, Pf) = 0.

Part 1. Let us first deal with MGr(f). We have for all δ > 0 and λ > 0,

P

(

MGr(f) > δ
)

≤ exp
(

− λδ|Gr|
)

E

[

exp

(

λ
∑

i∈Gr

f(△i)

)]

.

Conditioning and using Bennet-Hoeffding inequality give us

E

[

exp

(

λ
∑

i∈Gr

f(△i)

)]

≤ exp
(

2λ2‖f‖∞|Gr|
)

E

[

exp

(

λ
∑

i∈Gr

Pf(Xi)

)]

.

Now, applying the Part 1 of the proof of the theorem 3.1 to Pf , we get (3.1) for f ∈ Bb
(

S3
)

.

Part 2. Let us now treat MTr (f). We have for all δ > 0

P

(

MTr(f) > δ
)

≤ P

(

MTr(f − Pf) >
δ

2

)

+ P

(

MTr(Pf) >
δ

2

)

(3.8)
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Now, since
(

M
π
n(f − Pf)

)

n≥1
is a Hn-martingale with bounded jumps, Azuma inequality

[1], give us

P

(

MTr(f − Pf) >
δ

2

)

≤ exp
(

− c′δ2|Tr|
)

, for some positive constant c′.

For the second term in the right hand side of (3.8), we use the inequalities (3.2) with Pf
instead of f . Gathering this inequalities, we get (3.2) for all r large enough.

Part 3. The proof for the case M
π
n(f) follows the same lines as the proof of Part 2. �

Now, using Borel Cantelli theorem and (3.3), we state easily the following

Corollary 3.3. Let f ∈ Bb(S) such that (µ, f) = 0 (resp. f ∈ Bb(S3) and (µ, Pf) = 0).

Assume that (H2) is satisfied. Then M
π
n(f) almost surely converges to 0 as n goes to ∞.

Remark 3.4. Of course uniform ergodicity, and bounded test functions are surely a very
strong set of assumptions but it is not so difficult to verify if the Markov chains daughters
lie in a compact set. We are convinced that it is possible to consider the geometric ergodic
case and bounded test functions but to the price of tedious calculations that we will pursue
in an other work. We will also investigate the use of transportation inequalities, leading to
deviation inequality for Lipschitz test functions under some Wasserstein contraction property
for the kernel P , in the spirit of the Theorems 2.5 or 2.11 in [10].

3.2. Moderate deviation principle for BMC.

We introduce the following assumption on the speed of the MDP.

Assumption 1. Let (bn) be an increasing sequence of positive real numbers such that

bn√
n
−→ +∞,

and

• if α2 < 1
2 , the sequence (bn) is such that

bn
n

−→ 0,

• if α2 = 1
2 , the sequence (bn) is such that

bn log n

n
−→ 0,

• if α2 > 1
2 , the sequence (bn) is such that

bnα
rn+1

√
n

−→ 0.

Using the MDP for martingale with bounded jumps (see e.g [7], [9]), we can now state the
following

Theorem 3.5. Let f ∈ Bb(S3) such that Pf = 0. Assume that (H2) is satisfied. Let (bn) be

a sequence of real numbers satisfying the Assumption 1, then
(

1
bn
Mπ
n (f)

)

satisfies a MDP in

R with the speed b2n
n and rate function I(x) = x2

2(µ,Pf2)
.

Proof. The proof easily follows from the previous exponential probability inequalities and the
MDP for martingale with bounded jumps (see e.g [7], [9], [18]). �
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Remark 3.6. Taking particularly n = |Tr|, and (bn) be a sequence of real numbers satisfying

the Assumption 1 we get that
(

MTr
b|Tr |

)

satisfies a MDP in R with the speed
b2
|Tr |

|Tr | and the rate

function I(x) = x2

2(µ,Pf2) .

4. Application: First order Bifurcating autoregressive processes

In this section, we seek to apply the results of the previous sections to the following bifurcating
autoregressive process with memory 1 defined by

L(X1) = ν, and ∀n ≥ 1,







X2n = α0Xn + β0 + ε2n

X2n+1 = α1Xn + β1 + ε2n+1,
(4.1)

where α0, α1 ∈ (−1, 1); β0, β1 ∈ R,
(

(ε2n, ε2n+1), n ≥ 1
)

forms a sequence of i.i.d bivariate

random variables and ν a probability measure on R. In all this section, we assume that the
distribution ν has finite moments of all orders.

In the sequel, we will study (4.1) in two settings:

• the gaussian setting which corresponds to the case where
(

(ε2n, ε2n+1), n ≥ 1
)

forms

a sequence of i.i.d bivariate random variables with law N2(0,Γ) with

Γ = σ2

(

1 ρ
ρ 1

)

, σ2 > 0, ρ ∈ (−1, 1);

• the bounded setting which corresponds to the case where
(

(ε2n, ε2n+1), n ≥ 1
)

forms

a sequence of i.i.d bivariate random variables values in a compact set. Let us note
that in this case, (Xn, n ∈ T) takes its values in a compact set.

Our main goal is to give deviation inequalities and MDP for the estimator of the 4-dimensional
unknown parameter θ = (α0, β0, α1, β1) and for the statistical test defined in [12].

To estimate the 4-parameter θ = (α0, β0, α1, β1), as well as σ2 and ρ, one assume observe a

complete subtree Tr+1. The maximum likelihood estimator θ̂r =
(

α̂r0, β̂
r
0 , α̂

r
1, β̂

r
1

)

of θ is given
by (see [12]), for η ∈ {0, 1}



































α̂rη =
|Tr|−1

∑

i∈Tr

XiX2i+η−
(

|Tr |−1
∑

i∈Tr

Xi

)(

|Tr |−1
∑

i∈Tr

X2i+η

)

|Tr|−1
∑

i∈Tr

X2
i −
(

|Tr |−1
∑

i∈Tr

Xi

)2

β̂rη = |Tr|−1
∑

i∈Tr

X2i+η − α̂rη|Tr|−1
∑

i∈Tr

Xi.
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We also need to introduce the estimators of the conditional variance σ2 and the conditional
sister-sister correlation ρ. These estimators are naturally given by











σ̂2
r =

1
2Tr

∑

i∈Tr

(ε̂22i + ε̂22i+1)

ρ̂r =
1
σ̂2r

∑

i∈Tr

ε̂2iε̂2i+1

where the residues are defined by ε̂2i+η = X2i+η − α̂rηXi − β̂rη , with η ∈ {0, 1}.

We will take F = Cpol(R) the set of continuous and polynomially growing functions. Then
F fulfills hypothesis (i)-(vi). Moreover, for all f ∈ F , hypothesis (H1) holds with α =
max(|α0|, |α1|). Let µ be the unique stationary distribution of the induced Markov chain
(Yr, r ∈ N), see [12] for more details.

We shall denote by x (resp. x2, xy, y · · · ) the element of Cpol(R3) defined by (x, y, z) 7→ x
(resp. x2, xy, y, · · · ).
We define two continuous functions µ1 : Θ → R and µ2 : Θ× R

∗
+ → R by writing

(µ,x) = µ1(θ) and (µ,x2) = µ2(θ, σ
2),

where θ = (α0, β0, α1, β1) ∈ Θ = (−1, 1) × R× (−1, 1) × R.

To segregate between H0 = {(α0, β0) = (α1, β1)} and its alternative H1 = {(α0, β0) 6=
(α1, β1)}, we shall use the test statistic

χ(1)
r =

|Tr|
2σ̂2

r

{

(α̂r0 − α̂r1)
2(µ̂2

2,r − µ̂2
1,r) +

(

(α̂r0 − α̂r1)µ̂1,r + β̂r0 − β̂r1

)2
}

,

where we write µ̂1,r = µ1(θ̂
r) and µ̂2,r = µ2(θ̂r, σ̂r).

4.1. The gaussian setting.

We introduce the following assumption on the speed of the MDP.

Assumption 2. Let (bn) be an increasing sequence of positive real numbers such that

bn√
n
−→ +∞ and

bn√
n log n

→ 0.

Proposition 4.1. Let (bn) be a sequence of real numbers satisfying Assumption 2. Then

θ̂r
superexp−→

b2
|Tr |
|Tr |

θ.

Proof. We will treat the case of α̂r0. The others β̂r0 , α̂
r
1 and β̂r1 may be treated in a similar

way. Note that α̂r0 =
Cr
Br

, where

Cr = MTr(xy)−MTr(x)MTr(y) and Br = MTr (x
2)−MTr(x)

2.

Now, using lemma (5.1) and proposition (2.13), it follows that

α̂r0
superexp−→

b2
|Tr |
|Tr |

α0.
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�

We recall that in the BAR model (4.1), we use α = max{|α0|, |α1|}, so we have the following
deviation inequality

Proposition 4.2. For all δ > 0 and all r ∈ N

P

(∣

∣

∣
θ̂r − θ

∣

∣

∣
> δ
)

≤































c
(

1
4

)r+1
if α2 < 1

2

cr2
(

1
4

)r+1
if α2 = 1

2

cα4(r+1) if α2 > 1
2 ,

(4.2)

where the constant c depends on α, δ, µ1, µ2 and differs line by line.

Proof. We will prove the deviation inequality for |α̂r0 − α0|. The other deviation inequalities

for |β̂r0 − β0|, |α̂r1 − α1| and |β̂r1 − β1| may be treated in a similar way. We have for all δ > 0

P

(∣

∣

∣α̂r0 − α0

∣

∣

∣ > δ
)

≤ P

(
∣

∣MTr(xy − P (xy))
∣

∣

Br
>

δ

2

)

+P

(
∣

∣MTr(x)
∣

∣

∣

∣MTr(y − P (y))
∣

∣

Br
>

δ

2

)

.

Let b := µ2(θ, σ
2)− µ1(θ)

2. On the one hand,

P

(
∣

∣MTr(xy − P (xy))
∣

∣

Br
>

δ

2

)

≤ P

(

Br < b/2
)

+ P

(

∣

∣MTr(xy − P (xy))
∣

∣ >
δb

4

)

.

Now,

P

(

Br < b/2
)

≤ P

(

−MTr(x
2 − µ2) >

b

2

)

+ P

(

∣

∣MTr(x− µ1)
∣

∣ >

√
b

2
√
2

)

+P

(

MTr (x− µ1) >
b

16µ1

)

.

On the other hand, we have

P

(
∣

∣MTr(x)
∣

∣

∣

∣MTr(y − P (y))
∣

∣

Br
>

δ

2

)

≤ P

(

Br < b/2
)

+ P

(

∣

∣MTr(y − P (y))
∣

∣ >
δb

4µ1

)

+P

(

∣

∣MTr (y − P (y))
∣

∣ >
δ

4

)

+ P

(

∣

∣MTr(x− µ1)
∣

∣ > b
)

.

Now, using (2.6) we get

P

(

∣

∣MTr(xy − P (xy))
∣

∣ >
δb

4

)

≤ c

δ4b4

(

1

4

)r+1

,

P

(

∣

∣MTr(y − P (y))
∣

∣ >
δb

4µ1

)

≤ cµ4
1

δ4b4

(

1

4

)r+1

,
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and

P

(

∣

∣MTr(y − P (y))
∣

∣ >
δ

4

)

≤ c

δ4

(

1

4

)r+1

where the constant c can be found as in remark (2.3) and Part 1 of proof of theorem 2.10.

Finally, P

(

− MTr(x
2 − µ2) > b

4

)

, P
(

∣

∣MTr(x− µ1)
∣

∣ >
√
b
2

)

, P
(

∣

∣MTr(x− µ1)
∣

∣ > b
)

and

P

(

MTr(x− µ1) >
b

16µ1

)

can be bounded as in corollary 2.2 and this ends the proof. �

Remark 4.3. The proposition 4.2 can be improved by calculating the 2k-th order moments,
with k > 2, as in the proof of theorem 2.1. But, as we have said, this comes at the price of
enormous computation.

Proposition 4.4. Let (bn) be a sequence of real numbers satisfying Assumption 2. Then

(σ̂2
r , ρ̂r)

superexp−→
b2
|Tr |
|Tr |

(σ2, ρ).

Proof. Let us first deal with σ2
r . We have (see e.g [12])

σ̂2
r − σ2 =

1

2
MTr(f(., θ)) +Dr

where

f(x, y, z, θ) = (y − α0x− β0)
2 + (z − α1x− β1)

2,

and

Dr =
1

2|Tr|
∑

i∈Tr

(f(△i, θ̂
r)− f(△i, θ)).

By Taylor-Lagrange formula, we can find g ∈ Cpol(R3) such that (see [12])

|Dr| ≤
1

2
‖θ̂r − θ‖

(

1 + ‖θ‖+ ‖θ̂r − θ‖
)

MTr(g).

Now, proposition (2.13) and proposition (4.1) leads us to

σ̂2
r

superexp−→
b2
|Tr |
|Tr |

σ2.

The proof for ρ̂r is very similar. �

Proposition 4.5. Let (bn) be a sequence of real numbers satisfying Assumption 2. Then
|Tr|
b|Tr |

(

θ̂r − θ
)

satisfies the MDP on R
4 with the speed

b2
|Tr |

|Tr | and the rate function I given by

I(x) =
1

2
xt(Σ′)−1x,

where

Σ′ = σ2

(

K ρK
ρK K

)

with K =
1

µ2(θ, σ2)− µ1(θ)2

(

1 −µ1(θ)
−µ1(θ) µ2(θ, σ

2)

)

.
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Proof. We first observe that

|Tr|
b|Tr |

(

θ̂r − θ
)

= M(Ar, Br).
U r(f)

bTr

where U r(f) = MTr(f − Pf), f = (xy,y,xz, z), Ar = MTr(x), Br = MTr (x
2) − MTr(x)

2

and

M(Ar, Br) =











1
Br

−Ar
Br

0 0
−Ar
Br

Br+A2
r

Br
0 0

0 0 1
Br

−Ar
Br

0 0 −Ar
Br

Br+A2
r

Br











.

On the one hand, from proposition (2.13)

Ar
superexp−→

b2
|Tr |
|Tr |

a := µ1(θ), and Br
superexp−→

b2
|Tr |
|Tr |

b := µ2(θ, σ
2)− µ1(θ)

2.

So that by lemma (5.1), we obtain that

M(Ar, Br)
superexp−→

b2
|Tr |
|Tr |

M(a, b) :=

(

K 0
0 K

)

.

On the other hand, let λ ∈ R
4. Then studious calculations shows us that

Gn(λ) =
1

2n
λt〈Mπ(f − Pf)〉nλ

is an upper and lower cumulant. Moreover, from proposition (2.13) and lemma (5.1)

Gn(λ)
superexp−→

b2
|Tr |
|Tr|

1

2
λtΣλ where Σ = σ2

(

K−1 ρK−1

ρK−1 K−1

)

.

We thus deduce that (see e.g [18]) (M
π
n (f)
bn

) satisfies a MDP on R
4 with speed b2n

n and the rate
function

J(x) = xtΣ−1x. (4.3)

Taking n = |Tr|, it follows that Ur(f)
b|Tr |

satisfies a MDP with speed
b2
|Tr |

|Tr | and the rate function

J given in (4.3). Finally, using the contraction principle(see e.g [8]) as in ([19]), we get the
result. �

Proposition 4.6. Let (bn) a sequence of real numbers satisfying the Assumption 2. Then

under the null hypothesis H0 = {(α0, β0) = (α1, β1)}, |Tr |1/2
b|Tr |

(χ
(1)
r )1/2 satisfies a MDP on R

with speed
b2
|Tr |

|Tr | and the rate function

I ′(y) =

{

y2

2 if y ∈ R+

+∞ otherwise.

Under the alternative hypothesis H1 of H0, we have for all A > 0

lim sup
r→∞

|Tr|
b2
Tr

log P
(

χ(1)
r < A

)

= −∞.
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Proof. We have

H0 = {g(θ) = 0} where g(θ) = (α0 − α1, β0 − β1)
t.

From proposition (4.5), |Tr|
b|Tr |

(

θ̂r − θ
)

satisfies a MDP on R
4 with speed

b2
|Tr |

|Tr | and the rate

function I(x) =
1

2
xt(Σ′)−1x. So that, using the delta method for the MDP (see e.g [11]) and

the theory of optimisation, we conclude that |Tr |
b|Tr |

(

g(θ̂r)− g(θ)
)

satisfies a MDP on R
2 with

speed
b2
|Tr |

|Tr | and the rate function

J(x) =
1

2
xt(Σ′′)−1x, where Σ′′ = 2σ2(1− ρ)K. (4.4)

Under the null hypothesis H0, we have g(θ) = 0, so that |Tr |
b|Tr |

g(θ̂r) satisfies a MDP on R
2

with speed
b2
|Tr |

|Tr| and rate function J given in (4.4).

Now, since K = K(θ, σ) is a continuous function of (θ, σ) (see [12]), so that, letting K̂r =

K(θ̂r, σ̂r), lemma (5.1), proposition (2.13) and (4.4) entail that

Σ̂′′
r = 2σ̂2

r (1− ρ̂r)K̂r
superexp−→

b2
|Tr |
|Tr |

Σ′′.

It follows using the contraction principle (see e.g [19]) that |Tr |
b|Tr |

Σ̂′′−1/2

r g(θ̂r) satisfies a MDP

on R
2 with speed

b2
|Tr |

|Tr| and the rate function J ′(y) =
‖y‖2
2

.

In particular,
∥

∥

∥

∥

|Tr|
b|Tr |

Σ̂′′−1/2
r g(θ̂r)

∥

∥

∥

∥

=
|Tr|1/2
b|Tr |

√

χ
(1)
r

satisfies a MDP with speed
b2
|Tr |

|Tr| and the rate function I ′ given in the proposition 4.6.

Now, under the alternative hypothesis H1,

χ
(1)
r

|Tr|
= g(θ̂r)tΣ̂′′−1

r g(θ̂r)
superexp−→

b2
|Tr |
|Tr |

g(θ)t(Σ′′)−1g(θ) > 0,

so that χ
(1)
r converges

b2
|Tr |

|Tr| -superexponentially fast to +∞. This conclude the proof of the

proposition 4.6. �

4.2. The uniformly ergodic setting: compact case.

We recall that the model under study in this section is the model (4.1) where we assume that
the noise values in a compact set. The results will be given without proofs, since the proofs
are similar to those done in the previous section. The advantage of this section is that the
range of speed is improved in comparison to the previous section. However, we suppose that
the process takes its values in a compact set, which is not the case in the previous section.

We take F ∈ Cb(R) and therefore (i)-(vi) and (H2) are automatically satisfied with
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α = max(|α0|, |α1|). We use the same notations as in the previous section.

Proposition 4.7. Let (bn) a sequence of real numbers satisfying the Assumption 1. Then we
have

θ̂r
superexp−→

b2
|Tr |
|Tr |

θ.

Proposition 4.8. We have for all δ > 0, and for r large enough

P

(∣

∣

∣
θ̂r − θ

∣

∣

∣
> δ
)

≤























































c′′ exp (−c′|Tr|) if α2 < 1
2 and α < 1

2

c′′ exp
(

−c′
(

1
α2

)r+1
)

if α2 > 1
2

c′′ exp (−c′|Tr|) exp (2c′δ(r + 1)) if α = 1
2

c′′ exp
(

−c′ |Tr|
r+1

)

if α2 = 1
2 ,

(4.5)

where the constants c′ and c′′ depends on α, δ, µ1, µ2, and may differ line by line.

Proposition 4.9. Let (bn) a sequence of real numbers satisfying the Assumption 1. Then we
have

(σ̂2
r , ρ̂r)

superexp−→
b2
|Tr |
|Tr |

(σ2, ρ).

Proposition 4.10. Let (bn) a sequence of real numbers satisfying the the Assumption 1.

Then |Tr |
b|Tr |

(

θ̂r − θ
)

satisfies the MDP on R
4 with the speed

b2
|Tr |

|Tr | and rate function

I(x) =
1

2
xt(Σ′)−1x,

where

Σ′ = σ2

(

K ρK
ρK K

)

with K =
1

µ2(θ, σ2)− µ1(θ)2

(

1 −µ1(θ)
−µ1(θ) µ2(θ, σ

2)

)

.

Proposition 4.11. Let (bn) a sequence of real numbers satisfying the Assumption 1. Then

under the null hypothesis H0 = {(α0, β0) = (α1, β1)}, |Tr |1/2
b|Tr |

(χ
(1)
r )1/2 satisfies a MDP on R

with speed
b2
|Tr |

|Tr | and the rate function

I ′(y) =

{

y2

2 if y ∈ R+

+∞ otherwise.

Under the alternative hypothesis H1 of H0, we have for all A > 0

lim sup
r→∞

|Tr|
b2|Tr|

log P
(

χ(1)
r < A

)

= −∞.
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5. Appendix

Let us gather here for the convenience of the readers various Theorems useful to establish
LIL, AFSCLT or MDP.

Lemma 5.1. Let (E, d) a metric space. Let (Zn) a sequence of random variables values in
E, (vn) a rate and g : DE ⊂ E → R. If

Zn
superexp−→

vn
Z,

then
g(Zn)

superexp−→
vn

g(Z).

Proof. For all δ > 0, there exists (see e.g [17]) α0(δ) > 0

P

(

∣

∣g(Zn)− g(Z)
∣

∣ > δ
)

≤ P

(

d(Zn, Z) > α0(δ)
)

.

�

Let M = (Mn,Hn, n ≥ 0) be a centered square integrable martingale defined on a probability
space (Ω,H,P) and (〈M〉n) its bracket. We recall some limit theorems for martingale used
intensively in this paper.

We recall the following result due to W. F. Stout (Theorem 3 in [16]).

Theorem 5.2. Let (Mn) such that M0 = 0. If 〈M〉n → ∞ a.s. and

∞
∑

n=1

2 log log〈M〉n
K2
n〈M〉n

E

[

(Mn −Mn−1)
2
1{

(Mn−Mn−1)2>
K2

n〈Mn〉
2 log log〈M〉n

}

/

Hn−1

]

< ∞ a.s.

where Kn are Hn−1 measurable and Kn → 0 a.s., then lim sup Mn√
2〈M〉n log log〈M〉n

= 1 a.s..

We recall the following result due to F. Chaabane (Corollary 2.2, see [4]).

Theorem 5.3. Let (Vn) be a (Hn)-predictable increasing such that

H-1 V −2
n 〈M〉n −→

n→∞
1, a.s.

H-2 for all ε > 0,
∑

n≥1
V −2
n E

[

(Mn −Mn−1)
2
1|Mn−Mn−1|>εVn

/

Hn−1

]

< ∞; a.s.

H-3 for some a > 1,
∑

n≥1
V −2a
n E

[

(Mn −Mn−1)
2a

1|Mn−Mn−1|≤εVn
/

Hn−1

]

< ∞, a.s.

Then Mn satisfies an ASFCLT, that is, for almost all ω, the weighted random measures

WN (ω, •) = (log V 2
N )

−1
N
∑

n=1

(

1− V 2
n

V 2
n+1

)

δ{ψn(ω)∈•}

associated to continuous processes Ψn(ω) = {Ψn(ω, t), 0 ≤ t ≤ 1} defined by

Ψn(ω, t) = V −1
n {Mk + (V 2

k+1 − V 2
k )

−1(tV 2
n − V 2

k )(Mk+1 −Mk)},
when V 2

k ≤ tV 2
n < V 2

k+1, 0 ≤ k ≤ n−1, weakly converge to the Wiener measure on C([0, 1],R).
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Let us enunciate the following which correspond to the unidimensional case of theorem 1 in
[9].

Proposition 5.4. Let (bn) a sequence satisfying

bn is increasing,
bn√
n
→ +∞,

bn
n

→ 0,

such that c(n) := n
bn

is non-decreasing, and define the reciprocal function c−1(t) by

c−1(t) := inf{n ∈ N : c(n) ≥ t}.
Under the following conditions:

(C1) there exists Q ∈ R
∗
+ such that

〈M〉n
n

superexp−→
b2n
n

Q;

(C2) lim sup
n→+∞

n

b2n
log

(

n ess sup
1≤k≤c−1(b(n+1))

P(|Mk −Mk−1| > bn/Hk−1)

)

= −∞;

(C3) for all a > 0
1

n

n
∑

k=1

E

(

|Mk −Mk−1|21{|Mk−Mk−1|≥a n
bn

}/Hk−1

)

superexp−→
b2n
n

0;

(

Mn
bn

)

n∈N
satisfies the MDP in R with the speed b2n

n and the rate function I(x) =
x2

2Q
.

References

[1] Azuma, K. Weighted sums of certain dependent random variables. Tôhoku Math. J. (1967), Vol. 19, No.
3, pp. 357-367.

[2] Bennett, G. Probability inequalities for sum of independant random variables. Journal of the American
Statistical Association (Mar. 1962), Vol. 57, No. 297, pp. 33-45.

[3] Bercu, B. De Saporta, B. and Gégout-Petit, A. Asymptotic analysis for bifurcating autoregressive processes

via a martingale approach. Electronic. J. Probab. (2009), Vol. 14, pp. 2492-2526.
[4] Chaabane, F. Version forte du théorème de la limite centrale fonctionnel pour les martingales. C. R. Acad.

Sci. Paris Série 1, (1996), Vol. 323, pp. 195-198.
[5] De Saporta, B., Gégout-Petit, A., Marsalle, L. Parameters estimation for asymmetric bifurcating autore-

gressive processes with missing data. Electronic Journal of Statistics (2011), Vol. 5, pp. 1313-1353.
[6] Delmas, J.F, and Marsalle, L. Detection of cellular aging in Galton-Watson process, arxiv, (2008)

0807.0749.
[7] Dembo, A. Moderate deviations for martingales with bounded jumps, Elect. Comm. Probab. (1996), Vol.

1, pp. 11-17.
[8] Dembo, A. and Zeitouni, O. (1998) Large Deviations Techniques and Applications, 2nd Ed. (Springer, New

York).
[9] Djellout, H. Moderate deviations for martingale differences and applications to φ-mixing sequences.

Stochastics and stochastics reports, (2002), Vol. 73, No. 1-2, pp. 37-63.
[10] Djellout, H. and Guillin, A. and Wu, L. (2004) Transportation cost-information inequalities and applica-

tions to random dynamical systems and diffusions. Annals of Probability, Vol. 32, No. 3B, 2702-2732.
[11] Gao, F. and Zhao, X. Delta method in large deviations and moderate deviations for estimators. The

Annals of Statistics, (2011), Vol. 39, No. 2, pp. 1211-1240.
[12] Guyon, J. Limit theorems for bifurcating markov chains. Application to the detection of cellular aging.

Ann. Appl. Probab., (2007), Vol. 17, No. 5-6, pp. 1538-1569.
[13] Guyon, J. Bize, A. Paul, G. Stewart, E.J. Delmas, J.F. Taddéi, F. Statistical study of cellular aging.

CEMRACS 2004 Proceedings, ESAIM Proceedings, (2005), 14, pp. 100-114.



44 S.V. BITSEKI PENDA, H. DJELLOUT, AND A. GUILLIN

[14] Hoeffding, W. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, Vol. 58, No. 301 (Mar. 1963), pp. 13-30.

[15] E. J. Stewart, R. Madden, G. Paul and F. Taddéi. Aging and death in an organism that reproduces by

morphologically symmetric division. PLoS Biol, 2005, 3(2): e45.
[16] Stout, W. F. A martingale analogue of kolmogorov’s law of the iterated logarithm. Z. Wahrscheinlichkeit-

stheorie und Verw. Gebiete (1970), Vol. 15, pp. 279-290.
[17] Van Der Vaart, A. W. (1998) Asymptotic statistics. New York. Cambridge University Press.
[18] Worms, J. Principes de déviations modérées pour des martingales et applications statistiques, Thèse,

Université de Marne-la-Vallée, 2000.
[19] Worms, J. Moderate deviations for stable Markov chains and regression models. Electronic. J. Probab.

(1999), Vol. 4, pp. 1-28.

Valère BITSEKI PENDA,, Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise

Pascal, avenue des Landais 63177 Aubière.

E-mail address: Valere.Bitsekipenda@math.univ-bpclermont.fr

Hacène DJELLOUT,, Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise

Pascal, avenue des Landais 63177 Aubière.

E-mail address: Hacene.Djellout@math.univ-bpclermont.fr

Arnaud GUILLIN,, Institut Universitaire de France et Laboratoire de Mathématiques, CNRS

UMR 6620, Université Blaise Pascal, avenue des Landais 63177 Aubière.

E-mail address: Arnaud.Guillin@math.univ-bpclermont.fr


