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Abstract:  The fabrication of Er-doped ZrO2-based nanocrystalline phase-separated silica 

optical preforms by the MCVD and solution doping techniques is presented. Fabricated 

preform cores are nearly transparent and contain phase-separated rare-earth doped 

nanocrystalline particles with diameters mainly in a range from 20 to 80 nm. High 

concentrations of erbium and aluminium in preform cores of about 0.3 and 14 mol%, 

respectively have been achieved without defects on the core-cladding interface.  Spectral 

losses in a range 800-1600 nm and fluorescence spectra of erbium ions around 1550 nm 

measured on a fibre drawn from the preform are reported.   

1. Introduction 

Rare-earth (RE) doped optical fibres have been developed and successfully implemented in 

optical amplifiers and fibre lasers since late 1980. Among the different rare-earth ions; erbium 

(Er) has proved itself as one of significant candidates for applications in erbium-doped fibre 

amplifiers (EDFAs), one of revolutionary discoveries in the field of fibre optic 

telecommunication [1]. Since the discovery of the EDFAs, an extensive research has been 
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carried out to improve spectroscopic properties of fabricated erbium-doped fibres (EDFs) in 

order to broaden the amplification bandwidth.  

For achieving the fluorescence enhancement as high as possible different host materials other 

than pure silica, e.g. doped silica, phosphate glasses, telluride glasses, fluoride glasses, 

bismuth-based glasses doped with Er ions have been investigated [2-6]. These different host 

materials have shown their own advantages (wider emission, higher Er doping level etc.) but 

considering the practical applications in present telecommunication systems, silica based 

glass still has cutting edge over the other host materials due to its low loss, ruggedness, 

compatibility with other system components and low manufacture cost. 

Therefore, one of new research directions is focused on fabrication processes of silica-based 

Er-doped optical fibres having properties of multicomponent glasses in order to control Er ion 

emission properties around 1.5 µm, a wavelength region which coincides with the lowest 

attenuation window of silica glasses. This research is aimed at incorporating of rare-earth-

doped nanoparticles in fibres using a reliable and mature technology and taking the advantage 

of their spectroscopic properties to tune amplifiers characteristics, for example. For this 

purpose different techniques, such as co-sputtering [7], laser ablation [8], ion-implantation 

[9], pyrolysis [10], sol-gel technique [11-12] and recently developed direct nanoparticle 

deposition (DND) technique [13], etc, have been developed. 

In spite of interesting achieved properties in fibres, most techniques suffer some drawbacks: 

low temperature glass fusion, or long and costy process, etc. Thus, it would be a challenging 

task to fabricate optical fibres with regions containing nanoparticles in rich-silica cores by 

using the conventional Modified Chemical Vapor Deposition (MCVD) process [14-15] 

combined with the solution doping technique [16]. Already some attempts have been made to 

study the properties of Er-doped nano-structured fibres completely produced by MCVD and 

the so-called solution doping technique [17], containing amorphous calcium-phospho-silicate 
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erbium-doped nanoparticles [18]. Some interesting spectroscopic would also benefit from a 

nanocrystalline environment for the rare-earth ions. 

In order to realize this task and develop so called Er-doped nanocrystalline phase-separated 

optical preforms for drawing optical fibres, it is necessary to select some dopants which allow 

nucleation processes and precise nucleation and growth control in the glass. Among different 

silica dopants available, namely ZrO2 can be selected as host material for creating Er-doped 

nanocrystaline particles since it has many fold advantages. Particularly, the incorporation of 

ZrO2 enhances the probability of radiative transitions through reducing glass phonon energy 

(~470 cm-1), ZrO2 exhibit a boiling point (2300°C) higher than the drawing temperature of 

silica, has a high refractive index, good optical transparency and what is the most important, 

in the context of this paper, it can act as a good nucleating agent. Sol-gel process has been 

successfully used for incorporation of crystalline ZrO2 in silica glass [19].   

The motivation of the presented work is based on the background summarized above. In this 

paper we are presenting results of systematic investigation and optimization of different 

fabrication stages employed for the preparation of Er-doped ZrO2-based nanocrystalline 

phase-separated optical preforms and fibres by using the MCVD and solution doping 

techniques. The paper deals also with detail characterization of preform samples and some of 

the initial results on fibre performances such as attenuation and fluorescence properties,which 

are necessary prerequisites for practical applications of the prepared fibres in amplifiers or 

lasers.  

2. Experimental 

2.1. Fabrication of preforms and fibres  

 The fabrication of an Er-doped ZrO2-based nanocrystalline phase-separated preforms 

of optical fibres consisted of two main stages, namely of the fabrication of a preform and its 
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subsequent thermal treatment. The preform fabrication process was carried out in a 

conventional MCVD system (Special Gas Controls, GB). The process commenced with the 

deposition of 3-5 silica cladding layers onto the inner wall of a high quality silica tube 

(Suprasil F-300). Then a porous core layer composed either of pure silica or silica slightly 

doped with P2O5 was applied over the deposited silica layers by the MCVD process at a 

suitable temperature. Temperature variations during the porous layer deposition were 

controlled within ±10°C and monitored by an IR pyrometer synchronously moving with a 

hydrogen-oxygen burner used for external heating of the rotating silica tube.  

The porous layer was then soaked with an aqueous soaking solution containing required raw 

chemicals for a fixed time span. Aqueous soaking solutions were used because selected raw 

chemicals, namely LiNO3 (99.995% Merck, Germany) AlCl3 anhydrous (99.99% MaTeck 

GmbH), BaCl2,2H2O (99.999% Aldrich), ZrOCl2,xH2O (99.99% Aldrich) and ErCl3,6H2O 

(99.995% Aldrich) are only partially soluble in alcohols like methanol or ethanol. Li2O 

doping was carried out since the combination of this oxide with SiO2 and Al2O3 could 

enhance the mechanical strength of the prepared glass and additionally increase the thermal 

mechanical strength and transparency of the glass similar to that of lithium-alumino silicate 

system [20]. Doping with BaO was employed because this dopant possess good nucleating 

properties and additionally helps to prevent cracking caused by  the volume expansion during 

ZrO2 structural transformations at the preform thermal-treatment [21]. After soaking the layer 

was dried in air and dehydrated in presence of chlorine. Subsequently, raw chemicals in the 

porous layer were oxidized and the layer was sintered to a clear glass layer by gradually 

increasing the temperature to around 1850°C. Finally, a solid rod, the preform, of diameter~ 

10-10.5 mm was obtained through the viscous collapse of the tube with the layers deposited 

on the inner wall at a temperature above 2000°C.  
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The fabricated preform was thermally treated at a temperature around 1000°C in order to 

support nucleation and growth processes in the core. Fibres with diameters of 125±0.5 µm 

were drawn from thermally-treated preforms at temperatures around 2000 °C by using a 

conventional drawing tower (Special Gas Controls, GB) equipped with a graphite furnace 

(Centor, USA). A protective UV-curable acrylate jacket (De-Solite, NL) was applied onto the 

fibres during drawing.  

2.2. Characterisation of preforms and fibres  

Refractive-index profiles (RIPs) of the whole preforms were evaluated both before and after 

the thermal treatment using an A2600 preform analyser. Thin polished preform sections of a 

thickness ~ 1.5 to 2 mm were prepared to analyze core glass compositions and dopants 

distributions in the preform core using Electron Microprobe Analysis (EMA). Scanning 

Electron Microscopy (SEM) (LEO-S430i) was used to investigate core-cladding interfaces of 

the fabricated preforms and presence of nanocrystalline-particle within the preform core 

region. For SEM analysis a sample about 0.8 mm long double-side-polished preform was 

prepared which was Ag coated (coating thickness ~200A). Samples for Transmission Electron 

Microscopy (TEM) analysis were also prepared to identify phase-separation and nanocrystals 

dimensions.  These samples  were prepared using two different approaches to identify the 

generation of nanocrystaline particles, their shapes and dimensions. In the first approach we 

polished a preform sample to a thickness of ~ 0.8 mm and then used Ar-ion mill thinning (~ 

to 10 µm) to achieve electronic transparency necessary for testing under High Resolution 

TEM. In the second approach chemical etching was carried out to remove the preform 

cladding and the extracted core (thickness ~ 1mm) was then crushed to powder. This powder 

was dispersed in acetone and applied onto a Cu saver for TEM tests. To determine the 

composition of phase-separated region and nanocrystalline particle formed the electron beam 

was focused on the selected spot over the investigated region, when the energy dispersive X-

ray diffraction (EDX) data were collected.  
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RIPs and fibre dimensions were measured using an S14 fibre analyser (York Technology, 

GB). Optical losses of the fibres in a range from 800 to 1600 nm were determined employing 

the cut-back technique [22].  A white light source was filtered by a computer controlled 

monochromator and coupled into a segment of the fibre under test. The output optical power 

P1(λ) from the fibre was measured, where λ is the signal wavelength.. Then a piece of the 

fibre of length L was cut at the output side of the fibre and the optical power P2(λ) from the 

fibre was measured again. The attenuation versus wavelength was determined from the 

general formula α(dB/m) = 10x log10[P2(λ)/P1(λ)]/L. 

Fluorescence spectra of the fabricated fibres were also evaluated. The fluorescence 

measurement was carried out in the contra-propagative configuration using a 350-mW 978-

nm laser diode for the excitation of the fibre and a WDM coupler making possible to separate 

the excitation and fluorescence signals. A short fibre length was used (~14 mm) to avoid 

distortion by reabsorption and amplified spontaneous emission. 

2.3. Optimisation of the fabrication process 

In order to achieve the targeted core glass composition and designed preform properties, the 

optimization of different stages of the preparation process was carried out as it is described in 

following part.  

The use of a suitable temperature of deposition of the porous layer is important since the 

porosity of the layer critically depends on this temperature and the porosity controls dopant 

incorporation levels in the preform core. This general experience can be specified as follows. 

High layer porosities achieved at low deposition temperatures allow us to incorporate more 

dopants but the layer could peel off the tube wall during the solution doping stage, especially 

when high-viscous soaking solutions are used. On the contrary, the layer porosity and dopants 

incorporation is reduced at high deposition temperatures due to partial sintering of the 

deposited layer.  
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From a set of initial experiments of deposition of porous layers we concluded that for pre-

selected flow rates of starting SiCl4 the optimum deposition temperature for the application of 

a porous layer was between 1250±10°C and 1290±10°C. We have found that an increase of 

the deposition temperatures above 1300°C makes porous layers more sintered leading to 

reduction of the dopant incorporation. On the other hand, a decrease of the deposition 

temperatures below 1210±10°C diminishes the adhesion strength of layers to the glass surface 

leading to enhanced chance of the layer delaminating during the solution impregnation stage.  

To optimize the solution composition, several preforms were fabricated under varying 

concentrations of the soaking solutions. During this optimization the following concentrations 

were varied in the following ranges, namely 0.015 to 0.05 M for LiNO3, 0.5 to 1.5 M for 

AlCl3, 0.015 to 0.05 M for BaCl2, 0.025 to 0.05 M ZrOCl2 and 0.015 to 0.035 M for ErCl3. 

EMA results were used as the feedback for evaluating the glass compositions obtained from 

the fabricated preform samples. The optimized composition of the soaking solution was 1.25 

M AlCl3, 0.035 M LiNO3, 0.05 M BaCl2, 0.035 M ZrOCl2 and 0.03 M ErCl3. The time for 

contact of the porous layer and the optimized soaking solution was varied from 30 to 90min. 

Finally, the time duration of 45min was determined as the optimized soaking period.  

After the solution doping stage, oxidation of the raw chemicals was carried out slowly around 

900°C in pure oxygen, followed by dehydration around 700°C to avoid evaporation of Li2O 

from the porous layer in the form of LiCl due to reaction of Li2O with of Cl2.used for OH 

removal.   

Sintering of the porous layer with the oxide dopants to a clear glass layer was carried out by a 

gradual increase of the temperature from 1050°C to 1850°C. This gradual temperature 

increase is essential to prevent sudden phase separations and reduce the possibility of dopant 

diffusion from the layer into the surrounding silica layers during the layer sintering.      
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After collapse of the tube with the deposited layers to the preform the heat-treatment stage 

took place. This treatment was performed in an electrical furnace which the preform was 

loaded in. To identify the suitable conditions for the formation of nanocrystalline particles 

within the preform core, a set of experiments with varied heat-treatment temperature, rate and 

time span was carried out. In each of these experiments a short section of the fabricated 

preform was heated at a temperature in a range of 850 to 1100°C and time span from 4 to 7 

hours. TEM analysis and electron diffraction pattern of theheat-treated perform core indicates 

that suitable condition for formation of phase-separated rare-earth doped nanocrystalline 

particles is : temperature near 1000°C, time span of 5 hours where ramp rate to reach the 

target temperature was fixed at 7 °C/min. However, this temperature might vary with glass 

composition and not be considered as definite temperature for all glass compositions.  

3. Results and discussion 

Measured RIPs of the fabricated preforms before and after the thermal treatment showed that 

their numerical apertures (NA) related to the difference between refractive indexes of the core 

and the cladding, vary within 0.16±0.02. These values allow us to conclude that there is no 

essential effect of the heat treatment of the preforms onto their NAs. An example of a 

representative RIP measured on a preform at different angular projections is shown in Fig 1.  

We have found that a RIP of a fibre drawn from the prepared preform is in a good agreement 

with that of the corresponding preform RIP. The core diameter of the fibre is around 12 µm 

provided the cladding diameter is 125 µm. It means that the fibre is not single mode at a 

wavelength of 1550 nm.  

The composition of the preform cores prepared with the optimized soaking solution and 

evaluated from EMA measurements indicates high Al2O3 incorporation of about 12-14 mol% 

in all prepared preforms. On the basis of such analysis determined with preciseness better 

than 0.1 mol% one could expected higher refractive index differences than those shown in 
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Fig.1. However, even a decrease of NA with an increase of AlCl3 in the soaking solution has 

been found for highly-doped cores of optical fibers composed of phosphoaluminosilicate 

glasses prepared by the solution-doping method [23]. This nonliniear dependence of the 

refractive index on the dopant concentration could be related to mechanical stresses in glasses 

and by photoelastic effect by density fluctuation caused by formation of crystalline phases. 

The maximum concentrations for ZrO2 and BaO are 0.9 and 0.2 mol%, respectively.  

Concentrations of Er3+ were also obtained from EMA measurements on the fabricated 

preforms and compared with those calculated from spectral attenuation curves of the drawn 

fibres (see an example in Fig. 7). These concentrations vary between 3000 and 4500 mol-ppm 

in different preforms and the EMA values agree within experimental errors with those 

measured on the fibres.  Concentrations of Li could not be measured by EMA as lithium 

atoms are too light for this kind of analysis. 

Distributions of Al2O3, ZrO2 and BaO concentrations in the preform core are presented in Fig 

2. The Al2O3 distribution in Fig.2 shows two distinct regions within the preform core; one 

which is rich in Al2O3 (outside the central core region) and second with lower Al2O3 

concentrations (the central dip in Al2O3 distribution). We presumed that central dip in the 

Al2O3 distribution profile formed during the collapsing stage. During collapsing due to high 

temperature (>2000°C) appreciable volume change occurs as a result of transformation of 

three phases of ZrO2 (cubic, tetragonal and monoclinic). This transformation associated with 

change in volume within preform core region and probably forces Al2O3 away from central 

core region resulting central dip. Consequently, we could see two distinct phase separated 

region in Fig. 3a. Transmission electron image was taken from the extracted preform core 

(see details in Part 2.2.) and it is presented in Fig.3a. It indicates two different regions, namely 

Al2O3 rich region (grey colour) and region rich in ZrO2 (black colour). EDX analysis was 

carried out in different parts under investigation presented in Fig.3a and EDX spot analysis 

result from the ZrO2 rich part is presented in Fig.3b.  
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SEM results measured from the central core region of preform in Fig.4 revealed the formation 

of ZrO2 nanocrystalline particles and characterized by diameters from 20 to 400 nm. 

However, as one can see from Fig. 4 the most of the nanocrystalline particles have diameters 

within the 20-80nm range.  Although the size of these nanoparticles is-not uniform one can 

expect that it can be improved by finer optimization of the fabrication steps. To achieve this 

finer optimization, solution composition specially the ratio between Er/Zr salt will be varied 

further keeping other solution parameters fixed. Additionally longer annealing period is to be 

employed to achieve uniform particle size.   

The electron diffraction pattern of the particles in the preform is presented in Fig.5 clearly 

indicating the crystalline nature of the formed particles. SEM results in Fig.6 show that the 

core-cladding interface is almost uniform in spite of the achieved high Al2O3 doping. Such 

uniformity is not usually observed at preforms with high Al2O3 contents prepared by the 

standard MCVD and solution-doping techniques [23].  

The preform core looks nearly transparent, however, the measured spectral attenuation curve 

(see Fig. 7) shows high base-line losses which may be either result of phase-separation within 

the preform core or due to formation of nanocrystalline particles which makes the core 

material non homogeneous. The presence of particles with diameters large than 50-100 nm in 

the preform indicate that scattering loss are expected in the fibre. Further work on the perform 

and fiber production process to lower the background loss to an acceptable value for 

application such as fiber amplifier.    

The fluorescence of fibre drawn from nanoparticle doped preform has been measured in a 

wavelength region around 1550 nm, under 980-nm excitation at room temperature. The 

emission curve is shown in Fig. 8 together with the emission from a standard alumino-

germano-silicate fibre. Both fluorescence curves have approximately the same shape, except 

for the shoulder around 1.55 µm: the fibre from the preform containing nanoparticles is 
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slightly lower and some structured shapes are visible, whereas the alumino-silicate fibre has a 

smooth shoulder. It is out of the scope of this paper to discuss the spectroscopic differences. 

Though we see that the luminescence from the nanoparticle doped fiber is much broaden 

compared to that from pure silica (not shown here): we have achieved to modify the close 

environment of the Er ions, as it is in a reference alumina-germano-silicate erbium-doped 

fiber, but using a different composition and structuration at a local nanometer scale. Further 

nanoscale analysis of the fibre structure as well as studies of refined spectroscopic details on 

these fibres are necessary to analyse whether the nanoparticles are present in the fibre and 

their effect of the rare-earth ions optical properties. 

4. Conclusions  

Er doped ZrO2-based nanocrystalline phase-separated preforms of optical fibres highly doped 

with Al2O3 have been fabricated using the MCVD and solution doping techniques. The 

prepared preform cores are nearly transparent without defects on the core-cladding interface. 

The presence of nanocrystalline particles inside the preform core has been observed with non-

uniform particle size distributions and diameters within 20-400 nm.  Initial results of 

measurements of fibre shows high base-line optical losses around 1300 nm explained by t 

strong light scattering on core inhomogeneities such as large nanoparticles or separated 

phases.  
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Figure caption: 

Fig.1: Representative refractive index profile of fabricated preform 

Fig. 2: Dopant distributions in the preform core evaluated using EMA  

Fig. 3: TEM image of phase-separation in the preform core (a) with spot EDX 

analysis of ZrO2 rich region (b) 

Fig. 4: SEM image showing nanoparticle inside the central core region of the preform 

Fig. 5:  The electron diffraction pattern of particle formed indicating crystalline nature 

Fig. 6: SEM image of the preform core and the core-cladding interface 

Fig. 7: Spectral losses of the fabricated Er-doped fibre  

Fig. 8: Normalized fluorescence curves from Er-doped fibres excited at 980 nm at 

room temperature. Thick solid line: fibre drawn from the nanocrystallite containing 

preform. Thin dashed line: standard alumino-germano-silicate fibre (see text) 
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Fig.1: Representative refractive index profile of fabricated preform 
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Fig. 2: Dopant distributions in the preform core evaluated using EMA 

 

Fig. 3: TEM image of phase-separation in the preform core (a) with spot EDX 

analysis of ZrO2 rich region (b) 
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Fig. 4: SEM image showing nanoparticle inside the central core region of the preform 

 

Fig. 5:  The electron diffraction pattern of particle formed indicating crystalline nature 
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Fig. 6: SEM image of the preform core and the core-cladding interface 

 
Fig. 7: Spectral losses of the fabricated Er-doped fibre 
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Fig. 8: Normalized fluorescence curves from Er-doped fibres excited at 980 nm at 

room temperature. Thick solid line: fibre drawn from the nanocrystallite containing 

preform. Thin dashed line: standard alumino-germano-silicate fibre (see text) 


