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Abstract

With a Brain-Computer Interface (BCI), it is nowadays possible to achieve a direct pathway between the brain and computers thanks

to the analysis of some particular brain activities. The detection of even-related potentials, like the P300 in the oddball paradigm

exploited in P300-speller, provides a way to create BCIs by assigning several detected ERP to a command. Due to the noise present

in the electroencephalographic signal, the detection of an ERP and its different components requires efficient signal processing and

machine learning techniques. As a consequence, a calibration session is needed for training the models, which can be a drawback

if its duration is too long. Although the model depends on the subject, the goal is to provide a reliable model for the P300 detection

over time. In this study, we propose a new method to evaluate the optimal number of symbols (i.e. the number of ERP that shall be

detected given a determined target probability) that should be spelt during the calibration process. The goal is to provide a usable

system with a minimum calibration duration and such that it can automatically switch between the training and online sessions. The

method allows to adaptively adjust the number of training symbols to each subject. The evaluation has been tested on data recorded

on 20 healthy subjects. This procedure lets drastically reduced the calibration session: height symbols during the training session

reach an initialized system with an average accuracy of 80% after five epochs.

Keywords: brain-computer interface, P300 speller, adaptive signal processing, angles between subspace, xDAWN spatial filters,

Bayesian Linear Discriminant Analysis

1. Introduction

Brain-Computer Interfaces (BCI), which aim at providing

a direct communication between the user’s brain and a com-

puter, have recently became an existing pluridisciplinary field

of research, e.g., (Wolpaw et al., 2002). Indeed the BCI field

requires research effort in many aspects: signal processing (e.g.,

signal enhancement), machine learning (e.g., classification), user

interface (e.g., ergonomics) and of course neuroscience for un-

derstanding the different neural processings. In fact, most of the

recent progress in BCI during the last decade has been achieved

by coupling knowledge from different research fields.

While BCI is a pluridisciplinary field of research, the evo-

lution of each field does not progress at the same pace over

time. The brain responses that are being detected have been

known for decades in neuroscience, e.g., (Vidal, 1973). Ma-

chine learning has grown a lot in the last two decades. To

some extends, some signal processing and classification tech-

niques remain relatively simple but they are efficient, due to the

noisy brain signals aspect and Occam’s razor principle. It is
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the case of Linear Discriminant Analysis (Fisher, 1936), which

stays very popular in the field. Moreover, in spite of the re-

cent improvements of BCI, they shall face the hard reality of

their early and still pending promises, e.g., pragmatic problems

for potential daily user. This paper focuses on some practical

aspects for non-invasive BCI.

The BCI performances are both related to the performance

of the signal processing techniques that are used for assign-

ing some EEG signal to a command and to the possibility of

the user to adapt herself/himself to the system over time. In-

deed, advanced machine learning, signal processing and clas-

sifier techniques have been widely used for improving BCIs

(Bashashati et al., 2007; Lotte et al., 2007; Müller et al., 2008).

In spite of these recent improvements in the BCI community,

several obstacles remain to fully transfer laboratory demonstra-

tor BCIs to commercial applications. Whereas tuning the differ-

ent parameters of a BCI in relation to a specific individual can

improve the performance of the system, this procedure is time

consuming. For training a classifier, a large database contain-

ing labeled EEG signal is often needed. To obtain these data,

a training session is required where the subject has to follow a

calibration procedure which can be long and discouraging.

Several types of potential BCI users can be distinguished.

First, BCIs are usually dedicated to people with severe motor

disabilities who are unable to communicate through any other

means. For these people, a BCI is the only way to communi-
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cate and the main challenge is to have a functional BCI. While

reducing the time of the training session can be a certain advan-

tage, it is not the main objective. For persons who suffer from

severe disabilities, like the locked-in syndrome, having a work-

ing BCI can still be challenging. Besides, one may add that

for some particular disabilities, it would be more advantageous

to consider an invasive solution. Second, BCIs can be used by

people with disabilities or elderly people who need a device to

facilitate their daily life. In this situation, current challenges

in BCI are to get a reliable BCI, which could be efficient daily

in real condition. For this group of potential users, the time

dedicated to the training session and the expected performance

shall be well balanced. Third, BCIs can be used by healthy

people as a complement to other device in multi tasks situa-

tions. In this type of situation, a BCI should ideally be flaw-

less: the calibration step shall be as short as possible. Indeed,

once the excitement of controlling something with the mind has

passed, the usability stays an important satisfaction criterion.

Some potential BCI users, even disabled, are highly demand-

ing in term of performance and usability. The last decade has

shown that BCIs can effectively work, they should now ideally

become plug’n’play (Cecotti, 2010). The capacity to transfer

technologies to commercial applications will be critical for the

future of BCI.

On a more practical aspect for BCI users, the calibration

step can be a drawback. With a lot of available data, it is pos-

sible to train classifiers and to improve the reliability of the de-

tection procedure. However, one may wonder when the signal

processing steps show their limits and it becomes useless to pur-

sue the training procedure. Therefore, a challenge is to deter-

mine the ideal training session duration for the personalization

of a BCI. On one hand, a too short training session would not

be enough and would involve the creation of a poorly trained

classifier. On the other hand a too long training session would

frustrate the user, decrease her/his motivation. The calibration

step shall not be considered as the final state of the system adap-

tation but only one first step for providing an efficient system: it

allows to switch automatically between the training session and

the online spelling use. For instance, classifiers can be trained

in an unsupervised way over time in such fashion that the sys-

tem adaptability stays invisible to the user. In addition, the user

can improve his performance by finding appropriate ways to

adapt his/her behavior to the system or to some feedbacks (Mar-

tinez et al., 2007; McFarland et al., 2006; Moore, 2003).

In this paper, we focus on the problem of the required time

that is needed to train a classifier and provide efficient results

for the P300-Speller. In other words, how much time a subject

has to spend during an experiment to efficiently determine the

features of his/hers. In the P300-Speller, the duration of the

training session can be evaluated as a number of characters to

spell. The duration for spelling a character is indeed determined

by initial setting of the speller like the inter-stimuli interval.

This research is part of an ongoing effort in the French BCI

community to reduce the time dedicated to the calibration step

of the P300-Speller.

The paper is organized as follows: each step of the P300 de-

tection, from the spatial filtering methods till the classification,

Figure 1: Classical P300 interface with the third row intensified.

is described in the second section. The experimental protocol

is then detailed in the third section. Finally, the results of the

offline classification are presented and discussed in the last sec-

tion.

2. P300 speller and material

2.1. P300-Speller brain computer interface

The BCI problem addressed in this paper concerns the P300-

speller, which enables people to write a text on a computer (Far-

well and Donchin, 1988). It is based on the oddball paradigm:

the task is to discriminate between epochs containing a P300

potential evoked by a (rare) target stimulus and epochs associ-

ated with the (frequent) non-target stimuli. In the classical P300

BCI, a 6 × 6 matrix containing all the available symbols is dis-

played on a screen (Fig. 1). To select a symbol, the user has to

focus her/his attention on the symbol she/he wants to spell. The

stimuli are the intensification of the rows and columns in a ran-

domly order. Hence, the intensification of the target symbol (i.e.

corresponding row and column) is a rare and unexpected event

which elicits a P300 potential (i.e. a positive voltage deflec-

tion with a latency of about 300ms). Stimulation is organized

in blocks of 12 flashes such that each row/column is intensified

once per block in a random order. Blocks of 12 intensifications

are repeated Nepoch times for each symbol: therefore 2 × Nepoch

epochs amount the 12 × Nepoch possible epochs should contain

a P300 potential. To identify these epochs allows to determine

the target symbol as the intersection of the detected row and

column.

2.2. Data and pre-processing

Data were recorded from 20 healthy subjects (age = 26±5.7

years, 13 males and 7 females) (Maby et al., 2010). Subjects

were wearing an EEG cap with 32 active electrodes (actiCap,

Brain Products GmbH, Munich). The electrodes for reference

and the ground were placed on the nose and on the forehead,

respectively. Data from five sessions have been recorded:

• training session : 50 symbols with 10 epochs (i.e. Nepoch =

10),

• test session 1: 60 symbols with 3 epochs (i.e. Nepoch = 3),

• test session 2: 60 symbols with 5 epochs (i.e. Nepoch = 5),
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• test session 3: 60 symbols with 8 epochs (i.e. Nepoch = 8),

• test session 4: 60 symbols with 10 epochs (i.e. Nepoch =

10).

For training session, the inter-stimuli interval (ISI) is equal to

170ms. For each test session, four different values of ISI were

tested (110ms, 150ms, 190ms, and 230ms) with 15 symbols

for each value. It is worth noting that different ISIs may im-

pact the classification accuracy, however several values of ISIs

have been used to test the robustness of the proposed algorithm.

For all these sessions, the stimulus onsets are known as well as

the corresponding intensified row or column. The users have

to copy words, as a consequence the target stimuli onsets are

known for all the training and test sessions but this information

is only used with the training session.

EEG signals were initially sampled at 100Hz. Data pre-

processing included a fourth order Butterworth bandpass filter

between 1Hz and 20Hz.

3. Methods: adaptive training session

3.1. Spatial filters

Recorded EEG signals not only contain the P300 poten-

tials but also ongoing cerebral activity and eventually muscu-

lar/ocular artifacts. A usual step to enhance a particular brain

pattern is to use spatial filters: e.g., independent component

analysis (Comon and Jutten, 2010; Xu et al., 2004), common

spatial pattern (Koles, 1991; Blankertz et al., 2008) or more re-

cently xDAWN algorithm (Rivet et al., 2008, 2009). This lat-

ter method (Appendix A) is chosen since it has been shown to

provide accurate spatial filters. Let X(i) ∈ R
Nt×Ns denote the

recorded signals related to the i-th symbol, where Nt and Ns

are the number of samples and sensors, respectively. xDAWN

algorithm provides spatial filters Û(I) ∈ RNs×N f , with N f the

number of spatial filters and I the set of training symbol used

to train these spatial filters. The enhanced signals S (i) ∈ RNt×N f

of the i-th symbol are thus given by S (i) = X(i)Û(I).

3.2. Classification

The enhanced signals are then segmented in order to iden-

tify which row/column elicits a P300. Each segment that rep-

resents a row/column includes all samples between 0 and 1s

after the beginning of the intensification for all sensors: S
(i)

(k, j)
∈

R
Ne×Ns is then the enhanced signal of the j-th repetition of the

i-th symbol related to the row/column indexed k. Ne is the num-

ber of samples corresponding to 1s (in this study, Ne = 100).

Finally, the corresponding feature vector p
(i)

(k, j)
∈ R(NeNs/4) is ob-

tained from the concatenation of all time-course samples in the

enhanced signals S
(i)

(k, j)
which have been decimated by a fac-

tor four (i.e. resampled at 25Hz). Among the proposed classi-

fiers that are considered for BCI, Bayesian linear discriminant

analysis (BLDA) is chosen since it has been proved to be effi-

cient (Hoffmann et al., 2008). The discriminant vector d(I) is

estimated from the set of pairs {p
(i)

(k, j)
, t

(i)

(k, j)
}i∈I,1≤ j≤Nepoch,1≤k≤12 ob-

tained from the set I of symbols in the training database, where

t
(i)

(k, j)
= 0 or 1 is the class index associated with the correspond-

ing feature vector, i.e. 1 (resp. 0) if the related intensification is

a target (resp. not a target).

3.3. Adaptive training session

The proposed adaptive algorithm aims at estimating the op-

timal amount of data needed in the training session to learn both

the spatial filters U and the classifier d. Starting from one sym-

bol in the training set I, the proposed method increases the

number of training symbols until the convergence is reached as

detailed bellow. As already pointed out, one can used a cross

validation technique to estimate the classification accuracy by

splitting the data base into two sets. The first one is used to

train the spatial filters and the classifier. The second set is used

to test the performance. This splitting is then repeated several

times as in the K-fold method. However this procedure needs

a lot of data to be accurate. The proposed method avoids this

drawback by predicting the accuracy without the need to com-

pute it.

Let us suppose that at the i-th iteration, i symbols compose

the training set, i.e. Ii = {1, · · · , i}. The training database is

thus composed of the set of {X( j)} j∈Ii
for which the target and

non-target onsets are known. This set of training data allows to

estimate both

• the spatial filters Û(Ii) thanks to the xDAWN algorithm

(Section 3.1),

• the discriminative vector d(Ii) thanks to the BLDA (Sec-

tion 3.2).

The problem is now to know if adding a new symbol in the

training session is needed to improve the classification accu-

racy of the test session. Since BLDA is a linear classifier, then

the performance accuracy directly depends on the values of the

components of the discriminative vector. As a consequence,

if adding a new data in the training set does not change (too

much) these values then one can conclude that the convergence

is reached. The similitude between the two discriminative vec-

tors d(Ii) and d(Ii−1) is based on the principal angle between the

two subspaces spanned by these vectors. Indeed, reshape vec-

tors d(·) ∈ RNt Ns/4, which mixes time and space features, into a

matrix D(·) ∈ RNt/4×Ns , which separates the time features along

the rows and space features along the columns, defines a sub-

space S(·) of dimension Ns in R
Nt/4 (as Ns ≤ Nt/4). The close-

ness between d(Ii) and d(Ii−1) is thus defined as the principal

angle between S(Ii) and S(Ii−1) defined by

cos θ(Ii) = max
u∈S(Si )

max
v∈S(Ii−1)

uT v (1)

as recalled in Appendix B. Because of the variance in the esti-

mation of the discriminative vector d(·) due to the few number

of data in the training session, one can smooth the evolution of

θ(Ii) over the iterations i thanks to

θ
(i)
s = (I + δDT D)−1

θ
(i), (2)
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where θ(i) = [θ(I1), · · · , θ(Ii)]T , I ∈ R
i×i is the identity matrix,

D ∈ R(i−1)×i is the Toeplitz bidiagonal matrix whose first row is

[−1, 1, 0, · · · , 0]

D =



































−1 1 0 · · · 0 0

0 −1 1 0 · · · 0
...

...
...

...
...
...

0 0 · · · 0 −1 1



































and δ > 0 is the smoothing parameter. This latter parameter

allows to obtain a trade-off between the fidelity to the original

data θ(i) and the smoothness of the regularized angles θ
(i)
s . In-

deed, θ
(i)
s is the solution of

θ
(i)
s = arg min

θ

‖θ(i) − θ‖22 + δ‖Dθ‖
2
2,

where ‖θ(i)−θ‖2
2

represents the fidelity to the data and ‖Dθ‖2
2

the

smoothness of the estimated solution, respectively. The conver-

gence is reached when the last value θ
(Ii)
s of θ

(i)
s is larger than a

threshold η. Finally, the full algorithm to adaptively select the

optimal size of the training set is summarized in Algorithm 1.

Algorithm 1 Adaptive training session.

{Initialization}

Choose the threshold η and smoothing parameter δ

I0 = ∅, i = 0, ǫ = TRUE and d(∅) = 0

{Learning loop}

while ǫ do

Increment the counter: i← i + 1

Add a symbol in the training set: Ii = Ii−1

⋃

i

Estimate spatial filters Û(Ii) from all {X( j)} j∈Ii
(Sec-

tion 3.1)

Estimate classifier d(Ii) (Section 3.2)

Compute angle θ(Ii) between S(Ii) and S(Ii−1) (1)

Smooth angle evolution θ
(Ii)
s (2)

if θ
(Ii)
s > η then

Stop training: ǫ = FALSE

end if

end while

The choice of the two parameters η and δ should be related

to the following remarks. Choosing a threshold η such that cos η

is close to one ensures that the convergence is reached but in-

creases the number of data in the training session. On the con-

trary a smaller value of cos η will speed up the training session

but the classification accuracy could be reduced. Secondly, a

too large value of the smoothing parameter δ only allows small

variations of the smooth angles θ
(Ii)
s and as a consequence re-

quires lot of training data to reach the threshold η. On the con-

trary, a too small value of δ does not smooth enough the vari-

ations of θ(Ii), the convergence criterion could then be verified

only due to the noise variance, which means that the training

dataset could be not large enough to ensure good classification

accuracy.
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(a) Test session 1: Nepoch = 3.
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(b) Test session 2: Nepoch = 5.
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(c) Test session 3: Nepoch = 8.
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(d) Test session 4: Nepoch = 10.

Figure 2: Classification accuracy in relation to the number of symbols used in

the training session.

4. Results

In this section, the classification accuracy in relation to the

number of symbols in the training data set is presented in Sec-

tion 4.1. Investigations of the influence of the threshold eta and

of smoothing parameter δ are then presented in Section 4.2 and

Section 4.3, respectively.

In this section, the box plots represent distribution of the

displayed quantity for all subjects. The central mark is the me-

dian, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points the algorithm

considers to be not outliers, and the outliers are plotted individ-

ually.
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Figure 3: Relation between the classification accuracy achieved with the test session 2 (Nepoch = 5) and the angle between discriminative vectors d(Ii) and d(Ii−1).

For each of the 20 subjects (from bottom left to top right), the continuous line is the classification accuracy (left labels) and the dots are the cosinus of the angle θ(Ii)

(right labels).

4.1. Number of training symbols

The classification accuracy versus the number of symbols

in the training data set is presented on Figure 2. For a fixed

number of training symbols, the chronological order during the

training session is chosen, i.e., when i symbols are selected,

they correspond to the first i symbols in the training session.

The spatial filters and the classifier are then tested on the four

testing session with 3, 5, 8 or 10 epochs, respectively. Obvi-

ously, the classification accuracy increases with the number of

symbols in the training set. But one can see that increasing too

much the number of training symbol do not increase drastically

the classification accuracy. Indeed, with the test session 4 if the

objective is to achieve at least 80% (resp. 90%) of classification

accuracy, a t-test shows that there is no significative difference

with more than 9 (resp. 16) training symbols. Moreover, this

is confirmed on the test session 2 and an average objective of

80%, a t-test shows that using more than 15 training symbols

does not increase significantly the classification accuracy. This

figure highlights the possibility to reduce the number of training

symbols without a significant breakdown of the classification

accuracy. Clearly, the classification accuracy increases with the

number of epochs (from Figure 2(a) to Figure 2(d)).

For the 20 subjects, the classification accuracy and the an-

gle θ(Ii) between d(Ii) and d(Ii−1) in relation to the number of

training symbols is presented on Figure 3. This figure shows

the high level of correlation between the classification accuracy

and the evolution of the angle θ(Ii). For most of the subjects,
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Figure 4: Distribution of the correlation coefficients between the angles θ(Ii)

and the classification accuracy achieved with the four test session (Nepoch =3,

5, 8 or 10.)

the two curves are very correlated: as a consequence the an-

gles θ(Ii) can be used to predict the number of training symbols

needed to reach the convergence of the classification accuracy

without using a cross validation approach. This is clearly shown

on Figure 4 which displays the distributions of the correlation

coefficients between the angles θ(Ii) and the classification accu-

racy achieved with the four test sessions. Indeed, the median

correlation coefficient is comprised between 0.88 and 0.90. For

all the correlation coefficients, the p-value is less than 1.6e-6

with a 99.9% confidence interval.
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Figure 5: Number of selected symbols in the training session vs the threshold η

expressed in degree. Smoothing parameter δ is set to 2.
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Figure 6: Number of selected symbols in the training session vs the smoothing

parameter δ. Threshold angle η is set to 5◦.

4.2. Influence of threshold η

Figure 5 presents the number of selected symbols in the

training session by the proposed algorithm (Algo. 1) in rela-

tion with the threshold η. The number of selected symbols de-

creases as the threshold η increases. Moreover, the dispersion

of the number of selected symbols is quite small as long as the

threshold η is larger than 3◦. There is thus a direct relationship

between the threshold η and the number of the selected sym-

bols. As a consequence, one can estimate the number of se-

lected symbols by choosing the threshold η. Finally, this curve

presents a knee between η = 5◦ and η = 10◦, which appears to

be a good trade-off between the duration of the training session

and the provided classification accuracy in the test sessions.

4.3. Influence of smoothing parameter δ

Figure 6 presents the number of selected symbols in the

training session by the proposed method (Algo. 1) in relation

with the smoothing parameter δ. The number of selected sym-

bols increases with the smoothing parameter. This growth is

relatively limited in average as long as the smoothing param-

eter δ is less than 10. However, even a limited smoothing of

the angles θ(I) (δ less than .3) increases the smallest number of

selected symbols from 8 to 12. This has a direct impact of the

classification accuracy by improving it in average from 67% to

75%.

4.4. Adaptive training

Figure 7 compares the classification accuracy achieved by

three different methods of training. ‘Ref’ is the reference method

Test session Increase of classification accuracy

1 (Nepoch = 3) 2 ≺ 3 ≺ 4 ≺ 6 ≺ 9 ≺ 10 ≺ 19 ≺ 21 ≺ 50

2 (Nepoch = 5) 2 ≺ 3 ≺ 5 ≺ 7 ≺ 9 ≺ 15 ≺ 17 ≺ 26

3 (Nepoch = 8) 2 ≺ 3 ≺ 4 ≺ 5 ≺ 8 ≺ 11 ≺ 13 ≺ 36 ≺ 49

4 (Nepoch = 10) 2 ≺ 4 ≺ 6 ≺ 7 ≺ 9 ≺ 15 ≺ 25 ≺ 43

Table 1: Number of necessary symbols in the training database to increase the

classification accuracy (CA) of the test session. Column ”Increase of classifi-

cation accuracy” indicates the number of symbols in the training database that

are required to increase the CA based on a left-tailed t-test (α = 0.01): n1 ≺ n2

means that n2 is the smallest number such that the first n2 symbols of the train-

ing database are necessary to increase the CA compared to the CA achieved

with the first n1 symbols of the training database.

which exploits all the 50 symbols in the training set. ‘Adaptive’

is achieved by the proposed method (η = 20◦ and δ = 10).

For the ‘Fix’ method, the same number of training symbols is

used for all subjects which is chosen to be equal to the median

of the number of training symbols provided by the ‘Adaptive’

method. With the chosen parameters η and δ, this fixed num-

ber is equal to 8. In this experiment, η is chosen large to have

a short training session and as a consequence, δ is also chosen

large to avoid a too short training session. It is interesting to

note that for almost all the subjects the classification accuracy

is similar with the ‘Fix’ (78%) or ‘Adaptive’ methods (80%),

while the ‘reference’ achieves 88%. Indeed, the number of se-

lected symbols in the training session is quite equal to 8 for all

the subjects. However, the proposed adaptive procedure allows

to adjust the training session to the specificity of the subject.

For instance, for subject 3, the maximal accuracy is achieved

with a few number of training symbols (Fig. 3), the adaptive

procedure has reduced the training session to 5 symbols. More-

over, for subject 8 who needs more symbols to reach the con-

vergence (Fig. 3), the adaptive method stops after 10 training

symbols. The same remark can be expressed for subject 12. It

is worth noting that the subjects, for whom a large number of

symbols is selected in the training phase, are generally subjects

with the lowest classification accuracy, for instance subjects 8

and 12 (Fig. 3).

Finally, one can show on Table 1 that to add a symbol in

the training database until ten symbols increases significantly

the CA based on a left-tailed t-test (α = 0.01 and the p-values

remain smaller than 0.01). Then, one have to add definitively

more symbols in the training database to continue to increase

the CA. This last remark shows that the proposed method is

well adapted to select automatically the minimum number of

necessary symbols in the training database.

5. Conclusions

The problem of the optimal training session is still chal-

lenging to provide user friendly BCIs. However, while almost

all the current studies only used a fixed number of symbols to

train the BCI elements, the current paper investigates an adap-

tive method to adjust the number of training data. Indeed, the

classification accuracy highly depends on the signal processing

methods and on the classification techniques to enhance and
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Figure 7: Comparison of classification accuracies achieved by different training procedures. For the ’adaptive’ method, η = 20◦ and δ = 10. For ’Fix’ and ’Ref’

methods, 8 and 50 training symbols are used, respectively. The test session is the second one Nepoch = 5.

to detect the P300 potentials. These steps are of greatest im-

portance to ensure the success of a BCI since a poor accuracy

can discourage people to use it. The method proposed in this

study to switch automatically between the training session and

the online session seems to be very promising. As it is shown

in the present work, the angle between two consecutive classi-

fier vectors is suitable to check the convergence of the training

session. The proposed method allows to have a good initializa-

tion of a P300 speller so that people can start to use the BCI

without frustration. Furthermore, the adaptive training session

would not only benefit BCI users but also other studies using the

P300 detection. Many physiological and psychological studies

rely on measurement of the P300 to examine event related po-

tentials, like in combination to behavioral tasks. As the P300

detection has a broad range of uses in clinical research, an adap-

tive training session would offer a quick evaluation of the P300

characteristics for a particular individual.

Future works will deal with the use of this method in a real

context, i.e. a real automatic switch between the training ses-

sion and the online one. Moreover, the next challenge concerns

the improvement of this method and its extension to provide an

online training so that the BCI can continuously adjust itself to

the environment or to the user’s physiology (e.g., tiredness or

concentration).

Appendix A. xDAWN spatial filters

In this appendix, the principle of the xDAWN algorithm is

briefly reprised (Rivet et al., 2008, 2009). Its goal is to maxi-

mize the signal to signal-plus-noise ratio (SSNR). This method

relies on two assumptions: i) signal is made of two typical pat-

tern, one evoked by the targets and one evoked by all stimuli

(target and non-target ones); ii) responses evoked by the target

stimuli could be enhanced by spatial filtering. Let X ∈ R
Nt×Ns

denote the recorded signals, where Nt and Ns are the number of

samples and sensors, respectively. We denote the pattern syn-

chronized with the target and non-target stimuli by A1 ∈ R
N1×Ns

and A2 ∈ R
N2×Ns . Thus,

X = D1A1 + D2A2 + N, (A.1)

where D1 ∈ R
Nt×N1 and D2 ∈ R

Nt×N2 are Toeplitz matrices

whose first column entries are set to zero except for those that

correspond to target stimuli and all stimuli, respectively. N1

and N2 indicate the number of samples in responses A1 and A2.

N ∈ RNt×Ns denotes the residual noise.

The aim of the xDAWN algorithm is to estimate N f spatial

filters U1 ∈ R
Ns×N f so that the SSNR defined by

g(U) =
Tr

(

UT Σ̂1U
)

Tr
(

UT Σ̂XU
)

(A.2)

is maximum

Û1 = arg max
U1

, g(U1) (A.3)

where Tr(·) is the trace operator and Σ̂1 = ÂT
1

DT
1

D1Â1, Σ̂X =

XT X. Note that Â1 is the least mean square estimation of the un-

known target evoked response A1. Since D1A1 and D2A2 could

overlap, Â1 is estimated from

(

Â1

Â2

)

=
(

DT D
)−1

DT X, (A.4)

with D = [D1,D2], Â1 is thus estimated by Â1 = BT
1

X. To

estimate the spatial filters Û1, one computes the generalized

eigenvalue decomposition (Golub and Van Loan, 1996) of pair

(Σ̂1, Σ̂X) such that

Σ̂1U = Σ̂XUΛ, (A.5)

where Λ is a diagonal matrix with entries equal to the general-

ized eigenvalues λ1 ≥ · · · ≥ λNs
and U is a full matrix whose

columns are the corresponding eigenvectors. Finally, the en-

hanced signals are given by

Ŝ 1
△
= XÛ1 = D1A1Û1 + D2A2Û1 + NÛ1, (A.6)

where Û1 is the matrix whose N f columns are the eigenvectors

associated with the first N f largest eigenvalues λi.

Appendix B. Angle between subspaces

This appendix summarizes some useful considerations about

angles between subspaces (Golub and Van Loan, 1996). Let S1

and S2 be two subspaces in R
m. The principal angles θk be-

tween subspaces S1 and S2 are defined by

cos(θk) = max
u∈S1

max
v∈S2

uT v = uT
k vk, (B.1)
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subject to ‖u‖2 = ‖v‖2 = 1, uT ui = 0, and vT vi = 0, ∀ i =

{1, · · · , k − 1}. Let Q1 ∈ Rm×p and Q2 ∈ Rm×q be two orthonor-

mal basis of S1 and S2, respectively. Assume that p ≥ q. The

angles between subspaces can be efficiently obtained by the sin-

gular value decomposition of QT
1

Q2:

YT (

QT
1 Q2

)

Z = diag(λ1, · · · , λq).

The principal angles and vectors are then obtained by cos(θk) =

λk, k = {1, · · · , q} and [u1, · · · ,up] = Q1Y , [v1, · · · , vq] = Q2Z,

respectively.

Notice that θk is such that 0 ≤ cos θk ≤ 1, cos θk = 0 means

that the two related subspaces are orthogonal and cos θk = 1

means that there is an intersection of the two subspaces.
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