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Uniqueness and regularity of steady states of the Boltzmann equation for viscoelastic hard-spheres driven by a thermal bath

INTRODUCTION

1.1. General setting. We investigate in the present paper the properties of the steady states of the spatially homogeneous diffusively driven inelastic Boltzmann equation for hard spheres interactions and non-constant restitution coefficient. More precisely, we consider inelastic hard-spheres particles described by their distribution density F = F (v) 0, v ∈ R 3 and we consider the case in which F satisfies the stationary equation

Q e (F, F ) + µ∆F = 0 (1.1)
for some positive thermalization (or diffusion) coefficient µ > 0. Moreover, assume F has a given mass ̺ > 0 and vanishing momentum:

R 3 F (v) dv = ̺, R 3 
F (v)v dv = 0.
The diffusion operator µ∆ v F (v) appearing in (1.1) represents a constant heat bath which models particles uncorrelated random accelerations between collisions. The quadratic collision operator Q e (F, F ) models the interactions of hard-spheres by inelastic binary collisions where the inelasticity is characterized by the so-called normal restitution coefficient e(•) that we shall assume here, in contrast with previous contributions on the subject, to be non-constant. This restitution coefficient quantifies the loss of relative normal velocity of a pair of colliding particles after the collision with respect to the impact velocity. Namely, if
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v and v ⋆ denote the velocities of two particles before collision, their respective velocities v ′ and v ′ ⋆ after collision are such that

(u ′ • n) = -(u • n) e(|u • n|), (1.2) 
where the restitution coefficient e := e(|u • n|) is such that 0 e 1. The unitary vector n ∈ S 2 determines the impact direction, that is, n stands for the unit vector that points from the v-particle center to the v ⋆ -particle center at the instant of impact. Here above

u = v -v ⋆ , u ′ = v ′ -v ′
⋆ , denote respectively the relative velocity before and after collision. Assuming the granular particles to be perfectly smooth hard-spheres of mass m = 1, the velocities after collision v ′ and v ′ ⋆ are given, in virtue of (1.2) and the conservation of momentum, by

v ′ = v - 1 + e 2 (u • n) n, v ′ ⋆ = v ⋆ + 1 + e 2 (u • n) n. (1.
3)

The main assumption on e(•) we shall need for our analysis is listed in the following, see [START_REF] Alonso | Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data[END_REF].

Assumptions 1.1. Throughout the paper, one assumes the following to hold:

(1) The mapping r ∈ R + → e(r) ∈ (0, 1] is absolutely continuous and non-increasing.

(2) The mapping r ∈ R + → ϑ e (r) := r e(r) is strictly increasing.

(3) There exist a > 0 and γ 0 such that e(r) ≃ 1a r γ as r ≃ 0.

(

The assumption that e(•) is non-increasing can be relaxed and replaced by the more general Assumptions 3.1 in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] (notice that, if e(•) is non-increasing, it is proven in [6, Appendix A] that such Assumptions 3.1 are indeed satisfied). In several places in our analysis, we shall need slightly stronger assumptions on the restitution coefficient that will be properly stated when needed. When no supplementary assumption is specified means that the stated result is true under the sole Assumptions 1.1. Notice that all these assumptions will be met by the visco-elastic hard-spheres model which is the most physically relevant model for applications [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF]. For such a model, the properties of the restitution coefficient have been derived in [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF][START_REF] Schwager | Coefficient of normal restitution of viscous particles and cooling rate of granular gases[END_REF]; in particular, e(r) can be defined explicitly by the following series

e(r) = 1 + ∞ k=1 (-1) k a k r k 5 , r 0 (1.5)
where a k > 0 for any k ∈ N are parameters depending on the material viscosity. In such a case, Assumptions 1.1 are met with γ = 1 5 and a = a 1 . In the sequel, it shall be more convenient to deal with a second, and equivalent, parametrization of the post-collisional velocities. Fix v and v ⋆ with v = v ⋆ and let u = u/|u|. Performing in (1.3) the change of unknown σ = u -2 ( u • n) n ∈ S 2 provides an alternative parametrization of the unit sphere S 2 . In this case, the impact velocity reads |u• n| = |u| 1-u•σ 2 and the post-collisional velocities v ′ and v ′ ⋆ are then given by

v ′ = v -β u -|u|σ 2 , v ′ ⋆ = v ⋆ + β u -|u|σ 2 (1.6)
where

β = 1+e 2 = β |u| 1-u•σ 2 ∈ 1 2 , 1 .
This representation allows us to give a precise definition of the Boltzmann collision operator in weak form by

R 3 Q e (f, f )(v)ψ(v) dv = 1 2 R 3 ×R 3 ×S 2 f (v)f (v ⋆ ) ψ(v ′ ) + ψ(v ′ ⋆ ) -ψ(v) -ψ(v ⋆ ) dσ dv ⋆ dv (1.7)
for any test function ψ = ψ(v). Here, the post-collisional velocities v ′ and v ′ ⋆ are defined by (1.6). Notice that

|v ′ | 2 + |v ′ ⋆ | 2 -|v| 2 -|v ⋆ | 2 = -|u| 2 1 -u • σ 4   1 -e |u| 1 -u • σ 2 2   ,
thus, it follows that (see [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] for details)

R 3 Q e (f, f )(v)|v| 2 dv = - R 3 ×R 3 f (v)f (v ⋆ )Ψ e (|u| 2 ) dv dv ⋆ 0 (1.8) 
where the energy dissipation potential Ψ e is given by Ψ e (r) := r 3/2 2 1 0

1e( √ rz) 2 z 3 dz, ∀r > 0.

(1.9)

Notice that, under Assumptions 1.1, the mapping Ψ e (•) is convex and non-decreasing (see again [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]). The functional

I e (f ) := R 3 ×R 3 f (v)f (v ⋆ )Ψ e (|u| 2
) dv dv ⋆ (1.10) can be seen as an energy dissipation functional for the operator Q e . In particular, multiplying (1.1) by |v| 2 , one sees that I e (F ) = 6µ̺ for any solution F to (1.1) with mass ̺.

Stationary solutions for equation (1.1) in the case of constant restitution coefficient have been studied from the mathematical viewpoint by different authors. Existence of such solutions was shown in [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]. The study of moments and tails was described in [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]. Uniqueness and stability of these steady states (in the elastic limit) was presented in [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF]. Different kinds of forcing terms have also been considered in the literature. In particular, for the inelastic Boltzmann equation in self-similar variables (corresponding to an anti-drift forcing term), stationary solutions correspond to the so-called homogeneous cooling state and uniqueness, study of the elastic limit and convergence to self-similarity were presented in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]. Uniqueness of steady states for the Boltzmann equation under the thermalization induced by a host medium with a fixed Maxwellian distribution was recently presented in [START_REF] Bisi | Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath[END_REF]. We mention that the case of dissipative Maxwell molecules has been studied as well in [START_REF] Bobylev | On some properties of kinetic and hydrodynamic equations for inelastic interactions[END_REF] and [START_REF] Carlen | Strong convergence towards homogeneous cooling states for dissipative Maxwell models[END_REF].

Regarding the existence of stationary states, it is not very difficult to extend the results given in [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF] to non-constant restitution coefficient e(•) and obtain the existence of a steady solutions for the diffusively driven Boltzmann equation (1.1). Theorem 1.2. Assume that the restitution coefficient e(•) satisfies Assumption 1.1. Then, for any µ > 0 and any ̺ > 0, there exists a nonnegative

F = F (v) ∈ L 1 2 (R 3 ) ∩ L 2 (R 3 ) such that Q e (F, F ) + µ∆F = 0 with R 3 F (v) dv = ̺ and R 3 vF (v) dv = 0.
The proof of this theorem follows the path given for constant inelasticity parameter in [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF] and can be deduced from the properties of the solution to the Cauchy problem associated to (1.1). We refer to Appendix B for the main steps of the proof of the Theorem 1.2.

1.2. Scaling argument and formal limit λ → 0. Let us discuss the main concern of the present work, namely, proving the uniqueness of solutions to (1.1) Q e (F, F ) + µ∆F = 0 in the weak thermalization regime, i.e. when the diffusion parameter µ is sufficiently small. In order to understand this regime and the strategy fix µ > 0 and denote by F a solution to (1.1) with given mass ̺ and vanishing momentum. Introduce the following rescaled solution G λ (v) = λ 3 F (λv), λ > 0 (1.11) and the rescaled restitution coefficient e λ (r) = e(λr) ∀r > 0.

Since

λ 2 Q e (F, F )(λv) = Q e λ (G λ , G λ )(v) and λ 5 ∆ v F (λv) = ∆ v G λ (v)
for any v ∈ R 3 , one gets that G λ is a solution to the rescaled stationary problem

Q e λ (G λ , G λ ) = - µ λ 3 ∆ v G λ .
(1.12)

In other words, for any λ > 0 the rescaled distribution G λ is a solution to the steady diffusively driven Boltzmann equation with thermalization coefficient µ/λ 3 and restitution coefficient e λ (notice that e λ still satisfies Assumptions 1.1). For any λ > 0, the solution to (1.1) is unique if and only if the solution to (1.12) is unique. Such a scaling is particularly interesting because, in addition to preserve mass and momentum, when λ → 0 the rescaled restitution coefficient e λ (r) converges pointwise to the elastic restitution coefficient lim λ→0 e λ (r) = 1 for any r 0. Consequently, one formally expects that

Q e λ (f, f ) ≃ Q 1 (f, f ) as λ → 0
where Q 1 (f, f ) denotes the classical Boltzmann operator for elastic interactions. This means that the dissipation of energy is expected to vanish as λ → 0. Formally, one sees that if µ > 0 is kept fixed the right side of (1.12) will be infinite in the limit λ → 0. In other words, the thermalization µ has to be reduced to compensate the loss of dissipation, i.e. one has to choose a diffusion coefficient µ = µ λ depending on λ such that lim λ→0 µ λ = 0.

Intuitively, it make sense to look for a parameter that keeps the solution's energy

E λ = 1 ̺ R 3 G λ (v)|v| 2 dv
of order one in the limit λ → 0. Let us investigate the correct scaling by multiplying (1.12) by |v| 2 and integrating over R 3 to get

6µ λ ̺ = I e λ (G λ )
where I e λ is the energy dissipation functional associated to the rescaled restitution coefficient e λ given by

I e λ (f ) = R 3 ×R 3 f (v)f (v ⋆ )Ψ e (λ 2 |u| 2 ) dv dv ⋆ . (1.13)
Since Ψ e is convex, a simple use of Jensen's inequality yields

6µ λ ̺ ̺ 2 Ψ e λ 2 E λ . More- over, Ψ e (r) ≃ ar 3+γ 2 4 + γ as r ≃ 0, (1.14) 
from which it follows that

λ 2 E λ = O(µ 2 3+γ
λ ) as λ ≃ 0. Consequently, to keep the kinetic energy E λ of unit order we must have

µ := µ λ = λ 3+γ .
For such a scaling, equation (1.12) becomes

Q e λ (G λ , G λ ) + λ γ ∆ v G λ = 0.
(1.15)

Note that with our choice of µ λ the limit G 0 as λ → 0 of G λ , if it exists, has to satisfy

Q 1 (G 0 , G 0 ) = 0.
In other words, G 0 is a suitable Maxwellian with same mass and momentum that G λ . Moreover, using the dissipation functional

6̺ = 1 λ γ R 3 ×R 3 G λ (v)G λ (v ⋆ )Ψ e (λ 2 |v -v ⋆ | 2 ) dv dv ⋆ (1.16)
one expects that the limit G 0 satisfies

6̺ = R 3 ×R 3 G 0 (v)G 0 (v ⋆ )ζ 0 (|v -v ⋆ | 2 ) dv dv ⋆ (1.17) with ζ 0 (r 2 ) = lim λ→0 1 λ γ Ψ e (λ 2 r 2
) (several properties of such energy dissipation functionals are investaged in Appendix A). With this observation, it is not difficult to prove that the unique possible limit as λ → 0 of G λ is the Maxwellian distribution

M(v) = ̺ (2πΘ) 3/2 exp - |v| 2 2Θ (1.18)
for some explicit temperature Θ determined by the above identity (1.17).

The limiting Maxwellian M(v) is called the quasi-elastic limit for this problem. With this knowledge we will prove uniqueness of solutions for the problem (1.15) when the rescaling parameter λ is small (lying in an explicit interval). In this sense our uniqueness result will be valid in the weak thermalization regime.

Main results and strategy.

Let us state precisely the main problems we wish to address in this document:

(1) Prove that any solution G λ to (1.15) satisfies

lim λ→0 G λ = M
in some suitable sense. Specifically, find a suitable Banach space X such that G λ ∈ X for any λ > 0 and lim λ→0 G λ -M X = 0.

(2) Prove that solution G λ to (1.15) is unique, at least in the weak elastic regime. That is, determine λ † ∈ (0, 1) such that S λ reduces to a singleton as soon as λ ∈ (0, λ † ].

We use the symbol S λ to denote the set of solution G λ to (1.15) with given mass and vanishing momentum. (3) Provide quantitative answers to the two previous questions. More precisely, find the rate of convergence of G λ towards M as well as some estimate for the parameter λ † .

The first question is answered with the following theorem (see Theorem 4.1 for a detailed statement) that can be interpreted as a quasi-elastic limit result. 

lim λ→0 G λ -M H ℓ k = 0 ∀k 0, ∀ℓ ∈ [0, m -2].
The limit M is the Maxwellian given by (1.18) with an explicit temperature Θ given by (4.1).

The convergence also holds in exponential weighted L 1 -spaces.

The proof of the above result is based upon a compactness argument and requires a careful investigation of the regularity properties of the solution to (1.15). Our approach for the study of regularity of solutions to (1.15) differs from the related contributions on the matter [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF][START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] where the regularity of steady solutions is deduced from the properties of the time-dependent problem (namely on the propagation of regularity combined with the damping in time of the singularities for solution to the time-dependent problem, see [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]). In contrast with these results, our methodology is direct and relies only on the steady equation (1.15). It is not difficult to prove by a bootstrap argument that any solution G λ to (1.15) is smooth, however, it is more delicate to obtain regularity estimates which are uniform with respect to the parameter λ > 0 since the diffusive heating in (1.15) is vanishing in the limit λ → 0. On the basis of new regularity estimates of the collision operator (see Theorem 2.5), we can prove the following proposition. 

G λ H ℓ k < ∞ ∀k 0, ℓ ∈ (0, m -1].
Theorem 1.3 serves as a fundamental brick to prove the main result of the paper.

Theorem 1.5. Under suitable regularity assumptions on e(•) there exists λ † ∈ (0, 1] such that the set S λ of solutions to (1.15) with given mass ̺ and vanishing momentum reduces to a singleton for any λ ∈ [0, λ † ].

Theorem 1.5 can be interpreted as an uniqueness result in the quasi-elastic regime where λ is small. This theorem, however, can also be interpreted as a weak thermalization uniqueness result since in this regime the diffusion parameter µ is small as well.

Theorem 1.6. Under suitable regularity assumptions on e(•), there exists µ † > 0 such that, for any µ ∈ (0, µ † ] the steady problem Q e (F, F ) + µ∆F = 0 admits an unique solution F for a given mass and vanishing momentum.

The proof of Theorem 1.5 follows the strategy of [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF] (see also [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] and [START_REF] Bisi | Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath[END_REF]). Essentially, it is based on the knowledge of the quasi-elastic limit problem and on quantitative estimates of the difference between solutions to the original problem and the equilibrium state as λ → 0. More precisely, let us consider two steady solutions G λ , F λ ∈ S λ . Set then H λ = F λ -G λ and define the linearized elastic Boltzmann operator around the limiting

Maxwellian M L 1 (h) = Q 1 (M, h) + Q 1 (h, M). (1.19) Observing that L 1 is a symmetric operator one recognizes L 1 (H λ ) = Q 1 (H λ , M) -Q e λ (H λ , M) + Q 1 (M, H λ ) -Q e λ (M, H λ ) + Q e λ (M -F λ , H λ ) + Q e λ (H λ , M -G λ ) -λ γ ∆H λ where we used that Q e λ (F λ , F λ ) -Q e λ (G λ , G λ ) = λ γ ∆H λ .
Assume that there exist two Banach spaces X and Y independent of λ such that

Q e λ (f, g) X + Q e λ (g, f ) X C 1 f Y g Y , (1.20) 
and

Q 1 (f, M) -Q e λ (f, M) X + Q 1 (M, f ) -Q e λ (M, f ) X C 2 λ p f Y , (1.21) 
and also,

∆H λ X C 3 H λ Y ∀λ > 0 (1.22) for some constants C 1 , C 2 , C 3 > 0, p ∈ (0, γ) independent of λ. Notice that (1.22) is too restrictive for a general function f ∈ Y, it is only assumed for any difference H λ . Then, L 1 (H λ ) X C 1 H λ Y M -G λ Y + M -F λ Y + (C 2 + C 3 )λ p H λ Y .
If M is the universal limit of the family S λ , if one is able to prove that

lim λ→0 M -G λ Y + M -F λ Y = 0 (1.23)
then, for any ε > 0 there exists λ 0 > 0 such that

L 1 (H λ ) X ε H λ Y .
The strategy ends by proving that there exists a subspace Y ⊂ Y containing the net

{H λ } λ∈(0,1] such that L 1 (h) X c 0 h Y ∀h ∈ Y. (1.24)
Thus, for any ε > 0 there exists λ 0 > 0 such that

c 0 H λ Y ε H λ Y ∀λ ∈ (0, λ 0 ).
This proves that H λ = 0 for any λ ∈ (0, λ 0 ). Notice that λ 0 would become explicit if we are able to make explicit the rate of convergence of (1.23).

To summarize, the proof reduces to find Banach spaces X and Y for which the above equations (1.20)-(1.24) hold. We warn the reader here that (1.24) will have to be slightly modified because a priori the energy of the difference H λ is not necessarily zero. This technical detail is overcame by introducing a suitable lifting operator of L 1 , see [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF] for the original implementation of this idea. We can already anticipate that the strategy will be applied to the following weighted L 1 -spaces

X = L 1 (m a ) = L 1 (R 3 ; m a (v) dv) and Y = L 1 1 (m a ) = L 1 (R 3 ; m a (v) 1 + |v| 2 dv)
where the exponential weight function m a is given by m a (v) = exp (a|v|) a 0.

The most technical parts of the proof will be the λ-uniform regularity of G λ and the continuity estimate (1.21) with respect to the restitution coefficient. These aspects have been proved for constant restitution coefficient in [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF], however, their extension to the case of a variable restitution coefficient will be delicate and require a series of new technical results.

Finally, explicit estimates on the rate of convergence of the rescaled solution G λ towards the elastic limit M can be found a posteriori by seeking a nonlinear inequality satisfied by G λ -M Y . More precisely, we shall prove that there exist some explicit constants

C 1 , C 2 > 0 such that G λ -M Y C 1 λ p + C 2 G λ -M 2 Y ∀λ ∈ (0, 1].
Combining this estimate with the convergence of G λ towards M will lead to the existence of some λ † ∈ (0, 1] such that

G λ -M Y C 3 λ p ∀λ ∈ (0, λ † ],
for a suitable exponent p > 0 and explicit constant C 3 .

We stress here that in contrast with the reference [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF], the present manuscript provides an approach which does not rely on entropy estimates. Consequently, it does not require neither exponential pointwise lower bounds nor strong regularity properties in the steady state. In particular, it is well-suited for problems in which no regularity of the steady solution is available, see [START_REF] Alonso | The homogeneous Boltzmann equation with a cold thermostat[END_REF] for an example of this situation.

1.4. Organization of the paper. The plan of the paper is the following. In Section 2, we establish new regularity estimates of the collision operator Q + e generalizing known results for the elastic case [START_REF] Lions | Compactness in Boltzmann's equation via Fourier integral operators and applications I, II, III[END_REF][START_REF] Wennberg | Regularity in the Boltzmann equation and the Radon transform[END_REF][START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF] and for the inelastic case with constant restitution coefficient [START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part II: Self-similar solution and tail behavior[END_REF][START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part I: The Cauchy problem[END_REF]. Section 3 is devoted to study regularity properties of the steady solution G λ ∈ S λ . In particular, we study moments [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF][START_REF] Mischler | Cooling process for inelastic Boltzmann equations for hard-spheres, Part I: The Cauchy problem[END_REF][START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF], general weighted Sobolev regularity given in Proposition 1.4 and a technical result on the difference of two solutions, see Proposition 3.8. Moreover, we also address in this section the fundamental problem of the continuity properties of Q e λ with respect to the inelasticity parameter, proving the convergence of Q e λ (f, g) towards Q 1 (f, g) as λ → 0 in different norms. Several of these results are non-trivial extensions of those in [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF] given for constant restitution coefficient. Others, like Proposition 3.10 are new. Section 4 contains the main results of the paper, namely the elastic limit result Theorem 1.3, the uniqueness result Theorem 1.5 and their quantitative versions. In Appendix A, we present several technical results used throughout the paper and Appendix B contains a proof of Theorem 1.2 on existence of steady profiles adapted from [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]. 

L p η (̟) = f : R 3 → R measurable ; f L p η (̟) := R 3 |f (v)| p v pη ̟(v) dv 1/p < +∞ .
Similarly, we define the weighted Sobolev space W k,p η (̟), with k ∈ N, using the norm

f W k,p η (̟) =   |s| k ∂ s f p L p η (̟)   1/p
. The symbol ∂ s denotes the partial derivative associated with the multi-index s ∈ N 3 :

∂ s = ∂ s 1 v 1 ∂ s 2 v 2 ∂ s 3 v 3 .
The order of the multi-index being defined as |s| = s 1 + s 2 + s 3 . In the particular case p = 2 we denote H k η (̟) = W k,2 η (̟) and whenever ̟(v) ≡ 1, we shall simply use H k η . This definition can be extended to H s η for any s 0 by using Fourier transform.

REGULARITY PROPERTIES OF THE COLLISION OPERATOR

The smoothing properties of the gain operator Q + e (f, f ) have been investigated in our previous contribution [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]. However, for the results we have in mind, we shall need the regularity of the bilinear operator Q + e (f, g) rather than the one of the quadratic one. To do so, we shall use a slightly different approach than the one we used in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]. In particular, our main purpose here is to extend [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]Theorem 4.1] to smooth kernel that are not compactly supported: in such a case, the price to pay for the control of large velocities consists in additional moments estimates. Precisely, using the notations of Appendix A, let B(u, σ) be a collision kernel of the form

B(u, σ) = Φ(|u|)b( u • σ)
where Φ(•) 0 and b(•) 0 satisfies (A.3) and (A.4) of the Appendix. Then, one can define the following operator Γ B by

Γ B (ϕ)(x) = ω ⊥ B(z+α e (r)ω, α e (r))ϕ(α e (r)ω+z) dπ(z), x = rω, r 0, ω ∈ S 2 , (2.1)
where dπ is the Lebesgue measure over the hyperplane ω ⊥ perpendicular to ω and α e (•) is the inverse of the mapping s → sβ e (s) while the kernel B(•, •) is given by

B(z, ̺) = 8Φ(|z|) |z|(̺β e (̺)) 2 b 1 -2 ̺ 2 |z| 2 ̺ 1 + ϑ ′ e (̺) , ̺ 0, z ∈ R 3 (2.2)
with ϑ e (•) defined in Assumption 1.1 (2) and ϑ ′ e (•) denoting its derivative. The operator Γ B can be seen as an inelastic version of the so-called cold thermostat operator investigated in [START_REF] Alonso | The homogeneous Boltzmann equation with a cold thermostat[END_REF] (and originally derived in the seminal paper [START_REF] Lions | Compactness in Boltzmann's equation via Fourier integral operators and applications I, II, III[END_REF]) and plays a crucial role in the smoothing properties of the gain operator Q + e because of the representation formula

Q + B,e (f, g)(v) = R 3 f (z) [(t z • Γ B • t z ) g] (v) dz ∀f, g (2.3) 
where [t v ψ](x) = ψ(vx) for any v, x ∈ R 3 and test-function ψ (see [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] for the derivation of (2.3)). Before investigating the regularity of the full gain operator, we shall first deal with that of the cold thermostat.

2.1. Regularity properties for cut-off collision kernels. For this section we assume that the kernel B(u, σ) satisfies:

Φ(•) ∈ C ∞ (0, ∞), b(•) ∈ C ∞ 0 (-1, 1) and Φ(s) = 0 for s < ǫ s for s > 2ǫ, (2.4) 
for some ǫ > 0. We introduce the following definition:

Definition 2.1. We shall say that a restitution coefficient e(•) satisfying Assumptions 1.1 is belonging to the class E m for some integer m

1 if e(•) ∈ C m (0, ∞) and sup r 0 re (k) (r) < ∞ ∀k = 1, . . . , m (2.5 
)

where e (k) (•) denotes the k-th order derivative of e(•).

Remark 2.2. For the physically relevant case of visco-elastic hard-spheres, the restitution coefficient e(•) is given by (1.5) but admits also the following implicit representation (see [START_REF] Brilliantov | Kinetic theory of granular gases[END_REF]):

e(r) + ar for some a > 0. Then, it is possible to deduce from such representation that e(•) belongs to the class E m for any integer m 1.

Under these assumptions we have the following generalization of [ Proof. There is no loss of generality in assuming that s is an integer. The proof is divided into five steps.

• First step: change of variables Recalling [6, Lemma 4.6], we first define

Γ B (f )(rω) = Γ B (f )(α -1 e (r), ω) = Γ B (f )(rβ e (r), ω) (2.7) so that Γ B (f )(rω) = ω ⊥ B(z + rω, r)ϕ(rω + z) dπ(z).
We begin proving the result for Γ B instead of Γ B , that is

Γ B (f ) H s+1 η C(s, B, e) f H s η+µ(s) , ∀η 0 (2.8)
The proof of this estimate follows the approach given in [22, Theorem 3.1] where a similar estimate has been obtained, for µ(s) = 0, under the additional assumption that Φ(•) has support in [ǫ, M ] with M < ∞. Our proof will consists essentially in proving that the weighted estimate (i.e. with µ = µ(s) > 0) allows to take into account large velocities.

• Second step: Estimates on the radial derivative of Γ B . We introduce the radial Fourier transform RF and the Fourier transform F in R 3 with the formulas

RF [f ] (̺w) = (2π) -1/2 R exp(i̺r)f (rw) dr , F [f ] (ξ) = (2π) -3/2 R 3 exp(iv•ξ)f (v) dv
and, for any measurable mapping g, we define the H s+1 η (S 2 × R) norm of g as

g 2 H s+1 η (S 2 ×R) := S 2 dw R ̺ 2(s+1) |RF [g] (̺w)| 2 d̺.
Then we compute,

RF r η Γ B f (̺w) = (2π) -1 2 R 3 exp(i̺u • w) u • w η B(u, |u • w|)f (u) du = 2πF [f (•)G w (•)] (̺w)
where G w (u) = B(u, |u • w|) u • w η for any u ∈ R 3 . Then, setting ξ = ̺w, since d̺ dw = |ξ| -2 dξ we get

Γ B f 2 H s+1 η (S 2 ×R) = 2π R 3 ξ 2s+2 |ξ| -2 F f (•)G ξ |ξ| (•) (ξ) 2 dξ. Now, with µ = µ(s) = s + 4, introducing g(v) = f (v) v µ and G µ w (z) = z -µ G w (z)
we can write the above as

Γ B f 2 H s+1 η (S 2 ×R) = 2π R 3 ξ 2s+2 |ξ| -2 F g(•)G µ ξ |ξ| (•) (ξ) 2 dξ.
Using [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]Lemma A.5] we can replace [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]Eq. (3.7)] by

Γ B f H s+1 η (S 2 ×R) C s g H s η sup w∈S 2 G µ w (•) H s+2 (R 3 ) = C s f H s η+µ sup w∈S 2 B(z, |z • w|) z • w η z η+µ H s+2 (R 3 z )
.

(2.9)

• Third step: Control of the angular derivatives. In order to adapt the analysis of [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF], it suffices to check that there are two positive constants a, b > 0 such that

Supp(B) ⊂ [a, ∞) × [b, ∞).
We already saw this is the case with our assumption on Φ(•) and b(•). We can straightforwardly apply the reasoning of the op. cit. to get that the j-th angular derivative of Γ B f can be estimated by the radial derivative of Γ B j f where the new kernel B j is given by B j (z, ̺) = B(z, ̺)z j . This finally leads to (2.8) with

C(s, B, e) = C s (a, b) sup ν∈N 3 |ν| s+1 sup w∈S 2 B(z, |z • w|)z ν z • w η z η+µ H s+2 (R 3 z )
.

(2.10)

• Fourth step: Let us check that the above quantity is indeed finite, i.e.

C s (B, ν) := sup

w∈S 2 B(z, |z • w|)z ν z • w η z η+µ H s+2 (R 3 z ) < ∞
for any multi-index ν with |ν| s + 1. Observe that, because of our cut-off assumptions (2.4) together with the fact that b(1x) = 0 for small values of x, the kernel B(z, ̺) vanishes for small values of |z| and ̺. Thus, for a given ν with |ν| s + 1, it suffices to investigate the regularity properties of the above mapping

F w : z -→ B(z, |z • w|)z ν z • w η z η+µ
for large value of z (uniformly with respect to w). From the definition of C s (B, ν), one needs to compute s + 2 derivatives of F w which explains the restriction s m -2. Recall that, for |z| > ǫ, the expressions of B(•, •) and Φ(•) yield the following

F w (z) = 8b(1 -2| z • w| 2 ) H(|z • w|) z ν z • w η z η+µ where z = z/|z|, H(r) = rβ 2 e (r)(1 + ϑ ′ e (r)), r 0. We recall that b(1 -2x 2 ) = 0 for |x| δ for some δ > 0. In particular, for |z| > ǫ, F w (z) = 0 =⇒ r := |z • w| > δǫ. Since β e (•) ∈ (1/2, 1] and ϑ ′ e 0, it is easy to check that |F w (z)| 32|z| |ν| δǫ z µ b(1 -2| z • w| 2 ) 32 b ∞ δǫ z µ-|ν| ∀w ∈ S 2 , |z| > ǫ. Since µ-s = 4, this proves that sup w∈S 2 F w (z) L 2 (R 3 z ) < ∞.
One proceeds in the same way with the z-derivatives of F w (z). It is clear that any z-derivative of the rational expression

R w (z) := z ν z • w η z η+µ
has a faster decay (for |z| → ∞) than R w (z). Therefore, the crucial point is the control of the derivatives of 1 H(r) . It turns out that

H ′ (r) H(r) = 1 r + 2β ′ e (r) β e (r) + ϑ ′′ e (r) 1 + ϑ ′ e (r) = 1 r + 2e ′ (r) 1 + e(r) + 2e ′ (r) + re ′′ (r) 1 + ϑ ′ e (r)
. Now, our assumption (2.5) on the restitution coefficient e(•) implies easily that

H ′ /H ∈ L ∞ ([δǫ, ∞))
and, as a direct consequence,

d dr 1 H(r) ∈ L ∞ ([δǫ, ∞)).
Similar calculations show that, for any k = 1, . . . , m,

d k dr k 1 H(r) ∈ L ∞ ([δǫ, ∞))
. Tedious but simple calculations show then that any z-derivative of F w (z) can be controlled by 1/|z| µ-|ν|+1 for large |z|. This is enough to prove that C s (B, ν) < ∞.

• Final step: turning back to the original variables. Following [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF], it remains now to deduce estimates on Γ B f from Γ B f which are linked by formula (2.7). Using polar coordinates

Γ B (f ) 2 H s η = |j| s ∞ 0 F j (̺)̺ 2 ̺ 2η d̺ S 2 |∂ j v Γ B (f )(̺, ω)| 2 dω
where, see [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] for details, one can check that for any |j| k the function F j (̺) can be written as

F j (̺) = P j (ϑ (1) e (̺), . . . , ϑ (j) e (̺))(1 + ϑ (1) e (̺)) -n j .
(2.11)

Here P j (y 1 , . . . , y j ) is a suitable polynomial, n j ∈ N and ϑ

(p)
e denotes the p-th derivative of ϑ e (•). Because of our assumption on e(•) (more precisely, because lim sup ̺→∞ ϑ

(i) e (̺) < ∞), we see that sup ̺∈(0,∞) F j (̺) = C j < ∞ for any |j| k. Thus Γ B (f ) H s η C η Γ B (f ) H s η (2.12)
where C η is an explicit constant involving the L ∞ norm of the first s-th order derivatives of α e (•).

Proposition 2.4. Let B(u, σ) = Φ(|u|)b( u • σ) be a collision kernel satisfying (2.4
) and e(•) be in the class E m (m 2). Then, for any 0 s m -2,

Q + B,e (f, g) H s+1 η C(s, B, e) g H s η+µ(s) f L 1 2η+µ(s)
with constant C(s, B, e) and µ(s) = s + 4.

Proof. One uses the representation formula (2.3) together with Minkowski's inequality to get that

Q + B,e (f, g) H s+1 η R 3 |f (z)| t z • Γ • t z g H s+1 η dz. Now, since t z ψ H N k z k ψ H N k
for any ψ ∈ H N k for all N ∈ N and any k 0, one easily deduces from Lemma 2.3 the conclusion.

Regularity properties for hard-spheres collision kernel.

We now use the previous result for smooth collision kernels to estimate the regularity properties of Q + e (f, g) for true hard-spheres interactions. We shall combine Theorem A. 1 of the Appendix together with the estimates of the previous section to get the following: Theorem 2.5. Assume that e(•) belongs to the class E m with m 2. Then, for any ε > 0 and any η 0, there exists C e = C(e, ε, η) such that

Q + e (f, g) H s+1 η C e g H s 2η+µ(s) f L 1 2η+µ(s) + ε f H s η+3 g H s η+1 + ε g L 1 η+1 ∂ ℓ f L 2 η+1 + f L 1 η+1 ∂ ℓ g L 2 η+1 ∀|ℓ| = s + 1 m -1. (2.13)
Proof. Notice that, for hard-spheres interactions, one has

B(u, σ) = Φ(|u|)b( u • σ) with Φ(|u|) = |u| ∈ L ∞ -1 and b(s) = 1/4π
for any s ∈ (-1, 1). In particular, for any η 0, both the constant C 2,1,η,1 (b) and C 2,2,η,1 (b) appearing in (A.5) are finite. Let us now fix η 0 and ε > 0 and split the kernel into four pieces

B(|u|, û • σ) = Φ S (|u|)b S (û • σ) + Φ S (|u|)b R (û • σ) + Φ R (|u|)b S (û • σ) + Φ R (|u|)b R (û • σ) (2.14)
with the following properties:

(i) b S and Φ S are smooth satisfying the assumptions of the previous section.

(ii) b R (s) := 1 4π -b S (s) is the angular remainder satisfying C 2,1,η,1 (b R ) ε and C 2,2,η,1 (b R ) ε. (iii) Φ R (|u|) = |u| -Φ S (|u|) is the magnitude remainder satisfying Φ R L ∞ ε (C 2,1,η,1 (b S ) + C 2,2,η,1 (b S ))
.

Notice that, in contrast to previous approaches, the last point is made possible because Φ S (|u|) = |u| for large |u| which makes Φ R compactly supported. Thus, on the basis of relation (2.14), one splits Q + e into the following four parts using obvious notations,

Q + e = Q + SS + Q + SR + Q + RS + Q + RR .
We shall then deal separately with each of these parts. First, we know that

Q + SS (f, g) H s+1 η C m,n,e g H s η+µ f L 1 2η+µ ∀m, n.
Second, let us estimate Q + SR . Since

∂ ℓ Q + SR (f, g)(v) = ℓ ν=0 ℓ ν Q + SR (∂ ν f, ∂ ℓ-ν g)
for any multi-index ℓ with |ℓ| s + 1, one gets

Q + SR (f, g) 2 H s+1 η C s |ℓ| s+1 ℓ ν=0 ℓ ν Q + SR (∂ ν f, ∂ ℓ-ν g) 2 L 2 η .
We treat differently the cases |ℓ| = s + 1 and |ℓ| < s + 1. According to Theorem A. 1 if |ℓ| s one has for any |ν| |ℓ|

Q + SR (∂ ν f, ∂ ℓ-ν g) L 2 η C 2,1,η,1 (b R ) Φ S L ∞ -1 ∂ ν f L 1 η+1 ∂ ℓ-ν g L 2 η+1 ε ∂ ν f L 1 η+1 ∂ ℓ-ν g L 2 η+1
where we used the assumption (ii) with the fact that

Φ S L ∞ -1 1. Recall the general estimate g L 1 k τ θ g L 2 k+3/2+θ ∀k 0, ∀θ > 0 (2.15)
where the universal constant τ θ is given by τ

θ = • -3 2 -θ L 2 < ∞.
Taking for simplicity θ = 1/2 and since |ℓ| s,

|ℓ|<s+1 ℓ ν=0 ℓ ν Q + SR (∂ ν f, ∂ ℓ-ν g) L 2 η A s ε f H s η+3 g H s η+1
for some constant A s > 0 depending only on s. In the case |ℓ| = s + 1, argue in the same way to obtain

Q + SR (∂ ν f, ∂ ℓ-ν g) L 2 η ε f H s η+3 g H s η+1 for any 0 < |ν| < |ℓ|. If ν = 0 one still has Q + SR (f, ∂ ℓ g) L 2 η C 2,1,η,1 (b R ) f L 1 η+1 ∂ ℓ g L 2 η+1
additionally, for ν = ℓ we use Theorem A. 1 with (p, q) = (2, 1) to get

Q + SR (∂ ℓ f, g) L 2 η C 2,2,η,1 (b R ) g L 1 η+1 ∂ ℓ f L 2 η+1 .
Therefore,

Q + SR (f, g) H s+1 η A s ε f H s η+3 g H s η+1 + g L 1 η+1 ∂ ℓ f L 2 η+1 + f L 1 η+1 ∂ ℓ g L 2 η+1 ∀|ℓ| = s + 1.
Third, argue in the same way using the smallness assumption (ii) to prove that

Q + RR (f, g) H s+1 η A s ε f H s η+3 g H s η+1 + g L 1 η+1 ∂ ℓ f L 2 η+1 + f L 1 η+1 ∂ ℓ g L 2 η+1 ∀|ℓ| = s + 1.
Finally, the estimate for

Q + RS follows from the fact that Φ R L ∞ is small, Q + RS (f, g) H s+1 η A s ε f H s η+2 g H s η + g L 1 η ∂ ℓ f L 2 η + f L 1 η ∂ ℓ g L 2 η ∀|ℓ| = s + 1.
Combining all these estimates and replacing A s ε to ε we get (2.13).

Remark 2.6. Recall that, by virtue of our scaling argument, we will have to apply the above regularity result for the scaled restitution coefficient e λ . Arguing as in [6, Corollary 4.14] we can prove without major difficulty that sup λ∈(0,1] C e λ < ∞ where C e λ is the constant appearing in (2.13) for the scaled restitution coefficient e λ .

PROPERTIES OF THE STEADY STATE

The purpose of this Section is to establish all the general a posteriori properties of the family (G λ ) λ of solutions to (1.15) that will be necessary to establish the uniqueness result. Of course, this analysis will require fine properties of the collision operator Q e λ associated to the rescaled restitution coefficient e λ , in particular, its behavior as λ → 0. In all this section, G λ denotes any solution to (1.15) with λ ∈ [0, 1]. There is no loss in generality in assuming from now on that

̺ = R 3 G λ (v) dv = 1 ∀λ ∈ (0, 1].
We shall define, for any λ ∈ (0, 1] the solution set:

S λ = G λ ∈ L 1 2 ; G λ solution to (1.15) with R 3 G λ (v) dv = 1 and R 3 vG λ (v) dv = 0 . (3.1)
Recall that our choice of scaling implies that for any G λ ∈ S λ , the energy identity is given by, see (1.16)

6 = 1 λ 3+γ R 3 ×R 3 G λ (v)G λ (v ⋆ )Ψ e (λ 2 |v -v ⋆ | 2 ) dv dv ⋆ ∀λ ∈ (0, 1] (3.2)
where Ψ e has been defined in (1.9). We deduce from (1.14) that, for fixed r > 0, 1

λ 3+γ Ψ e (λ 2 r 2 ) ≃ a 4 + γ r 3+γ as λ ≃ 0.
Intuitively, one gets then that, for λ ≃ 0,

6 ≃ a 4 + γ R 3 ×R 3 G λ (v)G λ (v ⋆ )|v -v ⋆ | 3+γ dv dv ⋆ .
The use of Jensen's inequality proves that the moment of order 3+γ of G λ remains bounded uniformly with respect to λ m 3+γ 2

(λ) = O(1)
where the moments are defined as

m p (λ) = R 3 G λ (v)|v| 2p dv p 1. (3.3) 
Existence of higher moments for G λ is the objective of the following section, see also Lemma A. 5 in the Appendix, which properly justify above computations.

Moment estimates.

Recall that our choice of scaling is such that

sup 0 λ 1 m 1 (λ) = sup 0 λ 1 E λ = E max < ∞.
By a simple induction argument, this actually implies that all the moments of G λ are uniformly bounded. 

-λ γ R 3 G λ (v)∆|v| 2p dv = R 3 Q e λ (G λ , G λ )(v) |v| 2p dv.
Since ∆|v| 2p = 2p(2p + 1)|v| 2p-2 , using Lemma B. 1, there are two positive constants k p , A p > 0 independent of λ such that

-2p(2p + 1)λ γ m p-1 (λ) -k p ̺m p+ 1 2 (λ) + A p m 1 2 (λ) m p (λ) ∀λ 0. Since m 1 2 (λ) √ E λ √ E max for any λ ∈ (0, 1), we see that there are two positive constants C 1,p , C 2,p > 0 independent of λ such that m p+ 1 2 (λ) C 1,p m p (λ) + C 2,p m p-1 (λ) ∀λ ∈ (0, 1], ∀p 1.
Both sup λ∈(0,1) m 1 (λ) = E max and sup λ∈(0,1] m 0 (λ) = 1 are finite, thus, a simple induction yields the conclusion for any p ∈ N. The result extends then to any parameter p 0 by interpolation.

Proposition 3.2. There exist

E min > 0 and c 0 > 0 such that inf λ∈[0,1] E λ = E min > 0 and R 3 G λ (v ⋆ )|v -v ⋆ | dv ⋆ c 0 v ∀v ∈ R 3 , ∀λ ∈ [0, 1].
Proof. Note that Ψ e (x) ≃ Cx 3/2 as x → ∞ for some positive C > 0. Additionally, using (1.14), there exists a positive constant K > 0 such that Ψ e (r 2 ) Kr 3+γ for any r > 0. According to (3.2), it follows

6 K R 3 ×R 3 G λ (v)G λ (v ⋆ )|v -v ⋆ | 3+γ dv dv ⋆ . Therefore, inf λ>0 m 3+γ 2 (λ) = c > 0. (3.4)
Knowing (3.4), it is a standard procedure to deduce the result from Proposition 3.1.

Proposition 3.3.

There exist positive constants A > 0 and M > 0 such that any solution G λ to (1.15), with λ ∈ (0, 1], satisfies

G λ (v) exp A |v| 3 2 dv M. (3.5) 
Proof. The proof follows the lines of the analogous result [11, Theorem 1] for constant restitution coefficient. It consists in proving that there exist K > 0 such that

sup λ∈(0,1] m p (λ) Γ 4 3 p + 1 2 K p ∀p 1 (3.6)
where Γ(•) is the gamma function while m p (λ) is defined in (3.3). In order to prove (3.6) note that,

-2p(2p + 1)λ γ m p-1 (λ) = R 3 Q e λ (G λ , G λ )(v)|v| 2p dv ∀p 1, λ ∈ (0, 1].
One can estimate the right side thanks to [6, Proposition 2.7],

R 3 Q e λ (G λ , G λ )(v)|v| 2p dv -(1 -κ p )m p+ 1 2 (λ) + κ p S p (λ)
where

S p (λ) = [ p+1 2 ] k=1 p k m k+1/2 (λ) m p-k (λ) + m k (λ) m p-k+1/2 (λ) .
Here [ p+1 2 ] denotes the integer part of p+1 2 and κ p ∈ (0, 1) is independent of λ and satisfies κ p = O(1/p) as p → ∞. Then, one sees that [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]Equations (4.6) and (4.11)] hold with µ = λ γ ∈ (0, 1]. At this point, we can resume exactly the proof of [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF] noticing that all the estimates there are uniform with respect to the coefficient µ appearing in front of the thermal bath. In other words, we obtain (3.6) with a positive constant K > 0 which is independent of λ. This is enough to get (3.5).

One actually can make more precise the above estimates by evaluating the difference of two solutions to (1.15). A simple adaptation of [20, Proposition 2.7, Step 1] gives the following estimate. Proposition 3.4. For any s ∈ [0, 3 2 ] there exist some positive constants r s > 0 and M s > 0 such that

R 3 |G λ (v) -F λ (v)| exp (r s |v| s ) dv M s G λ -F λ L 1 1 ∀λ ∈ (0, 1] (3.7)
for any F λ , G λ ∈ S λ .

Sobolev estimates.

We prove now that the family (G λ ) λ is uniformly bounded in any Sobolev norms H ℓ . We begin showing uniform L 2 k -estimates of G λ for sufficiently small λ. Proposition 3.5. For any k 0, one has

A k := sup λ∈(0,1] G λ L 2 k < ∞.
Proof. First, observe that for any test function ψ(v) integration by parts yields

- R 3 ∆G λ (v)G λ (v)ψ(v) dv = R 3 |∇G λ (v)| 2 ψ(v) dv - 1 2 R 3 G λ (v) 2 ∆ψ(v) dv.
Fix k 0 and multiply equation (1.15) by G λ (v) v 2k . Apply above identity to ψ(v) = v 2k and use the inequality ∆ψ(v) 2k(2k + 1) v 2(k-1) to obtain

λ γ ∇G λ 2 L 2 k R 3 Q e λ (G λ , G λ )(v)G λ (v) v 2k dv + (2k 2 + k)λ γ G λ 2 L 2 k-1 . (3.8) 
Applying [6, Corollary 4.14] with p = 2 and η = k, we see that there exist θ ∈ (0, 1), z > 0 and C e λ > 0 depending only on e λ such that for any δ > 0,

R 3 Q + e λ (G λ , G λ )(v)G λ (v) v 2k dv C e λ δ -z G λ 1+2θ L 1 k G λ 2(1-θ) L 2 k + δ G λ L 1 2+k G λ 2 L 2 k+1/2
. Same reasoning as in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]Corollary 4.15] shows that 1 sup λ∈(0,1)

C e λ < ∞.
Therefore, there exist θ ∈ (0, 1) such that for any λ ∈ (0, 1) and δ > 0 one can find some K δ > 0 independent of λ for which it holds

R 3 Q + e λ (G λ , G λ )(v)G λ (v) v 2k dv K δ G λ 1+2θ L 1 k G λ 2(1-θ) L 2 k + δ G λ L 1 2+k G λ 2 L 2 k+1/2
∀λ ∈ (0, 1).

1 With the notation of [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]Corollary 4.15], one can prove that for any compact interval

I ⊂ (0, ∞) it follows that max k=0,1 D k Ge λ (•) L ∞ (I) = O(1) as λ ≃ 0 where Ge λ (r) = r (1 + ϑ ′ e λ (r))βe λ (r)
. In particular,

lim λ→0 Ce λ = C0 > 0.
Second, estimate the loss term thanks to Proposition 3.2. Indeed,

R 3 Q - e λ (G λ , G λ )(v)G λ (v) v 2k dv = R 3 ×R 3 |v -v ⋆ |G 2 λ (v)G λ (v ⋆ ) v 2k dv dv ⋆ c 0 R 3 G 2 λ (v) v 2k+1 dv = c 0 G λ 2 L 2 k+1/2
. Thus, plugging the previous two estimates into (3.8)

λ γ ∇G λ 2 L 2 k K δ G λ 1+2θ L 1 k G λ 2(1-θ) L 2 k + δ G λ L 1 2+k -c 0 G λ 2 L 2 k+1/2 + (2k 2 + k)λ γ G λ 2 L 2 k-1 ∀λ ∈ (0, 1].
Using the notation of Proposition 3.1 and choosing δ = c 0 /2C 2+k , one sees that there exists

C k = K δ C 1+2θ k > 0 such that λ γ ∇G λ 2 L 2 k C k G λ 2(1-θ) L 2 k - c 0 2 G λ 2 L 2 k+1/2 + (2k 2 + k)λ γ G λ 2 L 2 k-1 ∀λ ∈ (0, 1].
In particular,

c 0 2 G λ 2 L 2 k+1/2 C k G λ 2(1-θ) L 2 k + (2k 2 + k)λ γ G λ 2 L 2 k-1
.

The case k = 0 follows directly from this estimate, i.e.

sup λ∈(0,1] G λ L 2 < ∞. (3.9) 
Assume now k 1. For any R > 0, it can be checked that

G λ 2 L 2 k-1 R 2k-2 G λ 2 L 2 + R -3 G λ 2 L 2 k+1/2 . Hence, choosing R = 4 c 0 λ γ (2k 2 + k) 1/3
we get

c 0 4 G λ 2 L 2 k+1/2 C k G λ 2(1-θ) L 2 k + B k (λ) G λ 2 L 2 with B k (λ) = (2k 2 + k)λ γ R 2k-2 .
In particular, using (3.9) there exists some positive constant

A k := B k (1) sup λ∈(0,1) G λ 2 L 2 > 0, independent of λ, such that c 0 4 G λ 2 L 2 k+1/2 A k + C k G λ 2(1-θ) L 2 k ∀λ ∈ (0, 1].
This yields the result.

Since

G λ ∈ L 2 1 ∩ L 1 1 , Theorem A. 1 shows that Q e λ (G λ , G λ ) ∈ L 2 . The equation -λ γ ∆G λ = Q e λ (G λ , G λ ) (3.10)
implies that ∆G λ ∈ L 2 . Thus, a bootstrap argument shows the smoothness of G λ . This reasoning will not help to find λ-uniform Sobolev estimates since the diffusive heating in (3.10) will vanish in the formal limit λ → 0. 

G λ H ℓ k < ∞.
In particular, if e(•) belongs to the class E m with m 3 one has

sup λ∈(0,1] G λ L ∞ k < ∞ for any k 0.
Proof. Use induction over |ℓ| ∈ N. Proposition 3.5 shows that the result is true if |ℓ| = 0. Let then |ℓ| := s + 1 > 0 be fixed and assume that for any k 0 there exists

C k > 0 such that max |ν| s sup λ∈(0,1] ∂ ν G λ L 2 k C k . (3.11)
Observe that differentiating ℓ-times Equation (1.16) yields

-λ γ ∆∂ ℓ G λ = ∂ ℓ Q e λ (G λ , G λ ).
Multiplying this equation by ∂ ℓ G λ (v) v 2k and integrating over R 3 we get, as in Proposition 3.8

λ γ ∇∂ ℓ G λ 2 L 2 k R 3 ∂ ℓ Q e λ (G λ , G λ )(v)∂ ℓ G λ (v) v 2k dv + (2k 2 + k)λ γ ∂ ℓ G λ 2 L 2 k . (3.12) 
Fix k 1 2 . One has

R 3 ∂ ℓ Q + e λ (G λ , G λ )(v)∂ ℓ G λ (v) v 2k dv ∂ ℓ Q + e λ (G λ , G λ ) L 2 k-1 2 ∂ ℓ G λ L 2 k+ 1 2 Q + e λ (G λ , G λ ) H s+1 k-1 2 ∂ ℓ G λ L 2 k+ 1 2 since |ℓ| = s + 1. One estimates the Sobolev norm of Q + e λ (G λ , G λ ) thanks to Theorem 2.5 applied to η = k -1 2 .
Precisely, for any ε > 0,

Q + e λ (G λ , G λ ) H s+1 k-1 2 C(ε) G λ H s 2k+s+3 G λ L 1 2k+s+3 + ε G λ H s k+ 5 2 G λ H s k+ 1 2 + ε G λ L 1 k+ 1 2 ∂ ℓ G λ L 2 k+ 1 2 + G λ L 1 k+ 1 2 ∂ ℓ G λ L 2 k+ 1 2
.

Using the uniform bounds in H s k given by (3.11) together with Proposition 3.5 and the uniform L 1 k bounds, one notes that there exist

α k , β k > 0 such that Q + e λ (G λ , G λ ) H s+1 k-1 2 α k + ε β k ∂ ℓ G λ L 2 k+ 1 2 ∀λ ∈ (0, 1].
Therefore,

R 3 ∂ ℓ Q + e λ (G λ , G λ )(v)∂ ℓ G λ (v) v 2k dv α k ∂ ℓ G λ L 2 k+ 1 2 + ε β k ∂ ℓ G λ 2 L 2 k+ 1 2 . (3.13)
Regarding the loss part of the collision operator, first note that

∂ ℓ Q - e λ (G λ , G λ ) = ℓ ν=0 ℓ ν Q - e λ (∂ ν G λ , ∂ ℓ-ν G λ ).
For any |ν| = |ℓ|, integration by parts yields

Q - e λ (∂ ν G λ , ∂ ℓ-ν G λ )(v) = |∂ ν G λ (v)| R 3 ∂ ℓ-ν G λ (v ⋆ )|v -v ⋆ | dv ⋆ |∂ ν G λ (v)| ∂ ℓ-ν-1 G λ L 1 where, ℓ -1 = (ℓ 1 -1, ℓ 2 , ℓ 3 ) for any multi-index ℓ = (ℓ 1 , ℓ 2 , ℓ 3 ).
Using again the control of L 1 norms by weighted L 2 -norms, see inequality (2.15), we get

Q - e λ (∂ ν G λ , ∂ ℓ-ν G λ )(v) τ |∂ ν G λ (v)| ∂ ℓ-ν-1 G λ L 2 2
for some universal constant τ > 0 independent of λ. From the induction hypothesis (3.11), this last quantity is uniformly bounded and using Cauchy-Schwarz inequality we obtain

|ν|<|ℓ| ℓ ν R 3 Q - e λ (∂ ν G λ , ∂ ℓ-ν G λ )(v)∂ ℓ G λ (v) v 2k dv C 2 |ν|<|ℓ| ℓ ν ∂ ν G λ L 2 k ∂ ℓ G λ (v) L 2 k C k,ℓ ∂ ℓ G λ L 2 k ∀λ ∈ (0, 1]
for some positive constant C k,ℓ independent of λ. Second, whenever ν = ℓ we have according to Proposition 3.2 the lower bound

R 3 Q -(∂ ℓ G λ , G λ )(v) ∂ ℓ G λ (v) v 2k dv c 0 ∂ ℓ G λ 2 L 2 k+ 1 2
.

Thus, summarizing, inequality (3.12) reads

λ γ ∇∂ ℓ G λ 2 L 2 k C k,ℓ ∂ ℓ G λ L 2 k + α k ∂ ℓ G λ L 2 k+ 1 2 + ε β k ∂ ℓ G λ 2 L 2 k+ 1 2 + C k ∂ ℓ G λ L 2 k -c 0 ∂ ℓ G λ 2 L 2 k+ 1 2 + (2k 2 + k)λ γ ∂ ℓ G λ 2 L 2 k ∀λ ∈ (0, 1].
Choose ε > 0 such that ε β k = c 0 2 . We note that, after neglecting the gradient term in the above left side and bounding all L 2 k norms by L 2

k+ 1 2
norms, there exists some positive

constant A k > 0 such that c 0 2 ∂ ℓ G λ 2 L 2 k+ 1 2 A k ∂ ℓ G λ L 2 k+ 1 2 + (2k 2 + k)λ γ ∂ ℓ G λ 2 L 2 k ∀λ ∈ (0, 1].
Finally, following the proof of Proposition 3.5, we get that sup λ∈(0

,1] ∂ ℓ G λ L 2 k+ 1 2 < ∞ for any k 1 2 .
Remark 3.7. In the constant restitution case, uniform regularity estimates where obtained using the propagation of regularity and damping with time of singularities for solution to the time-dependent problem. More precisely, using the fact that the solution to

∂ t f (t, v) = Q α (f, f )(t, v) + (1 -α)∆ v f (t, v) can be written as f (t, v) = f S (t, v) + f R (t, v)
where f S is smooth and the reminder f R is small in some appropriate norm, see [START_REF] Mouhot | Regularity theory for the spatially homogeneous Boltzmann equation with cut-off[END_REF]. Our approach applies to such case yielding a much more direct proof of these estimates.

The proof of Theorem 3.6 can be easily modified to get an estimate of the difference of solutions to (1.15). Proposition 3.8. Assume that e(•) belongs to E m for some m 3. For any integer ℓ ∈ [0, m -1], there exist some positive constant C ℓ > 0 such that

F λ -G λ H ℓ C ℓ F λ -G λ L 1 1 ∀λ ∈ (0, 1] (3.14)
for any G λ , F λ ∈ S λ . As a consequence, there exists a positive constant C a > 0 such that

F λ -G λ W ℓ,1 (ma) C a F λ -G λ L 1 (ma) ∀a ∈ [0, 3 2 ], λ ∈ (0, 1] (3.15) 
where the weight m a := m a (v) = exp(a|v|).

Proof. We follow the argument of [20, Proposition 2.7] that uses induction and only give the details for the initial step ℓ = 0. Set H λ = F λ -G λ , we aim therefore to control

H λ L 2 by H λ L 1 1 . Notice that H λ satisfies Q e λ (H λ , F λ ) + Q e λ (G λ , H λ ) = -λ γ ∆H λ , ∀λ ∈ [0, 1].
Multiplying this identity by H λ and integrating over R 3 yields

λ γ ∇H λ 2 L 2 + R 3 Q -(H λ , F λ )H λ dv = R 3 Q + e λ (H λ , F λ ) + Q + e λ (G λ , H λ ) H λ (v) dv - R 3 Q -(G λ , H λ )H λ dv.
From Proposition 3.2 one has

R 3 Q -(H λ , F λ )H λ dv c 0 H λ 2 L 2 1 2 
.

In addition,

R 3 Q -(G λ , H λ )H λ dv R 3 G λ (v)|H λ (v)| dv R 3 |H λ (v ⋆ )| |v -v ⋆ | dv ⋆ C H λ 2 L 1 1
where the constant C depends only on the L ∞ norm of G λ which is uniformly bounded. In order to control the gain operator, split the angular kernel b(s

) = 1 4π into b(s) = b 1 (s)+b 2 (s)
with b 1 (s) := 1 4π 1 (-1+δ,1-δ) (s) for some δ > 0 to be determined latter on. Using Young's inequality, see Theorem A. 2

R 3 Q + e λ (H λ , F λ ) + Q + e λ (G λ , H λ ) H λ (v) dv Q + e λ ,b 1 (H λ , F λ ) + Q + e λ ,b 1 (G λ , H λ ) L ∞ H λ L 1 + Q + e λ ,b 2 (H λ , F λ ) + Q + e λ ,b 2 (G λ , H λ ) L 2 -1 2 H λ L 2 1 2 C(b 1 ) F λ L ∞ 1 + G λ L ∞ 1 H λ 2 L 1 1 + C(b 2 ) F λ L 1 1 + G λ L 1 1 H λ 2 L 2 1 2
.

Fix ε > 0, from the explicit expression of both C(b 1 ) and C(b 2 ) provided by Theorem A. 2 one notes that it is possible to choose δ > 0 such that C(b 2 ) ε (recall that b is bounded). Summarizing, for any ε > 0

λ γ ∇H λ 2 L 2 + c 0 H λ 2 L 2 1 2 ε H λ 2 L 2 1 2 + C(ε) H λ 2 L 1 1
where C(ε) is a positive constant independent of λ. Choosing ε = c 0 2 we deduce that

H λ 2 L 2 1 2 2C(ε) c 0 H λ 2 L 1 1 ∀λ ∈ (0, 1]
which gives the result for ℓ = 0. To extend these estimates to higher order derivatives, one proceeds by induction using Theorem where the exponents 1/8 have been replaced by 1/4): For any a 0 and ℓ 0, there exist C(a, ℓ) > 0 such that

h W ℓ,1 (ma) C h 1/8 H ℓ 0 h 1/8 L 1 (m b ) h 3/4 L 1 (ma) ∀ h ∈ H ℓ 0 ∩ L 1 (m b )
where ℓ 0 := 8ℓ + 35 2 and b = 12a. According to Proposition 3.4 there exists some c > 0 such that H λ L 1 (m b ) c H λ L 1 1 for any λ ∈ (0, 1]. Moreover, (3.14) implies that the H ℓ 0 -norm of H λ can be controlled from above by H λ L 1 1 . Combining these estimates we get

H λ W ℓ,1 (ma) C(a, ℓ) H λ 1/4 L 1 1 H λ 3/4 L 1 (ma) ∀λ ∈ (0, 1]
which yields the desired conclusion.

3.3. Continuity properties of Q + e λ as λ → 0. We investigate in this section the continuity of the gain part Q + e (f, g) with respect to the restitution coefficient. We shall prove that, for sufficiently smooth functions f and g, the collision operator Q + e λ (f, g) converges strongly towards Q + 1 (f, g) as λ → 0 in a suitable norm to be specified.

Proposition 3.9. For any k 0, there exist some explicit constants C(γ, k) and C(γ, k) such that

Q + e λ (f, g) -Q + 1 (f, g) v k H -1 C(γ, k, a)λ γ f L 1 k+γ+2 g L 2 k+γ+2
(3.16)

Q + e λ (f, g) -Q + 1 (f, g) v k H -1 C(γ, k)λ γ f L 2 k+γ+2 g L 1 k+γ+2
(3.17)

Proof. Fix λ > 0, a test function φ ∈ H 1 and define ψ(v) = v k φ(v). Use the weak form of Q + e λ (f, g) -Q + 1 (f, g) to get R 3 Q + e λ (f, g) -Q + 1 (f, g) (v)ψ(v) dv = 1 2π R 3 ×R 3 ×S 2 |u • n|f (v)g(v ⋆ ) ψ(v (λ) ) + ψ(v (λ) ⋆ ) -ψ(v ′ ) -ψ(v ′ ⋆ ) dv dv ⋆ d n where (v (λ) , v (λ) 
⋆ ) denotes the post-collisional velocities associated to the restitution coefficient e λ while (v ′ , v ′ ⋆ ) denotes the post-collisional velocities for elastic interactions, that is,

v ′ = v -(u • n) n , v ′ ⋆ = v ⋆ + (u • n) n v (λ) = v -β λ (u • n) n , v (λ) 
⋆ = v ⋆ + β λ (u • n) n with β λ = β λ (|u • n|) = 1+e λ (|u• n|) 2 . Set I λ = R 3 ×R 3 ×S 2 |u • n|f (v)g(v ⋆ ) ψ(v (λ) ) -ψ(v ′ ) dv dv ⋆ d n and define ζ = ζ(u, n, λ) = v (λ) -v ′ = 1 -e λ 2 (u • n) n.
According to Assumption 1.1,

ℓ γ (e) = sup r>0 1 -e(r) r γ < ∞,
thus, for any u, n, λ,

|ζ| ℓ γ (e) 2 λ γ |u • n| γ+1 .
Moreover, for any fixed v, v ⋆ , n,

ψ(v (λ) ) -ψ(v ′ ) = 1 0 ∇ψ(v ′ + s ζ) • ζ ds.
These two observations lead to

I λ ℓ e (γ) 2 λ γ R 3 ×R 3 ×S 2 dv dv ⋆ d n 1 0 |u • n| γ+2 f (v)g(v ⋆ ) ∇ψ(v ′ + s ζ) ds.
At this point it is important to recognize that for any fixed s ∈ (0, 1] the integral

R 3 ×R 3 ×S 2 |u • n| γ+2 f (v)g(v ⋆ ) ∇ψ(v ′ + s ζ) dv dv ⋆ d n
is just the weak form of the gain part of some peculiar Boltzmann-like operator. Indeed, set ϕ(v) = |∇ψ(v)| and V ′ s = v ′ + sζ (notice that V ′ s depends on u, n, λ and s) and observe that

V ′ s = v -β s (u • n) n for some parameter β s = β s (|u • n|) = (1 -s) + sβ λ (|u • n|) ∈ (1/2, 1]. Therefore, V ′
s is in fact a new post-collisional velocity associated to the above β s . We compute for any s ∈ (0, 1],

R 3 ×R 3 ×S 2 |u • n| γ+2 f (v)g(v ⋆ ) ∇ψ(v ′ + s ζ) dv dv ⋆ d n = R 3 ×R 3 ×S 2 |u • n| γ+2 f (v)g(v ⋆ )ϕ(V ′ s ) dv dv ⋆ d n = R 3 Q + B 0 , es (f, g)(v)ϕ(v) dv
where the collision kernel B 0 is given by B 0 (u, n) = |u• n| γ+2 and the restitution coefficient e s is such that

β s = 1+ es 2 . Since ϕ(v) v k |∇φ(v)| + k v k-1 |φ(v)| max(1, k) (|∇φ(v)| + |φ(v)|) v k ,
one has for any s ∈ (0, 1)

R 3 ×R 3 ×S 2 |u • n| γ+2 f (v)g(v ⋆ ) ∇ψ(v ′ + s ζ) dv dv ⋆ d n max(1, k) R 3 Q + B 0 , es (f, g)(v) (|∇φ(v)| + |φ(v)|) v k dv.
As a consequence, thanks to Cauchy-Schwarz inequality

I λ √ 2 max(1, k)ℓ γ (e)λ γ φ H 1 1 0 Q + B 0 , es (f, g) L 2 k ds. (3.18) 
It remains to estimate the norm

Q + B 0 , es (f, g) L 2 k
for any s ∈ (0, 1). This is simply done using Theorem A. 1

Q + B 0 , es (f, g) L 2 k C( e s ) f L 1 k+γ+2 g L 2 k+γ+2
.

In Theorem A. 1 is shown that C( e s ) only depends on the value at zero of the restitution coefficient. Since e s (0) = 1 for any s one gets that C( e s ) is independent of the variable s. Thus, estimate (3.16) follow from (3.18). Exchanging the role of f and g in Theorem A. 1 gives the second estimate.

We use the equivalence of norms (that follows using Fourier transform)

∇ϕ 2 H -1 + ϕ 2 H -1 = ϕ 2 L 2 (3.19)
valid for any ϕ ∈ L 2 to make Proposition 3.9 stronger.

Proposition 3.10. For any ℓ ∈ N and k 0 there exists C(γ, k, ℓ) such that

Q + e λ (f, g) -Q + 1 (f, g) H ℓ k C(γ, k, ℓ) λ γ f W 1,ℓ k+γ+2 g H ℓ+1 k+γ+2 + f H ℓ+1 k+γ+2 g W 1,ℓ k+γ+2 holds for any λ ∈ [0, 1]. Proof. Since ∇Q + e λ (f, g) = Q + e λ (∇f, g) + Q + e λ (f, ∇g) (3.20)
and the same is true for Q + 1 (f, g), it suffices to apply Proposition 3.9 and identity (3.19) conveniently to each term to get the conclusion for ℓ = 1. Use induction to obtain the result for higher derivatives ℓ > 1.

It is actually possible to extend these estimates to the smaller space L 1 (m a ) with exponential weights m a (v) := exp (a|v|) , v ∈ R 3 , a 0.

(3.21) We work with exponent 1 for simplicity even if, as suggested also by Proposition 3.3, it is likely that our results are still valid for general weights of the form exp(a|v| p ) with 0 p < 3 2 . The advantage of the following result with respect to the previous one is that it involves the derivative of only one of the functions f or g. Precisely, one has the following that extends [19, Proposition 3.2].

Theorem 3.11.

There exists an explicit constant λ 0 ∈ (0, 1) such that for any a 0 there exists C(γ, a) > 0 for which there holds

Q + e λ (f, g) -Q + 1 (f, g) L 1 (ma) C(γ, a)λ γ 8+3γ f L 1 1 (ma) g W 1,1 1 (ma)
∀λ ∈ (0, λ 0 ) (3.22) and

Q + e λ (f, g) -Q + 1 (f, g) L 1 (ma) C(γ, a)λ γ 8+3γ g L 1 1 (ma) f W 1,1 1 (ma)
∀λ ∈ (0, λ 0 ).

Proof. The proof follows the argument of the analogue [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]Proposition 3.2] where the crucial estimate is provided by Proposition A.2 (see Appendix A). Precisely, as in the op. cit., for any given v, v ⋆ ∈ R 3 , w = v + v * = 0 and σ ∈ S 2 , we define the angle χ ∈ [0, π 2 ], by cos χ := |σ • ŵ|. Let δ ∈ (0, 1) and R > 1 be fixed and let b δ ∈ W 1,∞ (-1, 1) such that b δ (s) = b δ (-s) for any s ∈ (0, 1) and

b δ (s) = 1 if s ∈ (-1 + 2δ, 1 -2δ) 0 if s / ∈ (-1 + δ, 1 -δ)
with moreover

0 b δ (s) 1 and |b ′ δ (s)| 3 δ ∀s ∈ (-1, 1). Let us define also Θ R (r) = Θ(r/R) with Θ(x) = 1 on [0, 1], Θ(x) = 1 -x for x ∈ [1, 2]
and Θ(x) = 0 on [2, ∞). We define the sets A(δ) := {σ ∈ S 2 ; sin 2 χ δ}, B(δ) := {σ ∈ S 2 ; u • σ / ∈ (-1 + 2δ, 1 -2δ) or sin 2 χ δ}. With these notations, for any restitution coefficient e(•), we split

Q + e into Q + e = Q + B 0 ,e + Q + B 1 ,e + Q + B 2 ,e
where the collision kernels B i (u, u • σ), i = 0, 1, 2, are defined by

B 2 (u, u • σ) = b δ ( u • σ) Θ R (u) |u| 4π , B 1 (u, u • σ) := |u| 4π 1 A(δ) (1 -Θ R (|u|))
and

B 0 (u, u • σ) = |u| 4π (1 -b δ ( u • σ)) Θ R (|u|) + |u| 4π (1 -Θ R (|u|)) 1 A c (δ) .
We shall of course apply this splitting to the restitution coefficients e λ and the elastic one e ≡ 1 which corresponds to e 0 . The proof is divided into three steps.

• Step 1. Estimate for Q + B 0 ,e λ : We can prove exactly as in [19, Proposition 3.2] (precisely, using Theorem A. 1) that for any λ ∈ [0, 1) and any δ ∈ (0, 1) there holds given by k = (1δ/160) 1 2 independent of λ. In particular, reproducing the proof of the op. cit. we get that there exists a constant C > 0 such that:

Q + B 0 ,e λ (f, g) L 1 (ma) 2 δ f L 1 1 (ma) g L 1 1 (ma) . ( 3 
Q + B 1 ,e λ (f, g) L 1 (ma) C δ 2 R f L 1 1 (ma) g L 1 1 (ma)
∀λ ∈ [0, 1], δ ∈ (0, 1), R > 1. (3.24)

• Step 3. Estimate for the difference Q + B 2 ,e λ -Q + B 2 ,1 : The crucial point is now to estimate Q + B 2 ,e λ (f, g)-Q + B 2 ,1 (f, g) L 1 (ma)
and, as already mentioned, we shall resort to Proposition A. 2 given in Appendix A. Precisely, let φ ∈ L ∞ and ψ(v) = m a (v)φ(v). Notice that the collision kernel B 2 (u, u•σ) satisfies the assumption of Proposition A. 2 since Suppb δ ⊂ (-1+ δ, 1δ). Applying this Proposition to the restitution coefficient e λ (with fixed λ ∈ (0, 1]) one sees that there exists C e λ > 0 such that

R 3 Q + B 2 ,e λ (f, g) -Q + B 2 ,1 (f, g) ψ(v) dv C e λ R 3 Q + Bγ ,1 (f, g) |ψ(v)| dv + 2 γ+6 ℓ γ (e λ ) 1 0 ds R 3 Q + Bγ ,ẽ λ s (f, h) |ψ(v)| dv
where h(v) = g(v) + |∇g(v)| while the kernels B γ and B γ are given by

B γ (u, u • σ) = B 2 (u, u • σ)|u| γ , B γ (u, u • σ) = max(B 2 (u, u • σ), |∇ u B 2 (u, u • σ)|)|u| γ+2
and, for any s ∈ [0, 1], ẽλ s (•) is a given restitution coefficient with in particular ẽλ s (0) = 1 for any s, λ. One estimates these two integrals using Theorem A. 1. Precisely, by Holder's inequality

R 3 Q + Bγ ,1 (f, g) |ψ(v)| dv Q + Bγ ,1 (f, g)m a L 1 φ L ∞
while, for any s ∈ (0, 1)

R 3 Q + Bγ ,ẽ λ s (f, h) (v)|ψ(v)| dv Q + Bγ ,ẽ λ s (f, h) L 1 φ L ∞ . Now, one notices that m a (v ′ s ) m a (v) m a (v ⋆ ) and m a (v ′ 1 ) m a (v) m a (v ⋆ ) where v ′
s and v ′ 1 denote the post-collision velocities associated to the restitution coefficient ẽλ s and e ≡ 1 respectively, so that

Q + Bγ ,1 (f, g)m a L 1 Q + Bγ ,1 (m a f, m a g) L 1 and Q + Bγ ,ẽ λ s (f, h) L 1 Q + Bγ ,ẽ λ s (m a f, m a h) L 1 .
Since Θ R (|u|) = 0 whenever |u| > 2R, one has Θ R (|u|)|u| γ (2R) γ for any u ∈ R 3 and there exists an universal constant c 1 > 0 such that

Q + Bγ ,1 (m a f, m a g) L 1 c 1 R γ m a f L 1 1 m a g L 1 1 . (3.25) 
To estimate

Q + Bγ ,ẽ λ s (m a f, m a h) L 1 , one only notices that the kernel B γ (u, u • σ) can be estimated by B γ (u, u • σ) 1 R + 1 δ |u| + 1 b δ ( u • σ)Ξ R (|u|) |u| γ+2
for some positive mapping Ξ R (•) such that Ξ R (|u|) = 0 whenever |u| > 2R; the factor R -1 coming from the derivative of Θ R while the term δ -1 comes from that of b δ . Then, using as above Theorem A. 2 and because ẽλ s (0) = 1 is independent of s ∈ (0, 1), one gets the existence of an universal constant c 2 > 0 such that

Q + Bγ ,ẽ λ s (m a f, m a h) L 1 c 2 1 R + 1 δ R γ+2 m a f L 1 1 m a h L 1 1
or, equivalently,

Q + Bγ ,ẽ λ s (m a f, m a h) L 1 c 2 1 R + 1 δ R γ+2 m a f L 1 1 m a g W 1,1 1 . (3.26)
Finally, using the fact that ℓ γ (e λ ) λ γ ℓ γ (e) while, as noticed in Remark A. [START_REF] Alonso | Existence of global solutions to the Cauchy problem for the inelastic Boltzmann equation with near-vacuum data[END_REF], C e λ c 3 λ γ for any λ ∈ (0, λ 0 ] for some constructive λ 0 > 0 and some positive constant c 3 > 0, we finally obtain, combining (3.25) and (3.26) that

Q + B 2 ,e λ (f, g) -Q + B 2 ,1 (f, g) L 1 (ma) Cλ γ 1 R + 1 δ R γ+2 f L 1 1 (ma) g W 1,1 1 (ma) ∀λ ∈ (0, λ 0 ] (3.27)
for some positive constant C > 0. Collecting estimates (3.23)-(3.24)-(3.27), we finally get that there is some positive C > 0 such that

Q + e λ (f, g) -Q + (f, g) L 1 (ma) C δ + δ -2 R -1 + R γ+2 λ γ δ + R γ+1 λ γ f L 1 1 (ma) g W 1,1 1 (ma) ∀λ ∈ (0, λ 0 ), δ > 0, R > 1. (3.28)
Then, choosing δ and R > 1 such that

δ = δ -2 R -1 = R γ+2 λ γ δ = λ p
for some p > 0, one sees that necessarily p = γ 8+3γ and R γ λ γ = λ 5p . This gives the conclusion. One proves the second estimate exactly in the same way.

Notice that, increasing the polynomial weights in the various norms of f and g, we can get an optimal control rate λ γ . Corollary 3.12. There exists some explicit λ 0 ∈ (0, 1) such that for any a 0 there exists some explicit constant C(γ, a) > 0 for which there holds

Q + e λ (f, g) -Q + 1 (f, g) L 1 (ma) C(γ, a)λ γ f L 1 k (ma) g W 1,1 k (ma) ∀λ ∈ (0, λ 0 ) (3.29)
and

Q + e λ (f, g) -Q + 1 (f, g) L 1 (ma) C(γ, a)λ γ g L 1 k (ma) f W 1,1 k (ma)
∀λ ∈ (0, λ 0 )

where k = γ + 10 3 .

Proof. The proof follows the lines given for Theorem 3.11. Let us explain the small changes. Bounding directly Θ R by 1 allows to replace Estimate (3.25) by

Q + Bγ ,1 (m a f, m a g) L 1 c 1 m a f L 1 γ+1 m a g L 1 γ+1
. In the same way, for some given 1 < k < γ + 3 to be determined later, one can replace Estimate (3.26) by

Q + Bγ,ẽ λ s (m a f, m a h) L 1 c 2 1 R + 1 δ R γ+3-k m a f L 1 k m a g W 1,1 k .
With such a choice, (3.27) becomes

Q + B 2 ,e λ (f, g) -Q + B 2 ,1 (f, g) L 1 (ma) Cλ γ 1 R + 1 δ R γ+3-k f L 1 k (ma) g W 1,1 k (ma) + Cλ γ f L 1 γ+1 (ma) g L 1 γ+1 (ma) ∀λ ∈ (0, λ 0 ]
and, collecting all the estimates as above we get

Q + e λ (f, g) -Q + (f, g) L 1 (ma) C δ + δ -2 R -1 + R γ+3-k λ γ δ + R γ+2-k λ γ + λ γ f L 1 s (ma) g W 1,1 s (ma) ∀λ ∈ (0, λ 0 ), δ > 0, R > 1
where s = max(k, γ + 1). One looks now for k ∈ (1, γ + 2) for which it is possible to choose δ, R > 1 such that

δ = δ -2 R -1 = R γ+3-k λ γ δ = λ γ
and we get that, necessarily, k = γ + 10 3 . In this case, R γ+2-k λ γ = λ 5γ and we obtain finally (3.29).

UNIQUENESS

We are now in position to prove the uniqueness of the solution to (1.15) for sufficiently small λ, that is, there exists λ † > 0 such that for any λ ∈ (0, λ † ) the stationary problem (1.15) admits a unique solution G λ with unit mass and vanishing momentum. The strategy of proof has been sketched in the Introduction and we shall refer to Section 1.3 for the main steps of the proof. In particular, a crucial point consists in proving and quantifying the convergence of (G λ ) λ towards an universal limit M. This is the object of the following paragraph. 4.1. The limit λ → 0: non quantitative version. Using the continuity properties, specifically Theorem 3.11, and a compactness argument, we establish a first convergence result, non quantitative in the sense that no rate of convergence is provided. where M is the Maxwellian

M(v) = (2πΘ) -3 2 exp - |v| 2 2Θ .
The Maxwellian's temperature Θ is given by

Θ = 6(4 + γ) a 2 γ 2 m 3+γ 2 3+γ (4.1)
where m 3+γ is the (3 + γ)-th moment of a normalized Gaussian

m 3+γ = π -3 2 R 3 exp - |v| 2 2 |v| 3+γ dv = 2 3+γ 2 Γ 3 + γ 2 Γ 3 2 .
Proof. The proof is divided in several steps and essentially based upon a compactness argument through Theorem 3.6.

• First step: compactness argument. Let us choose m -1 ℓ > 5 2 and k 0 1 in the Theorem 3.6. It clearly exists a sequence (λ n ) n with λ n → 0 and G 0 ∈ H ℓ k such that (G λn ) n converges weakly, in H ℓ k 0 , to G 0 (notice that, a priori, the limit function G 0 depends on the choice of ℓ and k 0 ). Using the decay of G λ guaranteed by the polynomially weighted Sobolev estimates, we can prove thanks to a simple localization argument (and using compact embedding for Sobolev spaces) that the convergence is actually strong in

H 1 k for any 0 k < k 0 lim n→∞ G λn -G 0 H 1 k = 0. (4.2) Indeed, since sup λ∈(0,1) G λ -G 0 H ℓ k 0
< ∞, for any fixed 0 k < k 0 and any ε > 0, there is R > 0 large enough such that

sup λ∈(0,1) G λ -G 0 H 1 k (B c R ) ε (4.3)
where B R = {v ∈ R 3 , |v| R} and B c R its complementary. Let Gλn and G0 denote the restrictions of G λn and G 0 to the ball B R . Since ℓ > 5 2 , according to Rellich-Kondrachov compactness theorem [1, Theorem 6.2, p.144], the embedding H ℓ (B R ) ֒→ H 1 (B R ) is compact so that there is a subsequence of ( Gλn ) n that converges strongly to G0 in H 1 (B R ). Since G0 is the unique limit of all subsequences, it is actually the whole sequence ( Gλn ) n that converges to G0 in H 1 (B R ). Combining this with (4.3) yields (4.2).

• Second step: identification of the limit G 0 . Let us prove now that the above limit G 0 is actually a Maxwellian distribution with temperature Θ. To do so, one uses (1.15) to get

Q e λ (G λ , G λ ) L 2 = λ γ ∆ v G λ L 2 ∀λ > 0 and, since sup λ∈(0,1] ∆ v G λ L 2 sup λ∈(0,1] G λ H 2 =: C 0 < ∞ according to Theorem 3.6, we get Q e λ (G λ , G λ ) L 2 C 0 λ γ ∀λ ∈ (0, 1). (4.4) Now, from the identity Q - 1 (G λ , G λ ) = Q - e λ (G λ , G λ ), one has Q e λ (G λ , G λ ) - Q 1 (G λ , G λ ) L 2 = Q + e λ (G λ , G λ ) -Q + 1 (G λ , G λ ) L 2 so that, Q 1 (G λ , G λ ) L 2 Q + e λ (G λ , G λ ) -Q + 1 (G λ , G λ ) L 2 + Q e λ (G λ , G λ ) L 2 .
Combining the above estimate (4.4) with Proposition 3.10 we get

Q 1 (G λ , G λ ) L 2 C 0 λ γ + C 1 λ γ G λ 2 H 1 2
for some positive constant C 1 > 0 independent of λ. Using again Theorem 3.6, we get that there exists some explicit constant C 2 > 0 such that

Q 1 (G λ , G λ ) L 2 C 2 λ γ ∀λ ∈ (0, 1].
In particular the sequence (G λn ) n constructed in the first step satisfies

lim n→∞ Q 1 (G λn , G λn ) L 2 = 0. Since G λn → G 0 strongly in L 2 1 , we get easily that Q 1 (G 0 , G 0 ) = 0
i.e. G 0 is a Maxwellian distribution. By conservation of mass and momentum, we get that G 0 has unit mass and zero momentum and it remains only to determine its temperature Θ. To do so, we shall use equation (1.16) and Lemma A. 5. With the notations of Lemma A. 5, equation (1.16) writes I λ (G λ ) = 6 for any λ ∈ (0, 1]. Applying Lemma A. 5 with

f 1 = g 1 = G λn , f 2 = g 2 = G 0 (
with for simplicity δ = 1) and estimating the weighted L 1 -norms by L 2 -norms (using equation (2.15) with θ = 1 2 for instance) we get that, for any ε > 0 there is n 0 1 such that

|I 0 (G 0 ) -6| C 1 G λn -G 0 L 2 5+γ + C 2 ε ∀n n 0
for some positive constants C 1 , C 2 > 0 independent of n where we used that k 0 6 + γ and the uniform estimates on G λ L 2 5+γ . Letting n go to infinity, we get that I 0 (G 0 ) = 6. Therefore,

6 = C γ R 3 ×R 3 G 0 (v)G 0 (v ⋆ )|v-v ⋆ | 3+γ dv dv ⋆ = C γ Θ 3+γ 2 R 3 ×R 3 M (v)M (v ⋆ )|v-v ⋆ | 3+γ dv dv ⋆ where M (•) is the normalized Maxwellian M (v) = π -3 2 exp -|v| 2 2
. Some algebra yields

6 = C γ Θ 3+γ 2 2
γ 2 m 3+γ from which we deduce (4.1), and thus, G 0 = M.

• Final step: convergence of the whole net (G λ ) λ . We conclude the proof by showing that

lim λ→0 G λ -M H 1 = 0.
Argue by contradiction assuming this does not hold. Then, there exists ǫ 0 > 0 and a sequence (λ n ) n converging to zero such that

G λn -M H 1 ǫ 0 ∀n ∈ N.
We just proved above that (G λn ) n admits a subsequence (G λn j ) j converging strongly in H 1 to M. Therefore,

ǫ 0 G λn j -M H 1 -→ j→∞ 0,
which is a contradiction. This proves that the full net (G λ ) λ converges to M strongly in any H 1 . We proceed along the same path (using a version of Rellich-Kondrachov Theorem for higher-order Sobolev spaces) to prove that the convergence actually holds in any weighted Sobolev space

H ℓ k , k 0 and ℓ ∈ [0, m -1].
This convergence in Sobolev spaces can be extended easily to weighted L 1 -spaces with exponential weights. Recall that, for any a 0, we denote

m a (v) = exp(a|v|), v ∈ R 3 .

Corollary 4.2.

Assume that e(•) belongs to the class E m with m > 7 2 . For any a 0 and any

k 0 it holds lim λ→0 G λ -M L 1 k (ma) = 0.
Proof. Taking ℓ > 3 2 in the above Theorem, observe that by classical Sobolev embedding

lim λ→0 G λ -M L ∞ = 0.
The proof follows then using interpolation. First, observe that the convergence holds in exponential weighted L 2 -spaces

R 3 |G λ (v) -M(v)| 2 m b (v) dv C b G λ -M L ∞ -→ 0 as λ → 0
where

C b := sup λ∈(0,1] G λ -M L 1 (m b
) is finite for any b 0 thanks to Proposition 3.3. Then, using Holder's inequality, for any b, a > 0

G λ -M L 1 k (ma) R 3 |G λ (v) -M(v)| 2 m b (v) dv 1 2 R 3 m b (v) -1 m 2 a (v) v 2k dv 1 2
.

The last integral in the right side is finite provided b > 2a, therefore, the L 1 convergence follows from the L 2 convergence just proved.

4.2. Uniqueness result. On the basis of the above convergence result, we are in position to apply our general strategy as explained in Section 1.3. Recall that, for any given λ ∈ (0, 1] and G λ , F λ ∈ S λ , we set

H λ = F λ -G λ .
We have to determine Banach spaces X and Y for which the estimates (1.20) -(1.24) hold true. The analysis of the previous section suggests the choice (1) 0 is a simple eigenvalue of L 1 associated to the null set

X = L 1 (m a ), Y = L 1 1 (m a )
N (L 1 ) = Span(M, v 1 M, v 2 M, v 3 M, |v| 2 M);
(2) the continuous spectrum of L 1 is given by (-∞, -ν 0 ] where

ν 0 = inf v R 3 |v -v ⋆ |M(v ⋆ ) dv ⋆ ;
(3) the non zero eigenvalues of L 1 are all negative and can accumulate only at -ν 0 . Consequently, L 1 admits a positive spectral gap ν > 0.

In particular, if

X = {f ∈ X ; R 3 f dv = R 3 vf dv = R 3 |v| 2 f (v) dv = 0}, Y = Y ∩ X then N (L 1 ) ∩ Y = {0} and L 1 is invertible from Y to X with explicit estimates for L -1 1 X → Y . Consequently, inequality (1.24) holds true with c 0 = L -1 1 X → Y . Remark 4.4.
The proof of the above proposition can be seen as a consequence of some general comparison principle that asserts that the linearized collision operator enjoys the same spectral properties in X and in the largest Hilbert space H = L 2 (M -1 ). A simple proof of Proposition4.3 can also be recovered from [START_REF] Bisi | Uniqueness in the weakly inelastic regime of the equilibrium state to the Boltzmann equation driven by a particle bath[END_REF].

The difference H λ = F λ -G λ does not necessary belong to Y since we do not know a priori that G λ and F λ share the same kinetic energy. Consequently, we need a slight modification of the strategy developed in Section 1.3 to state our main result, regarding uniqueness of the steady state. 

S λ = G λ ∈ L 1 2 ; G λ solution to (1.15) with R 3 G λ (v) dv = 1 and
L 1 (H λ ) X ε H λ Y ∀λ ∈ (0, λ 0 ). (4.5) 
Let us now introduce the following lifting of the operator L 1 into an invertible operator

A : h → Ah = (A 1 h; A 2 h) ∈ R × X (4.6) 
where the second component A 2 h = L 1 h while the first component A 1 is defined by

A 1 h = 2I 0 (M, h) = 2 R 3 ×R 3 M(v)h(v ⋆ )ζ 0 |v -v ⋆ | 2 dv dv ⋆ .
We refer to the Appendix A for notations. Since G λ and F λ share the same mass and momentum, one deduces from Lemma A. 7 that

H λ = F λ -G λ = A -1 AH λ = A -1 (A 1 (H λ ); A 2 (H λ ))
with an explicit estimate of the norm A -1 . Since A -1 maps R × X to Y, we get

H λ Y A -1 max A 1 (H λ ) ; A 2 (H λ ) X . (4.7) 
Still using the notations of Appendix A, one has readily

A 1 (H λ ) = I 0 (M -F λ , H λ ) + I 0 (M -G λ , H λ ) + I 0 (F λ + G λ , F λ -G λ ) -I λ (F λ + G λ , F λ -G λ ) . Now, it is clear that |I 0 (M -F λ , H λ ) + I 0 (M -G λ , H λ )| C γ M -F λ L 1 3+γ + M -G λ L 1 3+γ H λ L 1 3+γ C γ ( M -F λ X + M -G λ X ) H λ Y ∀λ ∈ (0, 1].
Consequently, applying then Lemma A. 5 with

f 1 = f 2 = F λ + G λ and g 1 = g 2 = F λ -G λ ,
we get the existence of constant C > 0 and some λ 1 ∈ (0, 1) such that

|A 1 (H λ )| C (ε + M -F λ X + M -G λ X ) H λ Y ∀λ ∈ (0, λ 1 ). (4.8) 
In particular, on the basis of (1.23), there exists λ 2 ∈ (0, λ 1 ) such that

|A 1 (H λ )| 2Cε H λ Y ∀λ ∈ (0, λ 2 ).
Using now (4.5) together with (4.7), we deduce that

H λ Y ε max(1, 2C) A -1 H λ Y ∀λ ∈ (0, λ † )
where λ † = min(λ 0 , λ 2 ). Taking ε > 0 small enough yields therefore the desired uniqueness: H λ = 0 for any λ ∈ (0, λ † ). 

For any a 0, there exist some explicit λ 0 ∈ (0, 1), c 0 , c 1 > 0 and exponent α = min(γ, γγ) > 0 such that the estimate

G λ -M L 1 (ma) c 0 λ α + c 1 G λ -M 2 L 1 1 (ma) ∀λ ∈ (0, λ 0 )
holds for any G λ ∈ S λ .

Proof. We apply a slight modification of the proof of Theorem 4.5 where, instead of estimating the difference of two solutions to (1.15), we estimate the difference G λ -M. Recall that A is the lifting operator given by (4.6). Thus,

G λ -M = A -1 A(G λ -M) = A -1 (A 1 (G λ -M); A 2 (G λ -M))
where the norm of A -1 is explicit. In particular, since A -1 maps R × X to Y, we get

G λ -M Y A -1 max A 1 (G λ -M) ; A 2 (G λ -M) X . (4.10) 
Let us estimate separately the two terms A 1 (G λ -M) and A 2 (G λ -M). In the one hand,

A 1 (G λ -M) = 2I 0 (M, G λ -M) = I 0 (M -G λ , G λ -M)+ I 0 (G λ , G λ ) -I λ (G λ , G λ )
where we used the fact that

I 0 (M, M) = I λ (G λ , G λ ) = 6. Now, it is clear that |I 0 (M -G λ , G λ -M)| C γ G λ -M 2 L 1 3+γ
.

Moreover, according to Lemma A. 6 and under assumption (4.9),

I 0 (G λ , G λ ) -I λ (G λ , G λ ) C 0 λ α G λ 2 L 1 3+γ+γ
for some explicit constant C 0 > 0 and exponent α = min(γ, γγ) > 0. Therefore, since

sup λ∈(0,1] G λ 2 L 1 3+γ
, with the notations of the previous section

|A 1 (G λ -M)| C 1 λ α + C γ G λ -M 2 L 1 (ma) ∀λ ∈ (0, 1] (4.11) 
for some positive constant C 1 > 0. On the other hand,

A 2 (G λ -M) = Q 1 (G λ -M, M -G λ ) + Q 1 (G λ , G λ ) = Q 1 (G λ -M, M -G λ ) + (Q 1 (G λ , G λ ) -Q e λ (G λ , G λ )) + Q e λ (G λ , G λ ) = Q 1 (G λ -M, M -G λ ) + (Q 1 (G λ , G λ ) -Q e λ (G λ , G λ )) -λ γ ∆G λ .
Therefore, using Corollary 3.12, there exist an explicit λ 0 ∈ (0, 1) and constants C 2 , C 3 > 0 such that

A 2 (G λ -M) L 1 (ma) C 1 G λ -M 2 L 1 1 (ma) + C 2 λ γ G λ L 1 γ+ 10 3 (ma) G λ W 1,1 γ+ 10 3 (ma) 
+ λ γ G λ W 2,1 (ma) ∀λ ∈ (0, λ 0 ). (4.12)

Using interpolation, similar to the proof of (3.15), and Proposition 3.4 we obtain

sup λ∈(0,1] G λ W 1,1 γ+ 10 3 (ma) + G λ W 2,1 (ma) < ∞.
Hence, inequality (4.12) reads

A 2 (G λ -M) L 1 (ma) C 1 G λ -M 2 L 1 1 (ma) + C 3 λ γ ∀λ ∈ (0, λ 0 ) for explicit constants C 1 , C 3 > 0.
Combining this estimate with (4.11) and (4.10) yields the desired conclusion.

Theorem 4.7. Assume that e(•) satisfies (4.9) and belongs to the class E m with m 4. Fix the exponential weight m a (v) = exp(a|v|) with a 0. There exist an explicit λ ⋆ ∈ (0, 1) and constant c > 0 such that

G λ -M L 1 (ma) cλ α ∀λ ∈ (0, λ ⋆ )
where G λ ∈ S λ and α = min(γ, γγ).

Proof. The proof follows from the Proposition 4.6 and the non quantitative convergence Theorem 4.1. Indeed, recall the estimate

G λ -M L 1 1 (ma) c 0 λ α + c 1 G λ -M 2 L 1 1 (ma) ∀λ ∈ (0, λ 0 ) (4.13) 
for some explicit constants c 0 , c 1 > 0. Then, since lim λ→0 G λ -M L 1 1 (ma) = 0, there is some a priori non explicit λ ⋆ ∈ (0, λ 0 ) such that

c 1 G λ -M L 1 1 (ma) 1 2 ∀λ ∈ (0, λ ⋆ ). (4.14) 
Therefore, estimate (4.13) becomes

G λ -M L 1 1 (ma) 2c 0 λ α ∀λ ∈ (0, λ ⋆ ). (4.15) 
This gives a posteriori an explicit estimate for λ ⋆ since the optimal λ ⋆ will be the one for which (4.14) and (4.15) are identity which yields the estimate λ ⋆ (4c 0 c 1 ) -1 α . Since all the parameters c 0 , c 1 , α happen to be explicitly computable we get the result. Remark 4.8. We wish to emphasize here several points about our approach. First, recall that in the case of constant restitution coefficient, the approach of [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF] yields directly quantitative results. This was possible thanks to a clever application of the Cercignani's conjecture for the elastic Boltzmann operator derived in [START_REF] Villani | Cercignani's conjecture is sometimes true and always almost true[END_REF]. This allowed to compare the entropy dissipation functional and the distance to a given Maxwellian distribution, more specifically, the distance to the elastic limit. The disadvantage of this approach is that requires pointwise exponential lower bounds and high regularity for the associated steady solution. Such lower bounds are related to the spreading property of the collision operator and their technical extension to the case of non-constant restitution coefficient is not trivial. In contrast, the strategy here does not uses entropy techniques at all, thus, it does not require neither pointwise lower bounds nor regularity assumptions. This makes it well-suited for problems in which no regularity of the steady solution is available, see [START_REF] Alonso | The homogeneous Boltzmann equation with a cold thermostat[END_REF].

It is easy to deduce explicit estimates for the parameter λ † in Theorem 4.5 under the above assumption (4.9) on e(•): Theorem 4.9. If e(•) belong to the class E m for some integer m 4 and satisfies (4.9), there is an explicit parameter λ † ∈ (0, 1] such that S λ reduces to a singleton for any λ ∈ [0, λ † ).

Proof. Recall that the only non quantitative part in the strategy described in Section 1.3 was the convergence rate of G λ towards M. It is made explicit now thanks to Theorem 4.7 and, resuming the above strategy one gets that there exists some explicit C 0 > 0 such that

L 1 (H λ ) X C 0 λ α H λ Y ∀λ ∈ (0, λ ⋆ )
where H λ = F λ -G λ with F λ , G λ ∈ S λ and λ ⋆ is the parameter in Theorem 4.7. Recall that λ ⋆ can be estimated from below in an explicit way. Using Theorem 4.7 one can replace (4.8) in the proof of Theorem 4.5 by the following quantitative estimate

|A 1 (H λ )| C 1 λ α H λ Y ∀λ ∈ (0, λ ⋆ )
where C 1 > 0 is an explicit constant. Then, resuming the proof of Theorem 4.5 yields

H λ Y C 2 λ α H λ Y ∀λ ∈ (0, λ ⋆ )
where

C 2 = max(C 0 , C 1 ) A -1 > 0 is explicit. We see therefore that H λ = 0 provided λ < λ † = min λ ⋆ , C -1/α 2 .
The above uniqueness result in the quasi-elastic limit λ → 0 translates to a weak thermalization uniqueness result. Theorem 4.10. For any restitution coefficient e(•) belonging to the class E m with m 4 and satisfying (4.9), there exists some explicit µ † > 0 such that for any µ µ † , there exists a unique solution

F to Q e (F, F ) + µ∆F = 0 with R 3 F (v) dv = 1 and R 3 vF (v) dv = 0.
Proof. The proof is a simple consequence of our scaling choice. Indeed, Theorem 4.9 asserts that, for λ < λ † the steady problem

Q e λ (G λ , G λ ) + λ γ ∆G λ = 0
admits an unique solution with unit mass and vanishing momentum. Performing the backward scaling F (v) = λ -3 G λ λ -1 v one gets that there exists an unique solution F with unit mass and vanishing momentum to the problem Q e (F, F ) + λ 3+γ ∆F = 0 whenever λ < λ † . This clearly yields the conclusion with µ † = λ † 3+γ .

APPENDIX A: PROPERTIES OF THE COLLISION OPERATOR

We collect in this Appendix some facts about the Boltzmann collision operator important in their own right. Some of the properties of Q e that we will establish here are known and some others new. We shall consider a collision operator with more general collision kernel than the hard-spheres case considered in the paper, more precisely, a collision kernel B(u, σ) of the form

B(u, σ) = Φ(|u|)b( u • σ). (A.
1) The kinetic potential Φ(•) is a suitable nonnegative function in R 3 and the angular kernel b(•) is assumed in L 1 (-1, 1). The associated collision operator Q B,e is defined through the weak formulation

R 3 Q B,e (f, f )(v)ψ(v) dv = 1 2 R 3 ×R 3 f (v)f (v ⋆ )A B,e [ψ](v, v ⋆ ) dv ⋆ dv (A.2)
for any test function ψ = ψ(v) where (1.6). For any fixed vector u, the angular kernel defines a measure on the sphere through the mapping σ ∈ S 2 → b( u • σ) ∈ [0, ∞] and we will assume it to satisfy the renormalized Grad's cut-off assumption A.1. Convolution-like estimates for Q + B,e . We begin by recalling some of the regularity and integrability properties of the gain part Q + e established in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] and [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF]. We start first with Young-like estimates in L p η with η 0.

A B,e [ψ](v, v ⋆ ) = S 2 ψ(v ′ ) + ψ(v ′ ⋆ ) -ψ(v) -ψ(v ⋆ ) B(u, σ) dσ with v ′ , v ′ ⋆ are defined in
Theorem A. 1 (Alonso-Carneiro-Gamba [START_REF] Alonso | Convolution inequalities for the Boltzmann collision operator[END_REF]). Assume that the collision kernel

B(u, σ) = Φ(|u|)b( u • σ) satisfies (A.3) and Φ(•) ∈ L ∞ -k for some k ∈ R.
In addition, assume that e(•) fulfills Assumption 1.1. Let 1 p, q, r ∞ with 1/p + 1/q = 1 + 1/r. Then, for any α 0, there exists C p,r,α,k (b) such that

Q + B,e (f, g) L r α C r,p,α,k (b) Φ L ∞ -k f L p α+k g L q α+k
where the constant C r,p,α,k (b) is given by

C r,p,α,k (b) = c k,α,r 1 -1 1 -s 2 -3/2r ′ b(s) ds r ′ q ′ 1 -1 1 + s 2 + (1 -β 0 ) 2 1 -s 2 -3 2r ′ b(s) ds r ′ p ′ (A.5)
for some numerical constant c k,α,r independent of b and e(•) and with β 0 = β(0) = 1+e(0) 2 .

Theorem A.1 has been modified in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] to provide L p η bounds with η 0. 

Q + B,e (f, g) L p η C η,p,k (B) f L 1 |η+k|+|η| g L p η+k
where the constant C η,p,k (B) is given by:

C η,p,k (B) = c k,η,p γ(η, p, b) Φ L ∞ -k
with a constant c k,η,p > 0 depending only on k, η and p. Furthermore, the dependence on the angular kernel is given by

γ(η, p, b) = 1 -1 1 -s 2 - 3+η + 2p ′ b(s) ds, (A.6)
where 1/p + 1/p ′ = 1 and η + is the positive part of η. Similarly, there exists C η,p,k (B) > 0 such that Q + B,e (f, g)

L p η C η,p,k (B) g L 1 |η+k|+|η| f L p η+k
where the constant C η,p,k (B) is given by

C η,p,k (B) = c k,η,p γ(η, p, b) Φ L ∞ -k
for some constant c k,η,p > 0 depending only on k, η and p. The dependence on the angular kernel is given by

γ(η, p, b) = 1 -1 1 + s 2 + (1 -β 0 ) 2 1 -s 2 - 3+η + 2p ′ b(s) ds where 1/p + 1/p ′ = 1 and β 0 = β(0) = 1+e(0) 2 . Corollary A. 1. Assume that the collision kernel B(u, σ) = Φ(|u|)b( u • σ) satisfies (A.3) and Φ(•) ∈ L ∞ -k for some k ∈ R.
In addition, assume that e(•) fulfills Assumption 1.1. Then, for any 1 p ∞ and η ∈ R, there exists a numerical constant C k,η,p > 0 (which does not depend on B(•, •)) such that

Q + B,e (f, f ) L p η C k,η,p b L 1 (S 2 ) Φ L ∞ -k f L 1 |η+k|+|η| f L p η+k .
A.2. Useful change of variables for non constant restitution coefficient. We establish here several changes of variables that are useful for the study of the continuity properties given in Section 3. (1) The mapping r ∈ R + → e(r) ∈ (0, 1] is absolutely continuous and non-increasing.

(2) The mapping r ∈ R + → ϑ e (r) := r e(r) is strictly increasing.

(3) e(0) = 1.

Moreover, for a given γ > 0, we shall say that e(•) belongs to the class C γ if it belongs to C 0 and there exists a > 0 such that e(r) ≃ 1ar γ as r ≃ 0. 

Ω δ = Ω δ (σ) = u ∈ R 3 \ {0} ; u • σ > δ -1 . (A.7)
Define the mapping Φ σ as

Φ σ : u ∈ R 3 -→ Φ σ (u) = u + |u|σ 2 .
Then, Φ σ is a C ∞ -diffeomorphism from Ω δ onto Ω δ ⋆ where δ ⋆ = 1 + δ 2 and with Jacobian

J σ (u) = 1 8 (1 + u • σ) . Its inverse mapping ϕ σ = Φ -1 σ is given by ϕ σ (w) = 2w - |w| w • σ σ.
With the notations of Lemma A. .

If one combines the two applications Π e • Φ σ we get the change of variables

u -→ z = β e (|Φ σ (u)|) Φ σ (u) which is a C ∞ -diffeomorphism from Ω δ onto Ω δ ⋆ . Its inverse mapping is given by z -→ ζ e (z) = ϕ σ • π e (z)
with Jacobian given by J σ (ζ e (z))J e (z). In order to prove that there exists ẽs (•) in the class C 0 such that µ = µ ẽs , thanks to Lemma A. 1, it suffices to prove that the mapping α : r → (1s)r + sα e (r) satisfies r α(r) 2r ; α(r) r α ′ (r) 2 for any r > 0 and α ′ (0) = 1.

Since α e satisfies all these properties, it follows that the same is true for α.

The following proposition is reminiscent of the so-called cancellation Lemma for the classical Boltzmann operator [START_REF] Alexandre | Entropy dissipation and long range interactions[END_REF][START_REF] Villani | Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off[END_REF]. 

R 3 Q + B,e (f, g) -Q + B,1 (f, g) ψ dv = 1 2 R 3 f (v) dv S 2 dσ Ω ⋆ δ ψ(v + z) 1 J e (|z|) F v,σ (ζ e (z)) -F v,σ (ϕ σ (z)) dz (A.10)
where

F v,σ (u) = Θ(|u|) b( u • σ)g(v + u) with b( u • σ) = b( u•σ) Jσ(u) = 8b( u•σ) 1+ u•σ , u ∈ R 3 .
Proof. We set for simplicity

I e = R 3 Q + B,e (f, g)(v)ψ(v) dv and I 1 = R 3 Q + B,1 (f, g)ψ(v) dv.
Thus,

I e = 1 2 R 3 ×R 3 ×S 2 B(u, u • σ)f (v)g(v ⋆ )ψ(v ′ e ) dv dv ⋆ dσ where u = v -v ⋆ and v ′ e = v -β(|u| 1-u•σ 2 ) u-|u|σ 2
is the post-collisional velocity associated to e(•). In particular, the change of variables v ⋆ → u yields

I e = 1 2 R 3 f (v) dv S 2 dσ R 3 B(u, u • σ)g(v -u)ψ(v ′ e ) dv du dσ.
The change of variables u → -u in the last integral gives

I e = 1 2 R 3 f (v) dv S 2 dσ Ω δ Θ(|u|)b( u • σ)g(v + u)ψ v + β (|Φ σ (u)|) Φ σ (u) du
where we used that, for fixed σ, the support of b is included in [-1 + δ, 1δ] so that the variable u belongs to the cone Ω δ defined by (A.7). With the notations of Lemma A.3, we perform the change of variables z = Π e • Φ σ (u) in the previous integral to get

I e = 1 2 R 3 f (v) dv S 2 dσ Ω ⋆ δ ψ(v + z) 1 J e (|z|) F v,σ (ζ e (z)) dz (A.11)
where F v,σ (u) = Θ(|u|) b( u • σ)g(v + u). In the same way, for the particular case of elastic interactions (i.e. for e ≡ 1) since ζ 1 (z) = ϕ σ (z) and J 1 (|z|) = 1 one simply has

I 1 = 1 2 R 3 f (v) dv S 2 dσ Ω ⋆ δ ψ(v + z)F v,σ (ϕ σ (z)) dz
which clearly gives (A.10).

Proposition A. 2. Under the assumptions of Proposition A.1, if e(•) belongs to the class C γ for some γ > 0 then there exists C e > 0 such that

R 3 Q + B,e (f, g) -Q + B,1 (f, g) ψ dv C e R 3 Q + Bγ ,1 (f, g) |ψ(v)| dv + 2 γ+6 ℓ γ (e) 1 0 ds R 3 Q + Bγ ,ẽs (f, h) |ψ(v)| dv where h(v) = g(v) + |∇g(v)|.
The kernels B γ and B γ are given by 

B γ (u, u • σ) = B(u, u • σ)|u| γ , B γ (u, u • σ) = max(B(u, u • σ), |∇ u B(u, u • σ)|)|u| γ+2 , moreover, ẽs (•)
D e,1 = 1 2 R 3 f (v) dv S 2 dσ Ω ⋆ δ ψ(v + z) F v,σ (ζ e (z)) -F v,σ (ϕ σ (z)) dz J e (|z|)
and

D e,2 = 1 2 R 3 f (v) dv S 2 dσ Ω ⋆ δ ψ(v + z) 1 J e (|z|) -1 F v,σ (ϕ σ (z)) dz.
We begin estimating |D e,1 | which is the more involved part. For fixed v, σ, we use the following representation formula

F v,σ (V ) -F v,σ (U ) = 1 0 ∇F v,σ (U + s(V -U )) • U ds with V = ζ e (z) and U = ϕ σ (z) to get F v,σ (ζ e (z))-F v,σ (ϕ σ (z)) = (µ e (z) -1) 1 0 ϕ σ (z)•∇F v,σ ϕ σ (z)+s(µ e (z)-1)ϕ σ (z) ds.
Therefore

D e,1 = 1 2 R 3 f (v) dv S 2 dσ Ω ⋆ δ ψ(v + z) (µ e (z) -1) dz J e (|z|) 1 0 ϕ σ (z) • ∇F v,σ (ϕ σ (z) + s(µ e (z) -1)ϕ σ (z)) ds
Now, according to Lemma A. 4, for any s ∈ [0, 1], there exists a restitution coefficient ẽs (•) in C 0 such that µ ẽs (z) = 1 + s(µ e (z) -1). Therefore,

ϕ σ (z) + s(µ e (z) -1)ϕ σ (z) = ζ ẽs (z)
and, performing the backward change of variable z → u = ζ -1 ẽs (z) with Jacobian dz = J σ (u)J ẽs (Π ẽs • Φ σ (u)) du we get

D e,1 = 4 1 0 ds R 3 |f (v)| dv S 2 dσ Ω δ ψ (v + Π ẽs • Φ σ (u)) µ e (Π ẽs • Φ σ (u)) -1 × × (1 + u • σ) J ẽs (Π ẽs • Φ σ (u)) J e (Π ẽs • Φ σ (u)) ∇F v,σ (u) • ϕ σ Π ẽs • Φ σ (u) du.
Since ẽs (•) is a restitution coefficient in the class C 0 , thanks to the universal bounds (A.9) we see that

sup u∈R 3 s∈(0,1),σ∈S 2 (1 + u • σ) J ẽs (Π ẽs • Φ σ (u)) J e (Π ẽs • Φ σ (u)) 16 < ∞.
Moreover, it is easy to see that

µ e (z) -1 = |z| β e (α e (|z|)) |1 -β e (α e (|z|))| ℓ γ (e) |z|α e (|z|) γ 2 γ ℓ γ (e)|z| γ+1 ∀z ∈ R 3 . Since |Π ẽs • Φ σ (u)| |Φ σ (u)| |u| and |ϕ σ Π ẽs • Φ σ (u) | |u|, we get |D e,1 | 2 γ+6 ℓ γ (e) R 3 |f (v)| dv S 2 dσ Ω δ |ψ( v s )||u| γ+2 du 1 0 |∇F v,σ (u)| ds where v s = v + Π ẽs • Φ σ (u). One can check that |u| γ+2 |∇F v,σ (u)| B γ (u, u • σ) (g(v + u) + |∇g(v + u)|) = B γ (u, u • σ)h(v + u).
Therefore, performing again the change of variable u → -u, we obtain

|D e,1 | 2 γ+6 ℓ γ (e) 1 0 ds R 3 ×R 3 ×S 2 |f (v)|B γ (u, u • σ) h(v -u)|ψ(v ′ s )| dv du dσ where v ′ s = v + Π ẽs • Φ σ (-u) = v -β ẽs |u| 1-u•σ 2 u-|u|σ 2 
is the post-collisional velocity associated to the restitution coefficient ẽs . This proves that

|D e,1 | 2 γ+4 ℓ γ (e) 1 0 ds R 3 Q + Bγ ,ẽs (f, h) (v)|ψ(v)| dv (A.12)
where Q + Bγ ,ẽs is the collision operator associated to the kernel B γ and the restitution coefficient ẽs . For the estimate of |D e,2 | it is enough to prove that there exists C e > 0 such that

1 J e (|z|) -1 C e |z| γ ∀z ∈ R 3 . (A.13) Indeed, if (A.13) holds then |D e,2 | C e R 3 |f (v)| dv S 2 dσ Ω ⋆ δ |ψ(v + z)| |F v,σ (ϕ σ (z)) | |z| γ dz.
Performing the backward change of variables u = ϕ σ (z) as before

|D e,2 | C e R 3 |f (v)| dv S 2 dσ Ω δ |ψ(v + Φ σ (u))| |F v,σ (u) | |u| γ J σ (u) du
where we used that |Φ σ (u)| |u|. Changing again the variable u into -u we get

|D e,2 | C e R 3 ×R 3 ×S 2 B γ (u, u • σ)|f (v)| |g(v ⋆ )| |ψ(v ′ 1 )| dv dv ⋆ dσ where v ′ 1 is the post-collisional velocity associated to elastic interactions, that is, v ′ 1 = v - u-|u|σ 2 
. This gives

|D e,2 | C e R 3 Q + Bγ ,1 (f, g)(v) |ψ(v)| dv
which, combined with (A.12) yields the result. The idea to prove (A.13) is to evaluate J e (̺) for ̺ ≃ 0. Since e(r) ≃ 1ar γ for r ≃ 0 one checks that

1 2 1 + ϑ ′ e (r) β 2 e (r) ≃ 1 + a(γ -1) 2 r γ for r ≃ 0.
Since α e (̺) ≃ ̺ for ̺ ≃ 0, we get J e (̺) ≃ 1 + a(γ-1)

2

̺ γ as ̺ ≃ 0. Therefore,

sup ̺ 0 1 -J e (̺) ̺ γ < ∞
and (A.13) follows for some constant C e depending only on e(•).

Remark A. 3. Notice that, defining as in Section 3, the rescaled restitution coefficient e λ (r) = e(λr) (λ > 0), one sees from the above reasoning that

J e λ (̺) ≃ 1 + a(γ -1) 2 λ γ ̺ γ as λ → 0.
In particular, for λ small enough the constant C e λ appearing in the above Proposition satisfies

C e λ a(1 -γ)λ γ .
This property will be important in Section 3.3.

Example A. 1. Assume e(•) is the restitution coefficient corresponding to visco-elastic hardspheres

e(r) = 1 + ∞ k=1 (-1) k a k r k 5 , r 0. Then, setting H e (r) = 1 2 (1 + ϑ ′ e (r)) β 2 e (r), it is not difficult to prove that there is some explicit constant C > 0 such that |H e (r) -1| C(1 -e(r)), ∀r 0. 
In particular, |H e (r) -1| Cℓ γ (e)r γ for any r 0 from which we deduce that (A.13) follows with a constant C e proportional to ℓ γ (e). Since ℓ γ (e λ ) = λ γ ℓ γ (e), there exists some constant c > 0 such that C e λ cλ γ for any λ ∈ (0, 1] (not just for λ small enough as in the previous remark).

A.3. About the energy identity. Recall that, for any solution G λ to (1.15), one has the identity

6̺ = 1 λ 3+γ R 3 ×R 3 G λ (v)G λ (v ⋆ )Ψ e (λ 2 |v -v ⋆ | 2 ) dv dv ⋆ where ̺ = R 3 G λ (v)
dv and Ψ e (•) is defined by (1.9). Notice that for any fixed r > 0,

1 λ 3+γ Ψ e (λ 2 r 2 ) ≃ a 4 + γ r 3+γ as λ ≃ 0.
Define for simplicity

ζ λ (r 2 ) = 1 λ 3+γ Ψ e (λ 2 r 2 ) and ζ 0 (r 2 ) = a 4 + γ r 3+γ ,
and the two functionals

I λ (f, g) = R 3 ×R 3 f (v)g(v ⋆ )ζ λ |v -v ⋆ | 2 dv dv ⋆ , and 
I 0 (f, g) = R 3 ×R 3 f (v)g(v ⋆ )ζ 0 |v -v ⋆ | 2 dv dv ⋆ .
We will write I λ (f ) = I λ (f, f ) and I 0 (f ) = I 0 (f, f ). Then, one has the following Lemma A. 5. There exist a positive constant A γ > 0 such that, for any δ > 0 and ε > 0 there exists λ 0 ∈ (0, 1) such that

sup λ∈(0,λ 0 ) |I λ (f 1 , g 1 ) -I 0 (f 2 , g 2 )| A γ f 1 -f 2 L 1 3+γ g 1 L 1 3+γ + g 1 -g 2 L 1 3+γ f 2 L 1 3+γ + ε f 2 L 1 g 2 L 1 + f 2 L 1 3+γ+δ g 2 L 1 3+γ+δ . In particular, if g ∈ L 1 3+γ+δ and f ∈ L 1 3+γ , then lim sup λ→0 |I λ (f ) -I 0 (g)| A γ f -g L 1 3+γ f L 1 3+γ + g L 1 3+γ . Proof. Note that |I λ (f 1 , g 1 ) -I 0 (f 2 , g 2 )| D 1 λ + D 2 λ + D 3 λ where D 1 λ = R 3 ×R 3 |f 1 (v) -f 2 (v)| |g 1 (v ⋆ )|ζ λ |v -v ⋆ | 2 dv dv ⋆ D 2 λ = R 3 ×R 3 |f 2 (v)| |g 1 (v ⋆ ) -g 2 (v ⋆ )| ζ λ |v -v ⋆ | 2 dv dv ⋆ D 3 λ = R 3 ×R 3 |f 2 (v)| |g 2 (v ⋆ )| ζ λ (|v -v ⋆ | 2 ) -ζ 0 |v -v ⋆ | 2 dv. dv ⋆
Let us investigate separately these three terms. Since there is some positive constant

K γ > 0 such that Ψ e (r 2 ) K γ r 3+γ , it is clear that ζ λ |v -v ⋆ | 2 K γ |v -v ⋆ | 3+γ 2 3+γ 2 K γ v 3+γ v ⋆ 3+γ for any (v, v ⋆ ). Therefore D 1 λ 2 3+γ 2 K γ R 3 ×R 3 |f 1 (v) -f 2 (v)| |g 1 (v ⋆ )| v 3+γ v ⋆ 3+γ dv dv ⋆ = 2 3+γ 2 K γ f 1 -f 2 L 1 3+γ g 1 L 1 3+γ .
In the same way

D 2 λ 2 3+γ 2 K γ g 1 -g 2 L 1 3+γ f 2 L 1 3+γ . Regarding the term D 3 λ , set ω λ (R) = sup 0 r R ζ λ (r 2 ) -ζ 0 (r 2 ) for any R > 0.
It is clear that for any fixed R > 0 one has lim λ→0 ω λ (R) = 0. Let R > 0 be fixed and split D 3 λ as

D 3 λ = |v-v⋆| R |f 2 (v)| |g 2 (v ⋆ )| ζ λ (|v -v ⋆ | 2 ) -ζ 0 |v -v ⋆ | 2 dv dv ⋆ + |v-v⋆|>R |f 2 (v)| |g 2 (v ⋆ )| ζ λ (|v -v ⋆ | 2 ) -ζ 0 |v -v ⋆ | 2 dv dv ⋆ ω λ (R) f 2 L 1 g 2 L 1 + (K γ + C γ ) |v-v⋆|>R |f 2 (v)| |g 2 (v ⋆ )| |v -v ⋆ | 3+γ dv dv ⋆
where we used the fact that

ζ λ (|v -v ⋆ | 2 ) -ζ 0 |v -v ⋆ | 2 (K γ + C γ )|v -v ⋆ | 3+γ for any (v, v ⋆ ). Consequently, for any δ > 0, D 3 λ ω λ (R) f 2 L 1 g 2 L 1 + K γ + C γ R δ R 3 ×R 3 |f 2 (v)| |g 2 (v ⋆ )| |v -v ⋆ | 3+γ+δ dv dv ⋆ , that is, D 3 λ ω λ (R) f 2 L 1 g 2 L 1 + 2 3+γ 2 K γ + C γ R δ g 2 L 1 3+γ+δ f 2 L 1 3+γ+δ
.

Taking first R > 0 large enough and then λ small enough we get the conclusion.

Lemma A. 6. Assume that there exist two positive constants a, b > 0 and two exponents γ > γ > 0 such that |e(r) -1 + a r γ | b r γ for any r 0. Then, there exist two explicit positive constant A γ , B γ > 0 such that

|I λ (f 1 , g 1 ) -I 0 (f 2 , g 2 )| A γ f 1 -f 2 L 1 3+γ g 1 L 1 3+γ + g 1 -g 2 L 1 3+γ f 2 L 1 3+γ + B γ λ α f 2 L 1 3+γ+γ g 2 L 1 3+γ+γ
∀λ ∈ (0, 1) (A. [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF] where α = min(γ, γγ).

Proof. For any λ ∈ (0, 1] and r > 0

ζ λ (r 2 ) -ζ 0 (r 2 ) = r 3+γ 2 1 0
1e 2 (λ r z) (λ r z) γ -2a z 3+γ dz.

Then, under our assumption on e(•), there are three constants A, B, C > 0 such that ζ λ (r 2 )ζ 0 (r 2 ) Aλ γ-γ r 3+γ + Bλ γ r 3+2γ + Cλ γ r 3+γ+γ ∀λ > 0, r > 0.

In other words, there is C γ > 0 such that

ζ λ (|v -v ⋆ | 2 ) -ζ 0 (|v -v ⋆ | 2 ) C γ λ α v 3+γ+γ v ⋆ 3+γ+γ ∀v, v ⋆ ∈ R 3 × R 3
where α = min(γ, γγ). Consequently,

D 3 λ C γ λ α f 2 L 1 3+γ+γ g 2 L 1 3+γ+γ . (A.15)
With this estimate the proof follows as the proof of Lemma A.5.

Remark 4.11. For visco-elastic hard-spheres, the assumption (4.9) is met with γ = 1 5 and γ = 2 5 . In particular, α = 1 5 .

For a given a 0 define the exponential weight m a (v) = exp(a|v|) and introduce 

A : h ∈ X → Ah = (A 1 h; A 2 h) ∈ R × X
where A 1 h = 2I 0 (M, h) and

A 2 h = Q 1 (h, M) + Q 1 (M, h) = L 1 h.
The operator A is a suitable lifting operator of L 1 .

Lemma A. 7. The linear functional

A : Y -→ R × X
is invertible and the norm A -1 = A -1 R× X → Y can be estimated explicitly.

Proof. The fact that the mapping A 2 = L 1 : X -→ X is invertible with explicit inverse is a direct consequence of Proposition 4.3 (see [START_REF] Mouhot | Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials[END_REF] for details). Set

℘ γ := R 3 ×R 3 |v ⋆ | 2 -3Θ M(v)M(v ⋆ )ζ 0 (|v -v ⋆ | 2 ) dv dv ⋆ = C γ R 3 ×R 3 |v ⋆ | 2 -3Θ M(v)M(v ⋆ )|v -v ⋆ | 3+γ dv dv ⋆ .
Direct inspection shows that ℘ γ = 0 for any γ > 0. Arguing as in [START_REF] Mischler | Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media[END_REF]Lemma 4.3], we deduce that, for any y ∈ R, g ∈ X the unique solution to the equation Ah = (y, g) is given by h = h 1 ϕ 1 + h ⊥ with

h ⊥ = L -1 1 g, h 1 = 1 2℘ γ y -A 1 h ⊥ .
This proves the Lemma.

APPENDIX B: EXISTENCE OF A STEADY SOLUTION FOR DIFFUSIVELY DRIVEN GRANULAR GASES

The main objective of this section is to prove Theorem 1.2, that is, to prove the existence of an steady solution F to (1.1). The proof, see [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF], is based on a dynamic version of Tykhonov fixed point theorem and it is achieved by controlling the L 2 -norm, the moments and the regularity of the solution to the time-dependent problem associated to (1.1). Consider the diffusively driven Boltzmann equation

∂ t f (t, v) = Q e (f, f )(t, v) + µ∆f (v, t) t > 0, v ∈ R 3 f (0, v) = f 0 (v) v ∈ R 3 , (B.1)
with µ > 0 and where the initial datum f 0 is a nonnegative velocity distribution satisfying

R 3 f 0 (v) dv = 1, R 3 
f 0 (v)v dv = 0 and where I e is the energy dissipation functional defined by (1.10) (justifying, a posteriori, the terminology we used in the core of the paper). Problem (B.1) is well posed due to the following theorem. 

R 3 f 0 (v)|v|
f ∈ L ∞ ([0, ∞), L 1 2 (R 3 )), f log f ∈ L ∞ ([0, ∞), L 1 (R 3 ))
to equation (B.1), with the initial condition f (•, 0) = f 0 . Furthermore, if in addition f 0 ∈ L 1 2 ∩ L 2 (R 3 ) then f ∈ C ∞ b ([t 0 , ∞), S(R 3 )) for every t 0 > 0.

The proof of Theorem 1.2 can be deduced from Theorem B.1 following the proof of [14, Theorem 5.2], thus, we shall only recall the main steps in the proof of Theorem B.1. The proof will follow the path presented in [14, Theorem 5.1] with the differences clearly explained.

B.1 Povzner-type inequalities. We derived in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF] Povzner's estimates in the spirit of [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF] and [START_REF] Mischler | Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard-spheres[END_REF]. We shall extend this result, using some ideas of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]. Recall that for any nonnegative function f and text function ψ(v) = Ψ(|v| 2 ) with Ψ nondecreasing and convex Consider the auxiliary problem

R 3 Q B,e (f, f )(v)ψ(v) dv = 1 2 R 3 ×R 3 f (v)f (v ⋆ )Φ(|u|)A B,
∂ t f (t, v) -µ∆ v f (t, v) + M f (t, v) = Q m,M (g, g)(t, v) + M g(t, v) t ∈ [0, T ] , v ∈ R 3 f (0, v) = f 0 (v).
(B.7) Setting h = Q m,M (g, g)(t, v) + M g(t, v), one checks, see [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Theorem 5.2], that h ∈ L ∞ ([0, T ] ; L 1 2 (R 3 ) ∩ L 2 (R 3 )) and h -g(g * Φ m,M ) + M g 0. The unique solution f ∈ L ∞ ([0, T ] ; L 1 2 (R 3 )∩L 2 (R 3 )) to (B.7) can be given explicitly and by a classical parabolic regularity result

f H 2 ([0,T ]×R 3 ) C M ( h L 2 ([0,T ]×R 3 ) + f 0 H 1 (R 3 ) ). (B.8)
Denoting by T the operator that maps g into f , the core of the proof consists in showing that for a certain choice of constants A 1 and A 2 , the operator T maps B into itself. Here we refer to the set, (B.9)

B = f ∈ L 1 ([0, T ] × R 3 ) : f 0 , R 3 f (t, v) dv = 1 , R 3 f (t, v)v dv = 0, E f (t) := R 3 f (t, v)|v| 2 dv A 1 ,
The first three properties are clearly satisfied. where we used (1.8) in the last identity. Since Ψ e (r) may be arbitrarily small for small r > 0, the argument changes slightly with respect to [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]. Using that lim sup r→∞ e(r) = e 0 < 1, there exists some R 0 ≫ 1 and some constant C > 0 such that Ψ e (|u| 2 ) C|u| 3 ∀|u| > R 0 .

Therefore, 

R
A 1 = max A ′ 1 , R 3 f 0 (v)|v| 2 dv
in the definition (B.9) of B. For the determination of the parameter A 2 > 0 just follow the path of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Theorem 5.2]. This leads to the existence of a solution f = f m,M ∈ L ∞ ([0, T ], L 1 2 (R 3 ) ∩ L 2 (R 3 )) to the modified Boltzmann equation

∂ t f (t, v) = Q m,M (f, f )(t, v) + µ∆ v f (t, v) t ∈ [0, T ] , v ∈ R 3 f (0, v) = f 0 (v).
It remains to pass to the limit as M → ∞ and m → 0. To this end, we will show that the bounds found in the a priori estimates hold for the fixed point solutions and are uniform in M and m. From (B.11

) with f = f m,M d dt E f (t) 6µ -2CmE f (t) + CmR 2 0 ,
which yields

E f (t) A 1 = max 3µ Cm + R 2 0 2 , R 3 f 0 (v)|v| 2 dv
which provides a bound independent of M . Using Proposition B.1, it is possible to adapt the proof of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Theorem 5.2] to get that, for any p 1 and T > 0, the bounds of f = f m,M in L ∞ ([0, T ], L 1 2p (R 3 )) are independent of M . Since f ∈ H 2 ([0, T ] × R 3 ), using the extension of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Lemma 4.7] and then [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Lemmas 4.8 & 4.9], f ∈ L ∞ ([0, T ], H n 2p (R 3 )), for every n 1, and every p 0, with bounds independent on M . This allows to pass to the limit as M → ∞ in the weak form and to show that the limit solutions satisfy the equation with the kernel (m + |u|) b(u, σ).

Following the argument of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF] it is possible to prove that the bounds in L ∞ ([0, T ], L 1 2p (R 3 )) are actually independent on m and T . This allows to pass to the limit as m → 0 and the limit solution obtained is a solution to (B.1). A standard approximation argument generalize the initial conditions from smooth ones.
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Theorem 4 . 5 .

 45 Let e(•) belong to the class E m for some integer m 4. There exists λ † ∈ (0, 1] such that

R 3 vG

 3 λ (v) dv = 0 reduces to a singleton for any λ ∈ [0, λ † ). Proof. We explained in the previous paragraph that the estimates (1.20), (1.21), (1.22), (1.23) and (1.24) of the general strategy are fulfilled with X = L 1 1 (m a ) and Y = L 1 1 (m a ) for any a 0. Let us fix ε > 0 and reproduce the computations of Section 1.3. It follows that there exists λ 0 ∈ (0, 1) such that

4. 3 .Proposition 4 . 6 .

 346 Quantitative version of the uniqueness result. We derive is this section a quantitative version of the Theorem 4.1 which shall result in a quantitative estimate of the above parameter λ † . Let e(•) belongs to the class E m with m 4. Assume moreover that there exist two positive constants a, b > 0 and two exponents γ > γ > 0 such that |e(r) -1 + a r γ | b r γ for any r 0.

b L 1 (S 2 )

 12 = 2π b L 1 (-1,1) = 1. (A.3)For technical reasons, we shall also assume thatb : x ∈ [-1, 1] -→ b(x) = b(x) + b(-x) is non decreasing. (A.4)A particularly relevant model is the one of hard-spheres corresponding to Φ(|u|) = |u| and b( u • σ) = 1/4π. For this particular model we shall simply denote the collision operator Q B,e by Q e .

Theorem A. 2 .

 2 Assume that the collision kernelB(u, σ) = Φ(|u|)b( u • σ) satisfies (A.3) and Φ(•) ∈ L ∞ -k for some k ∈ R.In addition, assume that e(•) fulfills Assumption 1.1. Then, for any 1 p ∞ and η ∈ R, there exists C η,p,k (B) > 0 such that

3 .Definition A. 1 .

 31 A restitution coefficient e(•) : r → e(r) ∈ [0, 1] is said to belong to the class C 0 if e(•) satisfies the following:

Remark A. 1 . 1 - 1 .

 111 Recall that if e(•) belongs to the class C γ then ℓ γ (e) := sup r>0 Define β e (r) = 1+e(r) 2 and the mapping η e : r ∈ R + -→ rβ e (r). Then, e(•) belongs to the class C 0 if and only if η e (•) is strictly increasing and differentiable with r 2 η e (r) r ; 1 2 η ′ e (r) η e (r) r for any r > 0 and η ′ e (0) = 1. Equivalently, the inverse mapping α e (•) of η e (•) satisfies r α e (r) 2r ; α e (r) r α ′ e (r) 2 for any r > 0 and α ′ e (0) = 1. Lemma A. 2. [17, Lemma 2.3] For any σ ∈ S 2 and δ ∈ (0, 2) define the cone

Lemma A. 3 .

 3 1 and Lemma A.2 we can establish the following change of variables formula which generalizes [17, Prop. 3.2]. For a given restitution coefficient e(•) in the class C 0 , one defines the mapping Π e : w → z = β e (|w|)w = 1 + e(|w|) 2 w = Π e (w).Then, for any δ > 0, Π e is a C ∞ -diffeomorphism from Ω δ onto itself with Jacobian J e (|z|) given byJ e (̺) = 1 2 1 + ϑ ′ e (α e(̺)) β 2 e (α e (̺)) ∀̺ 0. (A.8) The inverse mapping π e = Π -1 e is given by π e (z) = α e (|z|) |z| z = z β e (α e (|z|))

Remark A. 2 . 4 .

 24 One has ζ e (z) = µ e (z)ϕ σ (z) with µ e (z) = α e (|z|) |z| . Proof. The properties of Π e are proven by direct calculations and noticing that if z = Π e (w) then z = w and |w| = α e (|z|). With this identity, one can computes the Jacobian of the transformation passing to polar coordinates. The final expression of ζ e (z) is immediate after noticing that ϕ σ (rw) = rϕ σ (w) for any r > 0 and any w ∈ R 3 . Observe that for e(•) belonging to C 0 , since ϑ ′ e (r) = re ′ (r) + e(r) 1 for any r 0 and β e (r) ∈ [ 1 2 , 1], one has the universal bound 1 Let e(•) be a restitution coefficient in the class C 0 and let s ∈ [0, 1]. Then, there exists a restitution coefficient ẽs (•) belonging to C 0 such that 1 + s (µ e (z) -1) = µ ẽs (z) ∀z ∈ R 3 where µ e has been defined in Lemma A.3. Proof. Define µ(z) = 1 + s(µ e (z) -1) = (1s) + sµ e (z) and recall that µ e (z) = α e (|z|) |z| .

Proposition A. 1 .

 1 Let e(•) be a given restitution coefficient belonging to the class C 0 and letB(u, u • σ) = Θ(|u|) b( u • σ) be a given collision kernel with Θ(r) 0 and b(s) = b(-s) with Supp b ∈ [-1 + δ, 1δ] for some δ > 0. Let Q +B,e and Q + B,1 denote the positive part of the collision operator associated to B with restitution coefficient e(•) and elastic interactions respectively. For any test function ψ and any given f, g, one has

  is a given restitution belonging to the class C 0 for any s ∈ [0, 1]. Proof. Using the notation of the Proposition A.1, we set D e = I e -I 1 . Thanks to (A.10), we may split D e as D e = D e,1 + D e,2 with

X = L 1 3 f 3 f 3 f

 1333 (m a ) and Y = L 1 1 (m a ). Define X = X ∩ f : R (v) dv = R (v)v dv = 0 and X = X ∩ f : R (v)|v| 2 dv = 0 ,and the operator

Theorem B. 1 .

 1 Assume the restitution coefficient e(•) satisfies Assumption 1.1 and the initial datumf 0 ∈ L 1 (R 3 ) ∩ L log L(R 3 ) satisfies (B.2).Then, there exists a unique nonnegative weak solution

2 Ψ 3 g 3 g

 233 e [Ψ](v, v ⋆ ) dv ⋆ dv, where A B,e [Ψ](v, v ⋆ ) = S (|v ′ | 2 ) + Ψ(|v ′ ⋆ | 2 ) -Ψ(|v| 2 ) -Ψ(|v ⋆ | 2 ) b( u • σ) dσ = A + B,e [Ψ](v, v ⋆ ) -Ψ(|v| 2 ) + Ψ(|v ⋆ | 2 ) .Let us first deal with a smooth initial datum f 0 with compact support. For any truncation parameters M > 1 > m > 0, define thenΦ m,M (|u|) = m + min (|u|, M ) and set B m,M (u, σ) = 1 4π Φ m,M (|u|), u ∈ R 3 , σ ∈ S 2 . Define the collision operator Q m,M = Q B m,M ,e (using the notations of equation (A.2)). For any T > 0, letg = g(t, v) ∈ L ∞ ([0, T ] ; L 1 2 (R 3 ) ∩ L 2 (R3)) be a nonnegative function with R (t, v) dv = 1 and R (t, v) dv = 0 ∀t ∈ [0, T ].

R 3 f 2

 32 (t, v) dv A 2 for a.e. t ∈ [0, T ] .

  3 dv < ∞. (B.2) Notice that if E f (t) denotes the kinetic energy of f (t, v) at time t 0, that is, E f (t) = R 3 f (t, v)|v| 2 dv then it satisfies d dt E

f (t) = -I e (f (t)) + 6µ

  To determine A 1 , one multiplies equation (B.7) by |v| 2 and integrate by parts. This yieldsd dt E f (t) + M E f (t) 6µ + M E g (t) + R 3 Q m,M (g, g)(t, v)|v| 2 dv 6µ + M 2 E g (t) -R 3 ×R 3 g(t, v)g(t, v * )Φ m,M (|u|) Ψ e (|u| 2 ) |u| dv dv

* , (B.10)

  3 ×R 3 g(t, v)g(t, v * )Φ m,M (|u|) Ψ e (|u| 2 ) |u| dv dv * C |u| R 0 g(t, v)g(t, v * )Φ m,M (|u|)|u| 2 dv dv * )|u| 2 dv dv * . )|u| 2 dv dv * = R 3 ×R 3 g(t, v)g(t, v * )|u| 2 dv dv * )|u| 2 dv dv * 2E g (t) -R 2 0 .Going back to (B.10) finally leads to the estimated dt E f (t) + M E f (t) 6µ + M E g (t) -2CmE g (t) + CmR 2 0 .

	Cm g(t, v)g(t, v Since g has unit mass, |u| R 0
	|u| R 0	g(t, v)g(t, v -	|u|<R 0	g(t, v)g(t, v (B.11)
	Setting A ′ 1 =	6µ + CmR 2 0 2Cm	and assuming E

* * * g (t) A ′ 1 yields the differential inequality

d dt E f (t) + M E f (t) M A ′ 1 which, in turn, implies E f (t) max (A ′ 1 , E f (0)) for any t ∈ [0, T ].

Thus, one may choose

The collision cross-section B(u, σ) is given by (A.1) with the normalization assumption (A.3) (notation is slightly changed with respect to [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]). Define the velocity of the center of

with ω = (1β) u + βσ. We proved in [START_REF] Alonso | Free cooling and high-energy tails of granular gases with variable restitution coefficient[END_REF]Eq. (2.15)] that the post-collisional integral can be estimated from above as follows

Under assumption (A.4) one can prove, see [START_REF] Bobylev | Moment inequalities and high-energy tails for the Boltzmann equations with inelastic interactions[END_REF]Lemma 1], that this integral (involving U and u) takes its maximum value whenever U = u, that is,

At this point, we shall adopt the viewpoint of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF] and assume that Ψ satisfies the following conditions:

where η 1 (•) and η 2 (•) are locally bounded functions. Then, one has the following generalization of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Lemma 3.3] to non constant restitution coefficient.

Proposition B. 1. Assume that Ψ(x) satisfies (B.4). Then, for any

where A = η 1 (2) while k > 0 is an explicit constant depending only on η 2 and on b(•). For instance in the hard-sphere case b(

Proof. Recall that, see [14, Lemma 3.1], if Ψ satisfies (B.4) then

Using (B.5) and the normalization assumption (A.3) one gets directly that

Let us extimate N [Ψ](v, v ⋆ ) from below. First, one notices that

Second, since 1 0 b(s) ds = 1 2π according to (A.3) one can write

Noticing that E = E 3+s 4 + E 1-s 4 for any s ∈ (0, 1), it is possible to apply directly (B.6) to obtain

Setting k = πa 

where the constants k p and A p are independent on the restitution coefficient e(•). As a consequence, for any nonnegative distribution f = f (v) 0,

The proof is a modification of [14, Theorem 5.2] and we only give a sketch of it explaining where the original argument has to be modified to handle the non-constant restitution coefficient. Using our Povzner's estimates, the propagation and appearance of moments given in [14, Lemma 3.5] follow. Additionally, using the control of Q B,e (f, f ) L p derived in Corollary A. 1, we can easily adapt the proof of [START_REF] Gamba | On the Boltzmann equation for diffusively excited granular media[END_REF]Lemma 4.7] to our case, yielding a local in time propagation of H 1 (R 3 ) norms. Therefore, the a priori estimates for the solution to (B.1) derived for the constant restitution case extends.