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Rigidity and Bellows-type Theorem for

hedgehogs

Yves Martinez-Maure

Abstract

We consider rigidity and Gauss infinitesimal rigidity for hedgehogs of R3

(regarded as Minkowski differences of closed convex surfaces of R3 with
positive Gaussian curvature). Besides, we give a bellows-type theorem for
hedgehogs under an appropriate differentiability condition.

Introduction

In 1813, A. L. Cauchy proved (almost rigorously) his famous rigidity theorem:
Any convex polyhedron of R3 is rigid (that is, no convex polyhedron of R3 can be
continuously deformed so that its faces remain rigid) [2]. First examples of flexible
polyhedra were discovered by R. Bricard in 1897 [1], but these « Bricard’s flexible
octahedra » are self-intersecting. The question of rigidity of embedded non-
convex polyhedra remained open until 1977 when R. Connelly discovered a first
example of flexible sphere-homeomorphic polyhedron [4]. In the late seventies,
R. Connelly and D. Sullivan formulated the so-called « Bellows conjecture »
stating that whenever we perform a rigid deformation of a flexible polyhedron P
(that is, a continuous deformation of P that changes only its dihedral angles),
the volume of P remains constant. This conjecture was proved by I. Sabitov for
sphere-homeomorphic polyhedra [14] and by R. Connelly, I. Sabitov, and A. Walz
for general orientable 2-dimensional polyhedral surfaces [5].

In 1927, E. Cohn-Vossen proved that smooth closed surfaces of R3 with every-
where positive Gaussian curvature are rigid [3]. Smooth closed surfaces of R3 with
everywhere positive Gaussian curvature are also Gauss infinitesimally rigid [16],
that is rigid with respect to the Gaussian curvature regarded as a function of the
outer unit normal [6, Section 2]. In this paper, we consider rigidity and Gauss
infinitesimal rigidity for hedgehogs of R3 (regarded as Minkowski differences of
closed convex surfaces of R3 with positive Gaussian curvature). As noticed by
I. Izmestiev, Gauss infinitesimal rigidity can be interpreted as « infinitesimal »
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uniqueness in the Minkowski problem (prescribing Gauss curvature as a function
of the unit normal) of which the author already studied the uniqueness part [12].
In this previous work [12], we presented different ways of constructing pairs of
non-congruent hedgehogs that share the same curvature function (i.e., inverse of
the Gaussian curvature). This will allow us to give examples of nontrivial (i.e.,
distinct from a point) hedgehogs that are not Gauss infinitesimally rigid. Assume
we have a one parameter family of hedgehogs (Hht)t∈[0,1], all with the same curva-
ture function. We do not know whether they must be congruent in R3. However,
we shall give a bellows-type theorem for hedgehogs: under an appropriate differ-
entiability condition of the family with respect to the parameter, we shall prove
that all the hedgehogs of the family considered have the same algebraic volume.

Basic definitions C2−hedgehogs in Rn+1

As is well-known, every convex body K ⊂ Rn+1 is determined by its support
function hK : S

n −→R, where hK (u) is defined by hK (u) = sup {〈x, u〉 |x ∈ K },
(u ∈ Sn), that is, as the signed distance from the origin to the support hyperplane
with normal vector u. In particular, every closed convex hypersurface of class
C2
+ (i.e., C2-hypersurface with positive Gaussian curvature) is determined by its

support function h (which must be of class C2 on Sn [15, p. 111]) as the envelope
Hh of the family of hyperplanes with equation 〈x, u〉 = h(u). This envelope Hh

is described analytically by the following system of equations

{
〈x, u〉 = h(u)
〈x, . 〉 = dhu(.)

.

The second equation is obtained from the first by performing a partial differen-
tiation with respect to u. From the first equation, the orthogonal projection of
x onto the line spanned by u is h (u) u and from the second one, the orthogo-
nal projection of x onto u⊥ is the gradient of h at u (cf. Figure 1). Therefore,
for each u ∈ Sn, xh (u) = h(u)u+ (∇h) (u) is the unique solution of this system.
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Figure 1. Hedgehogs as envelopes parametrized by their Gauss map

Now, for any C2-function h on Sn, the envelope Hh is in fact well-defined
(even if h is not the support function of a convex hypersurface). Its natural
parametrization xh : S

n → Hh, u �→ h(u)u + (∇h) (u) can be interpreted as the
inverse of its Gauss map, in the sense that: at each regular point xh (u) ofHh, u is
a normal vector to Hh. We say that Hh is the hedgehog with support function h
(cf. Figure 2). Note that xh depends linearly on h.

Figure 2. A hedgehog with a C2-support function

Hedgehogs with a C2-support function can be regarded as the Minkowski
differences of convex hypersurfaces of class C2

+. Indeed, given any h ∈ C2 (Sn;R),
for all large enough real constant r, the functions h+r and r are support functions
of convex hypersurfaces of class C2

+ such that h = (h+ r)− r.
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Figure 3. Hedgehogs as differences of convex bodies of class C2
+

In fact, we can introduce a more general notion of hedgehogs by regarding
hedgehogs of Rn+1 as Minkowski differences of arbitrary convex bodies of Rn+1

[10]. But in the present paper, we shall only consider hedgehogs with a C2-
support function and we will refer to them as ‘C2-hedgehogs’.

Gaussian curvature and algebraic volume of C2-hedgehogs

Let Hn+1 denote the R-linear space of C2-hedgehogs defined up to a translation
in the Euclidean linear space Rn+1 and identified with their support functions.
Analytically speaking, saying that a hedgehog Hh ⊂ Rn+1 is defined up to a
translation simply means that the first spherical harmonics of its support function
is not specified.

As we saw before, elements of Hn+1 may be singular hypersurfaces. Since
the parametrization xh can be regarded as the inverse of the Gauss map, the
Gaussian curvature Kh of Hh at xh (u) is given by Kh(u) = 1/ det [Tuxh], where
Tuxh is the tangent map of xh at u. Therefore, singularities are the very points
at which the Gaussian curvature is infinite. For every u ∈ Sn, the tangent map
of xh at the point u is Tuxh = h(u) IdTuSn+Hh(u), where Hh(u) is the symmetric
endomorphism associated with the Hessian of h at u. Consequently, if λ is an
eigenvalue of the Hessian of h at u then λ + h (u) is (up to the sign) one of the
principal radii of curvature of Hh at xh (u) and the so-called ‘curvature function’
Rh := 1/Kh can be given by

Rh (u) = det [Hij (u) + h (u) δij] , (1)

where δij are the Kronecker symbols and (Hij (u)) the Hessian of h at u with
respect to an orthonormal frame on Sn.

The case n = 2. From (1), the curvature function Rh := 1/Kh of Hh ⊂ R
3

is given by Rh = (λ1 + h) (λ2 + h) = h2 + h∆2h + ∆22h, where ∆2 denotes the
spherical Laplacian and ∆22 the Monge-Ampère operator (respectively the sum
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and the product of the eigenvalues λ1, λ2 of the Hessian of h). So, the equation
we shall be dealing with will be the following

h2 + h∆2h+∆22h = 1/K.

Note that the so-called ‘mixed curvature function’ of hedgehogs of R3, that is,

R :H23 → C (S2;R)
(f, g) �→ R(f,g) :=

1
2
(Rf+g −Rf −Rg)

is bilinear and symmetric:

(i) ∀ (f, g, h) ∈ H33, ∀λ ∈ R, R(f+λg,h) = R(f,h) + λR(g,h);

(ii)∀ (f, g) ∈ H23, R(g,f) = R(f,g).

For any h ∈ H3, we have in particular R−h = Rh. Note that R(1,f) = 1
2
(∆2h+ 2h)

is (up to the sign) half the sum of the principal radii of curvature of Hh ⊂ R3.
The (algebraic) area and volume of a hedgehog Hh of R3 is defined by

s (h) =

∫

S2

Rhdσ and v (h) =

∫

S2

hRhdσ.

where σ is the spherical Lebesgue measure on S2 and Rh = det (Hess (h) + h.Id2)
the curvature function (that is, the inverse of the Gaussian curvature Kh of
Hh) [8]. The (algebraic) area s (h) of Hh can be interpreted as the difference
s+(h) − s−(h), where s+(h) (resp. s−(h)) denotes the total area of the smooth
regions of Hh on which the Gaussian curvature is positive (resp. negative). The
(algebraic) volume v (h) of Hh can be regarded as the integral over R3 − Hh

of the index ih(x) defined as algebraic intersection number of an oriented half-
line with origin x with the surface Hh equipped with its transverse orientation
(number independent of the oriented half-line for an open dense set of directions).

Gauss infinitesimal rigidity in the context of hedgehogs

In this work, we shall use the Banach spaces Cm that were introduced by L.
Nirenberg in his study of the Minkowski problem in R3, (m ∈ N).

Definition 1 Let Hh be a C2-hedgehog of R3. A smooth deformation of Hh is
the data of a differentiable map h : [0, 1]→ C2, t �→ ht := h (t, .) such that h0 = h.

Definition 2 Let Hf be a C2-hedgehog of R3. An infinitesimal isogauss defor-
mation of Hf is the data of a family (Hf+tg)t∈R of hedgehogs of R

3,

xf+tg : S
2 →Hf+tg ⊂ R

3

u �→ xf (u) + txg (u)

where Hg is a hedgehog of R
3 such that the mixed curvature function R(f,g) :=

1
2
(Rf+g −Rf −Rg) be identically zero on S

2.
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Definition 3 Let Hf be a C2-hedgehog of R3. If every infinitesimal isogauss
deformation (Hf+tg)t∈R of Hf is trivial, that is such that Hg is reduced to a
single point, then the hedgehog Hf will be said to be Gauss infinitesimally rigid.

Remark 1. The hedgehog Hg is reduced to a single point if, and only if, its
support function g is the restriction to S2 of a linear form on R3, which amounts
to saying that its curvature function Rg is identically zero on S2 [7, Theorem 1].
Therefore, the hedgehog Hf is Gauss infinitesimally rigid if, and only if,we have:

∀g ∈ C2
(
S
2;R

)
,
(
R(f,g) = 0

)
=⇒ (Rg = 0) .

Remark 2. If the hedgehog Hf ⊂ R
3 is trivial (that is, reduced to a point),

then Hf is not Gauss infinitesimally rigid. Indeed, for every regular C2-hedgehog
Hg ⊂ R

3, we have R(f,g) = 0 although Rg is not identically zero on S2.

Gauss infinitesimal rigidity of regular C2-hedgehogs of R3

Let us recall the proof of the Gauss infinitesimal rigidity (with respect
to the curvature function) of regular C2-hedgehogs of R3 (that are closed
convex surfaces of class C2

+ in R3). It is essentially a rewriting of the proof by
J. Stoker [16]: Let Hf be a regular C2-hedgehog of R3. Clearly, the regularity of
Hf is equivalent to the strict positivity of its curvature function Rf := 1/Kf . If
(Hf+tg)t∈R defines an isogauss deformation of Hf , then we have [12, Lemma 5]:

R2(f,g) ≥ Rf .Rg

and hence Rg ≤ 0 on S2. By taking the origin to be an interior point of the
convex body bounded by Hf in R3, we may assume without loss of generality
that f > 0 so that fRg ≤ 0 on S2. Now, by symmetry of the mixed volume of
hedgehogs of R3 [9], we get:

0 =

∫

S

gR(f,g)dσ =

∫

S

fR(g,g)dσ =

∫

S

fRgdσ,

where σ is the spherical Lebesgue measure on S2. Therefore, Rg is identically
zero on S2 which implies that Hg is reduced to a single point by Remark 1. �

Relation to Minkowski problem

There is a close connection between Gauss infinitesimal rigidity and the unique-
ness question in the Minkowski problem extended to hedgehogs. This is due to
the following equivalence:
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∀ (f, g) ∈ C2
(
S
2;R

)2
, (Rf = Rg)⇐⇒

(
R(f+g,f−g) = 0

)
.

In [11, 12], the author gave examples of pairs of non-congruent hedgehogs
of R3 having the same curvature function. From each of these examples, we can
deduce examples of nontrivial hedgehogs that are not Gauss infinitesimally rigid.
It is for instance the case of the pair of hedgehogs of R3 given by:

f (u) :=






0 if z ≤ 0

exp(−1/z2) if z > 0
and g (u) :=






exp(−1/z2) if z < 0

0 if z ≥ 0,

where u = (x, y, z) ∈ S2 ⊂ R
3. Indeed, we have clearly R(f,g) = 0. Therefore,

these two nontrivial hedgehogs Hf and Hg are not Gauss infinitesimally rigid.
Only nonanalytic examples are known. The question of knowing whether there
exists a pair of noncongruent analytic hedgehogs of R3 with the same curvature
function remains open (by ‘analytic hedgehogs’, we mean ‘hedgehogs with an
analytic support function’). As a consequence, the question of knowing whether
there exist examples of nontrivial analytic hedgehogs that are not Gauss infini-
tesimally rigid is also open.

A bellows-type theorem for hedgehogs

Lemma 4 The curvature function R : C2 → C0, h �→ Rh is differentiable on C2,
and:

∀ (f, g) ∈ C2 × C2, dRf (g) = lim
t→0
t �=0

Rf+tg −Rf
t

= 2R(f,g).

Proof of the lemma. Indeed, we have:

∀t ∈ R∗+, Rf+tg −Rf = Rf + 2tR(f,g) + t2Rg −Rf

= t
(
2R(f,g) + tRg

)
,

and hence

lim
t→0
t�=0

Rf+tg −Rf
t

= lim
t→0
t�=0

(
2R(f,g) + tRg

)
= 2R(f,g).

�
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Theorem 5 Let Hh be a C
2-hedgehog of R3. If a smooth deformation of Hh, say

h : [0, 1]→ C2, t �→ ht := h (t, .) ,

preserves the curvature function (that is, is such that Rht = Rh for all t ∈ [0, 1]),
then it also preserves the algebraic volume:

∀t ∈ [0, 1] , v (ht) = v (h) .

Proof of Theorem 5. By assumption, the map R ◦ h : [0, 1]→ C0 is constant.
Since h is differentiable by assumption and R by Lemma 4, R ◦h is differentiable
and the chain rule gives:

∀t ∈ [0, 1] , (R ◦ h)′ (t) = 2R(h(t),( ∂h∂t )(t))
.

Therefore, a differentiation yields:

∀t ∈ [0, 1] , R(h(t),( ∂h∂t )(t))
= 0. (2)

Now, for every t0 ∈ [0, 1], we have :

∀t ∈ [0, 1]− {t0} ,
v (h (t))− v (h (t0))

t− t0
=
1

3

∫

S2

h (t)− h (t0)

t− t0
Rh(t0)dσ

and hence:

lim
t→t0
t �=t0

v (h (t))− v (h (t0))

t− t0
=
1

3

∫

S2

(
∂h

∂t

)
(t0)Rh(t0)dσ.

Besides, by symmetry of the mixed volume of hedgehogs, we have:

1

3

∫

S2

(
∂h

∂t

)
(t0)Rh(t0)dσ =

1

3

∫

S2

h (t0)R(h(t0),( ∂h∂t )(t0))
dσ.

From (2), we then deduce that:

∀t0 ∈ [0, 1] , (v ◦ h)′ (t0) = lim
t→t0
t�=t0

v (h (t))− v (h (t0))

t− t0
= 0,

and thus all the hedgehogs of the family (Hht) have the same (algebraic) volume.
�
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Remark 3. Noncongruent hedgehogs that share the same curvature function
may of course have different (algebraic) volume. It is for instance the case of the
hedgehogs shown on Figure 4 whose support functions f , g are defined on S2 by

f (u) :=






exp(−1/z2) if z �= 0

0 if z = 0
and g (u) :=






sign (z) f (u) if z �= 0

0 if z = 0,

where u = (x, y, z) ∈ S2 ⊂ R3.

Figure 4. Same curvature function and different algebraic volume
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