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Abstract—The problem addressed in this paper is the merg-
ing of numerical information provided by several sources.
Merging conflicting pieces of information into an interpretable
and useful format is a tricky task even when an information
fusion method is chosen. The use of formal concept analysis
and pattern structures enables us to associate subsets of sources
to combination results obtainable from consistent subsets of
pieces of information. This provides a lattice of arguments
where the reliability of sources can be taken into account.
Instead of providing a unique fusion result, the method yields a
structured view of partial results labelled by subsets of sources
and allows us to argue about the most appropriate evaluation.
The approach is illustrated with an experiment on a real-world
application to decision aid in agricultural practices.

Keywords- numerical information fusion, reliability, formal
concept analysis, pattern structure, lattice of arguments.

I. INTRODUCTION

In several application domains, information is available

from several sources rather than a single one. Extracting

consistent and useful pieces of information from such dis-

tributed sources is the major task of information fusion [1].

Moreover information delivered by sources may be uncertain

or imprecise, and then these aspects have to be taken into

account in information fusion. There are several information

fusion operators for combining pieces of information that

may be often conflicting [2]. These fusion operators are

applied on the set of all sources and provide a result.

In this work, we use Formal Concept Analysis (FCA) to

draw a map of all subsets of sources and the information they

provide [3]. The main capability of FCA is to produce pairs

of subsets of totally related entities called formal concepts.

Hence, concepts encode maximal sets of sources associated

with the result of the fusion process. Concepts are ordered

and form a structure called concept lattice. This lattice is

meaningful for organizing information fusion results from

different subsets of sources and allows more flexibility for

the user. Moreover, the lattice keeps track of the origin

of the information such as presented in [4] for the fusion

of symbolic information. Besides, the paper investigates a

method for coping with inconsistency, by defining a suitable

notion of lattice of arguments, when merging inconsistent

information.

This work can be used in many applications where it

is necessary to find a suitable value summarizing several

estimates coming from multiple sources and to support a

decision. Here, we use an experiment in agronomy for

decision-support in agricultural practices.

The paper is organized as follows. Section II introduces

the preliminaries on FCA and its extension for handling

numerical data. Then, Section III shows how FCA is well

suited for organizing different information fusion results.

Section IV introduces the notion of lattice of arguments.

Then, Section V presents how the reliability of sources can

be taken into account. Section VI describes a real-world

experiment: a concept lattice embedding fusion results is

interpreted for making decisions about agricultural practices.

II. FORMAL CONCEPT ANALYSIS

m1 m2

g1 ×

g2 ×

g3 × ×

g4 ×

Table I
A FORMAL CONTEXT

Figure 1. Concept lattice induced by Table I

A. Basics

Formal Concept Analysis (FCA) is a method mainly used

for the analysis of data. Implicit relationships between ob-

jects can be derived and described through a set of attributes.

The FCA formalism is based on lattice structures [3]. FCA

computes a concept lattice which provides a classification

of objects in a domain. FCA starts from a binary table

called formal context (G,M,R) that represents a relation

R between a set of objects G and a set of attributes M .

The statement (g,m) ∈ R is interpreted as “object g has

attribute m”. An example of formal context is given on

Table I where a table entry contains a cross (×) iff the

object in the corresponding row possesses the attribute in

the corresponding column, e.g. g1 has attribute m1, i.e.
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(g1,m1) ∈ R. The two operators (·)′ define a Galois

connection between the powersets (2G,⊆) and (2M ,⊆),
with A ⊆ G and B ⊆ M :

A′ = {m ∈ M | ∀g ∈ A : gRm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gRm} for B ⊆ M

A pair (A,B), such that A′ = B and B′ = A, where

A ⊆ G, B ⊆ M , is called a (formal) concept, e.g.

({g1, g2, g3}, {m1}). A concept includes both notions of

maximality and generalization/specialization: a concept cor-

responds to a maximal set of objects (extent) sharing a

common maximal set of attributes (intent). The set A of

objects is called the extent and the set B of properties is

the intent of the concept (A,B).
Concepts are then partially ordered to form a lattice. The

generalization/specialization is given by the partial ordering

of concepts. Concepts are partially ordered by (A1, B1) ≤
(A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1), e.g. the concept

({g3}, {m1,m2}) is a sub-concept of ({g1, g2, g3}, {m1}).
With respect to this partial order, the set of all formal

concepts forms a complete lattice called the concept lattice

of the formal context (G,M,R). Figure 1 shows the concept

lattice1 associated with the context in Table I. On the

diagram, each node denotes a concept while a line denotes

an order relation between two concepts. Due to reduced

labeling, the extent of a concept is composed of all objects

lying in the extents of its sub-concepts. Dually, the intent of

a concept is composed of all attributes in the intents of its

super-concepts. The top concept (⊤) of the lattice contains

all objects and the bottom concept (⊥) in the lattice contains

all properties. Thus, FCA allows us to associate a maximal

subset of objects with a maximal subset of attributes.

Real-world data in biology, agronomy, etc., usually consist

in complex data involving numbers, intervals, graphs, etc.

(e.g. Table II). FCA cannot be directly applied to such data.

They can be processed with FCA after a transformation,

called conceptual scaling, e.g. discretization. Transforma-

tions generally imply an important loss of information (e.g.

links between objects) and arbitrary choices. However, there

are means to handle numerical values and intervals in an

elegant and efficient way in FCA. For that purpose, Ganter

and Kuznetsov [5] define pattern structures that directly

handle complex data such as given in Table II.

m1 m2

g1 [1, 5] [1, 9]
g2 [2, 3] [1, 3]
g3 [4, 7] [6, 7]
g4 [6, 10] [8, 9]

Table II
INFORMATION ITEM INTERVALS

1Lattice diagram designed with ConExp, http://conexp.sourceforge.net/.

B. Pattern structures for complex data

Pattern structures are introduced in [5] as an extension of

FCA to handle complex data. When working with classical

FCA, the object descriptions are sets of attributes, and

are partially ordered by set inclusion. But inclusion is the

canonical ordering on sets, induced by set-intersection: let

P,Q ⊆ M be two attribute sets, then P ⊆ Q ⇔ P ∩Q = P .

So the partially ordered set of attributes (M,⊆) can as well

be written (M,∩). Based on this remark, a meet operator

denoted by ⊓, idempotent, commutative and associative, can

be applied on the set of object descriptions and the potential

descriptions are ordered in a meet-semi-lattice w.r.t. the

induced ordering ⊓. Therefore, a pattern structure entails a

Galois connection between the powerset of objects (2G,⊆)
and a meet-semi-lattice of descriptions denoted by (D,⊓).

Formally, let G be a set of objects, let (D,⊓) be a meet-

semi-lattice of potential object descriptions and let δ : G −→
D be a mapping. Then (G, (D,⊓), δ) is called a pattern

structure. Elements of D are called patterns and are ordered

by a subsumption relation ⊑ such that given c, d ∈ D one

has c ⊑ d ⇐⇒ c⊓ d = c. A pattern structure (G, (D,⊓), δ)
gives rise to the following derivation operators (·)�, given

A ⊆ G and d ∈ (D,⊓):

A� =
�

g∈A

δ(g) d� = {g ∈ G|d ⊑ δ(g)}

These operators form a Galois connection between (2G,⊆)
and (D,⊑). (Pattern) concepts of (G, (D,⊓), δ) are pairs of

the form (A, d), A ⊆ G, d ∈ (D,⊓), such that A� = d and

A = d�. For a pattern concept (A, d), d is called a pattern

intent and is the common description of all objects in A,

called pattern extent. When partially ordered by (A1, d1) ≤
(A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 ⊑ d1), the set of all concepts

forms a complete lattice called a (pattern) concept lattice.

Pattern structures allow us to consider complex data in full

compliance with FCA formalism. It requires the definition of

a meet operator on object descriptions, inducing their partial

order. Actually, as for scaling in classical FCA, the choice of

an operator depends on expert knowledge, and the context

in which the resulting concept lattice will be used.

III. INFORMATION FUSION USING FCA

In information fusion, the question is to synthesize several

pieces of information, providing by different sources, into

an interpretable and useful information. Pieces of numerical

information supplied by sources are often imprecise. The

simplest representation of this imprecision consists of inter-

vals. For example, Table II represents an example of infor-

mation fusion problem : how to synthesize a useful value for

m1 (resp. for m2), based on values provided by information

sources gi, i = 1, . . . , 4, to be used in an evaluation process.

According to [1], [2], there are three kinds of behaviors for a

fusion operator denoted f : conjunctive, disjunctive and mild

operators.
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• The basic conjunctive operator is a set intersection. It

is used when all the sources are reliable, and usually

results in a more precise information item. If there is

some conflict in the information, then the result of the

conjunction can be empty. For example, considering

Table II, the conjunctive fusion result is an emptyset

for the variable m1.

• The basic disjunctive operator is a set union. It is

used when at least one of the sources is reliable

without knowing which sources are so. The result of a

disjunctive operator can be considered as reliable, but

is also often imprecise. For example, the disjunctive

fusion result for the variable m1, in Table II, is [1, 10].
• A mild operator lies between conjunction and disjunc-

tion, and is typically used when sources are partly

conflicting. It tries to achieve a good balance be-

tween informativeness and reliability. The fusion based

on Maximal Consistent Subset (MCS) is an example

of mild operator, which consists in finding maximal

consistent conjunctions of sources, then returning the

disjunction of these maximal sets [6], [7]. Going back

to Table II, maximal consistent subsets of values for

m1 are [2, 3], [4, 5] and [6, 7] provided respectively by

subsets {g1, g2}, {g1, g3} and {g3, g4}. Then, the MCS

fusion result is given by [2, 3] ∪ [4, 5] ∪ [6, 7].

Conjunctive and disjunctive fusion operators are commu-

tative, associative and idempotent. The mild operators are

commutative and idempotent but they are not associative.

Nevertheless, fusion operators are generally applied to all

sources and the obtained result (called also global result) is

considered by users for the evaluation process. Sometimes, it

happens that this result is not useful, e.g. the intersection of

all sources in Table II is an emptyset. Then, we are interested

to consider subsets of pieces of information provided by

sources. Thus, it may be useful to keep sources distinct

and exploit the partial fusion results (i.e. results obtained

from subsets of sources). Nevertheless, there exist 2n subsets

of sources for a set of n sources. On the other hand,

FCA (in particular pattern structure) starts from a similar

kind of information as in information fusion problem table.

Moreover, it produces concepts corresponding to maximal

sets of objects associated with a maximal set of values [8].

Then, FCA (i.e. pattern structures for numerical data) can

be used to combine numerical information coming from

several sources. Indeed, information sources (resp. variables)

in information fusion problems play the role of objects (resp.

attributes) in the pattern structure formalism. Moreover a

fusion operator is considered as a meet operator in pattern

structures and FCA formalism. Table III represents some

related basic notions in FCA, pattern structures and infor-

mation fusion that we will detail later in this paper to show

how FCA and pattern structures are well suited for merging

information.

FCA Pattern structures Information fusion

objects objects sources
attributes descriptions variables
binary data complex data intervals
meet operator meet operator ⊓ fusion operator fm

D description space Dm fusion space

(2M ,∩) (D,⊓) (Dm, fm)
(2M ,⊆) (D,⊑) (Dm,⊑fm )a

formal concept pattern concept argument
concept lattice pattern concept lattice lattice of arguments

a⊑ and ⊑fm are respectively defined with respect to ⊓ and fm.
For instance ⊑fm is the interval inclusion if fm is a conjunctive
operator.

Table III
RELATED NOTIONS IN THE FIELDS OF FCA, PATTERN STRUCTURES AND

INFORMATION FUSION

Let us consider a set of sources G = {g1, g2, . . . , gn}.

Each source gi provides an information item in the form of

an interval [ai, bi] for a parameter m. fm a fusion operator

and fm(gi, gj) is the fusion result of information items

coming from gi and gj .

Definition 1: An information fusion space Dm is com-

posed of the information available for a parameter m and all

possible fusion results they provide, w.r.t a fusion operator

fm. Formally, Dm = {fm(gi ∈ H), ∀H ⊆ G}.

Going back to Table II, with variable m1 and f1 being

the conjunctive fusion operator (i.e. interval intersection),

Dm1
= {[1, 5], [4, 7], [6, 10], [2, 3], [4, 5], [6, 7], ∅}.

A. Lattice of conjunctive results

The conjunctive fusion operator fm = ∩, for a parameter

m, is commutative, associative and idempotent. Then, it can

be considered as a meet operator and (Dm,∩) is an in-

formation meet-semi-lattice. Consequently, (G, (Dm,∩), δ)
is a pattern structure and we can build the lattice given in

Figure 2.

On Figure 2, from the FCA point of view, each node

denotes a concept while a line denotes an order relation

between two concepts (i.e., interval inclusion). In infor-

mation fusion problems, each node contains a subset of

sources (extent in FCA) and an interval (intent in FCA)

corresponding to the intersection (i.e. the meet in FCA) of

all intervals given by sources. The top node (⊤) in the lattice

corresponds to all sources and the bottom node (⊥) to no

source at all.

The lattice gives a meaningful map of the available

information and the fusion results. Each node contains

a maximal subset of sources and the information fusion

result it supplies. Moreover, the lattice provides a structured

view of global and partial conjunctive fusion results. Actu-

ally, a pair (A, d) of (G, (Dm1
,∩), δ), is interesting from

many points of view, as illustrated with the node labelled

({g1, g2}, [2, 3]).
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Figure 2. Conjunctive results lattice

• The value d provides information fusion resulting from

sources in A, e.g. [2, 3] is the conjunctive fusion of

information coming from sources g1 and g2.

• No other source can be added to A without changing

d, e.g. {g1, g2} is the maximal set of sources whose

conjunctive information fusion is [2, 3].
• The subset A keeps the track of the origin of infor-

mation, e.g. it is known that the new information [2, 3]
comes from g1 and g2.

• The top node (⊤) in the lattice gives the global fusion

result (i.e. fusion result of all sources in G).

Moreover, when the global fusion result is conflicting

hence not useful (for example, in the conjunctive fusion

lattice, the global fusion result is the empty set), the lattice

allows users to choose several subsets of sources with their

fusion results that are the more useful and the corresponding

non-empty intervals. Then, it is interesting to observe subsets

of sources given in the lattice and their partial fusion results.

Note that the disjunctive fusion operator allows to build

another lattice since it is commutative, associative and

idempotent.

Besides, information sources give information about sev-

eral variables. Then, we must compute one information

fusion lattice for each variable. In the pattern structure

formalism [9], when the description of objects is represent-

ing by a vector of object descriptions for each variable,

we consider a meet operator for each attribute. Then, we

consider that information fusion sources describe variables

using a multi-dimentional vector. Each dimension corre-

sponds to a variable. Consequently, we use a fusion operator

for each dimension in the source description. This method

allows us to obtain the fusion result for several variables

simultaneously.

B. Lattice of MCS results

The MCS fusion operator cannot be used as a meet

operator since it is not associative. For instance, going back

to Table II and f1 represents the MCS fusion operator,

f1((g1, g2), g3) = [2, 3] ∪ [4, 7] and f1((g1, g3), g2) =
[2, 3] ∪ [4, 5]. Then, we cannot directly build the MCS

fusion results lattice. However, the MCS fusion operator

returns the disjunction of maximal consistent conjunctions.

Consequently, we can use the disjunctive operator, on the

conjunctions obtained from initial information, as a meet

operator to build the lattice of MCS information fusion

results. Then, we use a pre-processing method, detailed

in [8], that consists in computing maximal consistent subsets

of sources (i.e. MCS) with the associated conjunction of

intervals; then we apply a disjunctive operator (viewed as

a meet operator) on these MCSs and derive another meet-

semi-lattice (Dm,∪).
Then, consider the set K of subsets of sources providing

the MCS values and let Dm represent the information fusion

space of the parameter m. Consequently, (K, (D,∪), δ) is a

pattern structure and we can build another lattice.

Going back to Table II, K = {K1,K2,K3} where K1 =
{g1, g3}, K2 = {g3, g4} and K3 = {g1, g2} for m1. Figure 3

represents the lattice of MCS results for variable m1. In [10],

Figure 3. Lattice of MCS fusion results

the fusion result must be convex, and the convex hull of

MCS fusion results is imprecise. Therefore, using a subset

of sources, i.e. a partial fusion result is more useful and

the fusion result is more precise. Hence, the lattice of MCS

results organizes the groups of sources with their merged
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results. Each node corresponds to a subset of sources with

their MCS result. On Figure 3, let us consider the node

labelled ({(g1, g3), (g3, g4)}, (m1, [4, 5]∪ [6, 7])). The value

[4, 5]∪[6, 7], of the variable m1, is coming from K1 and K2.

Moreover, these values represent the MCS fusion result of

the subset {g1, g3, g4}. The top node ⊤ corresponds to the

union of all MCS of sources that is the MCS fusion result

of all sources.

Besides, if the information sources provide globally con-

sistent information, then the conjunction of all items is not

empty. In that case, the lattice of MCS results reduces

to a unique node (this corresponds to the intersection of

all source items since they are consistent). However, if

the information sources are pairwise conflicting, then each

concept of the conjunctive fusion lattice contains a single

source and the pieces of information it provides, the ⊤
and the ⊥ nodes. More generally, if sources are conflicting,

the global conjunctive fusion result is empty. Then, nodes

located just below the ⊤ (called co-atom concepts) in the

conjunctive fusion results lattice, form nodes of the MCS

fusion results lattice (called atom concepts). Instead of the

pre-processing method for the MCS results lattice, we can

build the lattice of conjunctive results. Then, it consists in

deleting the ⊤ and performing unions to obtain MCS results.

Note the obtained structure is based on both intersection and

union semi-lattices, but it is not a lattice structure.

IV. CONCEPT LATTICE AS LATTICE OF ARGUMENTS

The concept lattice gives a classification of sources and

information provided by sources. Maximal fusion results

are organized in the lattice. When the global fusion result

corresponding to the fusion of all sources is empty or

imprecise, the lattice allows us to consider partial fusion

results that correspond to subsets of sources. Then, the

lattice forms a hierarchy of arguments or answers for an

evaluation process. Instead of the global fusion each subset

of sources with their fusion results in the lattice can be

used in the evaluation process. Each node in the lattice

provides a decision for the user. Then, the lattice is the basis

for answering queries or displaying arguments for several

decisions. Each pair containing a subset of sources with their

fusion result leads to a possible decision. Hence, the lattice

can be called lattice of answers or lattice of arguments.

Formally, let us consider S = {g1, . . . , gk}, k ≤ n a

subset of sources in G and fm(S) is the fusion result of

information provided by sources in S w.r.t. a fusion operator

fm for the parameter m. Then, the pair (S, fm(S)) is called

an argument or an answer. Hence, the concept lattice is said

to be a lattice of arguments or a lattice of answers if and

only if the subset S is maximal with respect to fm(S), i.e.

for any S0 such that fm(S0) = fm(S), we have S0 ⊆ S.

Thus, the information fm(S) is associated with a maximal

subset of sources that support it.

Instead of providing a unique fusion result, the lattice of

arguments gives a structured view of optimal partial fusion

results labelled by subsets of sources. This allows us to

choose among these subsets of sources and argue about the

most appropriate evaluation using the reliability of sources.

In the next section, we will detail how the reliability of

sources can be taken into account to provide a synthetic

conclusion in the evaluation process.

V. TAKING INTO ACCOUNT THE SOURCE RELIABILITY

The reliability of a source represents its capability to

provide a correct piece of information for a given problem.

There are two approaches to modeling such reliability:

• One may define a reliability complete pre-ordering

describing whether one source is more reliable than

another or not.

• One is capable to determine a numerical reliability

factor or certainty degree for each source, denoted by

α ∈ [0, 1]. We can let α = 1 to denote that the source

is fully reliable and α = 0 when the source is totally

unreliable (in the sense of useless: the information

provided by the corresponding source is not taken into

account in the evaluation process).

Reliability can be context-dependent. For example, even

if some source is more reliable than others regarding a

parameter, these other sources maybe more worthy of trust

than the former for another parameter. The question is how

to use reliability information in the lattice of arguments and

more generally, how to combine information from n sources

taking into account the reliability of the sources in order to

provide a synthetic conclusion for the user. For a set of n

sources, let αj > 0 be the reliability degree of source gj for a

parameter m. When all sources are reliable, the conjunctive

fusion operator is used to combine pieces of information and

the global evaluation is considered.

In a quantitative uncertainty setting, Shafer’s evidence

theory [11] provides a way for discounting the information

supplied by unreliable sources. The degree of reliability α is

interpreted as the probability that the information d provided

by a source is relevant and correct. In other words, the degree

1−α is the probability that the information is useless. A pair

(d, α) formed by an interval d and a reliability degree α is

then interpreted as a consonant belief function defined by a

mass function mass(d) = α and mass(DOM) = 1 − α

where DOM is the attribute domain. It is equivalent to

replace d by a possibility distribution on DOM , such that

π(x) = 1 if x ∈ d and 1− α otherwise.

As the application of FCA requires idempotent operations

we shall use minimum and maximum to combine such pos-

sibility distributions. The combination using the minimum is

in agreement with a logical point of view on the information

fusion problem. One can generalize the MCS method to the

handling of reliability weights attached to sources for each

argument in the lattice of arguments. Suppose one source
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is characterized by (d1, α1) and another one by (d2, α2).
Combining the two possibility distributions by the minimum,

and assuming d1 ∩ d2 is a non-empty interval, one easily

deduces that necessity degrees of d1 ∩ d2 and d1 ∪ d2
are respectively min(α1, α2) and max(α1, α2). However,

if there are conflicts between sources, the conjunction of

possibility distributions is not sufficient.

One idea is then to use qualitative counterparts [12] of

combination rules existing in evidence theory setting. Define

a qualitative mass function µ on 2DOM associated with the

pair (d, α) as µ(d) = α and µ(DOM) = 1. The correspond-

ing necessity measure is defined by N(d1) = maxe⊑d1
µ(e).

The conjunctive rule assigns the mass min(α1, α2) to

d1 ∩ d2 �= ∅ (and 0 otherwise), α1 to d1, α2 to d2,

and 1 to DOM . When there is no conflict, the result

is still a possibility distribution, due to the use of min

operation, since assuming α1 ≤ α2, min(α1, α2) = α1,

and (d1 ∩ d2, α1) subsumes (d1, α1), thus preserving the

nestedness of focal elements. In case of conflict, the result

is no longer expressed by a possibility distribution (since the

focal elements d1 and d2 are then disjoint). The disjunctive

rule works similarly: it assigns the mass min(α1, α2) to

d1 ∪ d2, and 1 to DOM . These rules easily generalize

to any number of sources. Then, if K1,K2, ...,Kk are the

maximal consistent subsets of sources supporting a result d

(a disjunction of intervals), then the reliability of the result

can be computed by applying these rules.

This calculation can help the user select a proper subset

of sources bringing information that is as useful and reliable

as possible.

VI. A REAL-WORLD APPLICATION IN AGRONOMY

Agronomists compute indicators for evaluating the im-

pact of agricultural practices on the environment. Questions

such as the following are of importance: what are the

consequences of the application of a pesticide given its

properties, the period of application, and the characteristic

features of the field? The risk level for a pesticide to reach

surface water is measured by the indicator Isur in [13].

Agronomists try to make a diagnosis based on the value of

Isur. Pesticide features depend on the chemical properties of

the product while pesticide period application and field prop-

erties depend on domain knowledge [14]. This knowledge

lies in information sources among which books, databases,

and expert knowledge in agronomy. Then values for some

features vary w.r.t. sources.

Here, we are interested in the use of pesticide metsulfuron-

methyle and its influence on the surface water. Two charac-

teristic features of Metsulfuron-methyle are needed to com-

pute the indicator Isur, namely DT50 and aquatox (aqu)
(more details on these parameters can be found in [13]; they

are not crucial for the understanding of this paper). Table IV

(simplified data) gives the values of the parameters DT50
and aqu according to 11 different information sources, and

DT50 aqu αa

i
βa

i

BUS 120 ? 0.2
PM10 [7,35] ? 0.7
PM11 [7,35] 100 0.7 0.9
Com96 [14,180] 0.01 0.5 0.6
Com98 [4,71] ? 0.5
ARSl [14,38] ? 0.2
ARSf [8,105] ? 0.2
RIVM [27,34] 100 0.4 0.3
BUK [7,190] ? 0.4
AGXf [4,100] 0.045 0.8 0.8
AGXl [20,51] 0.045 0.7 0.8

aαi and βi denote the certainty degrees of the source i regarding
the parameter DT50 and aqu respectively.

Table IV
FEATURES OF Metsulfuron Methyle

their certainty degrees for each characteristic. The symbol

“?” represents the case when the information source does

not give data for the parameter. For this case, the certainty

degree is unknown and it will not be taken into account

in the computation of the reliability. Agronomists look to

find a suitable value for each parameter to be considered for

computing the Isur indicator, hence facing an information

fusion problem.

Lattice construction. The parameters DT50 and aqu

are independent. No information is available about sources.

Then, the appropriate fusion is the method based on the

MCS fusion operator. Therefore, Table VI presents the pre-

processing table obtained from initial information provided

by sources in Table IV. Table V gives subsets of sources

producing the MCS of values for each parameter.

K1{BUS,Com96, BUK}
K2{PM10, PM11, ARSl, ARSf,Com98, RIVM,BUK,AGXf,AGXl}
K3{PM11, RIVM}
K4{Com96}
K5{AGXf,AGXl}

Table V
LABEL OF ALL MCS

DT50 aqu

K1 120 ∅
K2 [27, 34] ∅
K3 ∅ 0.045
K4 ∅ 0.01
K5 ∅ 100

Table VI
TABLE IV PRE-PROCESSED

Lattice interpretation. The resulting lattice is given

in Figure 4 with 21 values allowing to compute the in-

dicator Isur. The lower arguments represent MCS val-

ues of each parameter. For the other arguments in the

lattice, the subset of sources (resp. values) is com-

posed of all sources (resp. values) lying in the sub-

sets of sources (resp. values) of its sub-arguments. For
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Figure 4. Lattice of MCS fusion results raised from Table IV

example, on Figure 4, the argument value of C1 is

{(DT50, [27, 34]), (aqu, 0.01)}. But, if two sub-arguments

give different values for the same attribute, then the union

of values is considered. For example, the argument value

of C2 is {(DT50, [27, 34]), (aqu, {0.045} ∪ {0.01})} and

its sub-arguments values are {(DT50, [27, 34]), (aqu, 0.01)}
and {(aqu, 0.045)}. Moreover, each argument value in the

lattice represents the disjunctive fusion result of the subset

of sources in the argument. Consequently, these values

correspond to the MCS fusion results of subsets in G.

Indeed, the highest argument in the lattice corresponds to the

MCS global fusion result of all sources for all parameters.

Here, this result is [27, 34] ∪ [120, 120] for DT50 and

{0.045} ∪ {0.01} ∪ {100} for the variable aqu.

First results. Once feature values are summarized from

the delivered pieces of information, agronomists try to make

a diagnosis w.r.t. the value of Isur. A value below 7 indicates

that the farmer has to change its practices (pesticide, soil,

date, etc.). By contrast, a value above 7 indicates that the

practices of the farmer are environment-friendly [13].

Considering the global result, i.e. DT50 = [27, 120] and

aqu = [0.01, 100] then the indicator Isur = [3.5, 9.7]2.

This interval is not useful since some values in [3.5, 9.7]

2We use the convex hull of the fusion results for computing Isur

are smaller than 7 and other ones are greater than 7. Then,

using the set of all sources cannot help agronomists to

evaluate the agricultural practices. This due to the diversity

of sources and the conflict between sources. Then, it is useful

to observe partial fusion results given by the lattice.

For example, considering C1 (see Figure 4),

DT50 = [27, 34] and aqu = 0.01, then

Isur = [6.9, 7]. This indicates that the farmer

must change its practices, since values of Isur
are smaller than 7. Then, considering the subset

{PM10, PM11, ARSl,ARSf,Com98, RIVM,BUK,

AGXf,AGXl} for DT50 and Com96 for aqu, using of

metsulfuron methyle is risky for the environment. However,

considering DT50 = [27, 34] and aqu = 0.045, the

resulting interval of Isur is [7, 7.4] indicating that the

practices of the farmer are environment-friendly since the

Isur values are greater than 7.

Taking into account the reliability. Consider now that

the user knows that some sources are more reliable than

others regarding both of parameters DT50 and aqu. Each

information source is given with a degree of certainty

for each parameter (see Table IV). Using the conjunctive

combination rule described in section V, we can attach

reliability weights to each MCS Ki as shown on figure 4.
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Then it is possible to compute reliability weights for other

arguments in the lattice. For instance C1 merges information

about DT50 and aqu and has reliability min(0.4, 0.6).
Likewise the argument merging K1 and K4 has reliability

min(0.2, 0.6). This computation can help users to identify

sources and subset of sources bringing information that is

as reliable and useful as possible. Instead of computing a

weight for each obtained value of the indicator, handling

reliability in the combination of sources using a lattice of

arguments allows to rank fusion results for each parameter

w.r.t. their usefulness in the agricultural context.

VII. RELATED WORKS AND CONCLUDING REMARKS

The method presented here for handling the reliability

of sources is similar to the method proposed by Dubois et

al. [4] in a logical framework. In this work, authors propose

to associate each piece of information not only with its

certainty level (as in standard possibilistic logic), but also

with the sources which provide it, thus capturing the idea

of source-based argument like in our methodology. In this

work, each conclusion that can be deduced from such a

knowledge base is associated with the subset of sources

that supports this conclusion, where each source is itself

associated with a certainty level. This approach handles con-

flicts, by allowing mutually exclusive conclusions supported

by distinct subsets of sources. However, conclusions are

not merged, as done here with numerical interval values,

taking advantage of formal concept analysis for structuring

the merging results. Similarly, the work presented here

may be also somewhat related with another extension of

possibilistic logic called “logic of supporters” [15], where

logical formulas are associated with a set of supporters

organized in a lattice structure, but this proposal does not

deal with information fusion.

In this paper, we propose a method to combine infor-

mation using formal concept analysis, more particularly

its extension for numerical data (pattern structures). This

method provides a lattice of arguments. We also detail how

to handle the reliability (when available) in the combination

process. Instead of giving a unique fusion result, the lattice

of arguments gives a structured view of partial fusion results

labelled by subsets of sources. Moreover, when the reliability

of sources is available, arguments are rank-ordered in order

to identify the most appropriate evaluation.

Lastly, it is interesting to notice that the approach pre-

sented here in the case of imprecise numerical information

represented by means of intervals, could be adapted to any

types of uncertainty representations. In particular, these sub-

sets may be the sets of models of propositional knowledge

bases. Then, our approach to information fusion would fit in

the setting first proposed in [16], and known to be a special

case of pattern structure.
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