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ABSTRACT 

Nutrition plays an important role in human metabolism and health. However, it is unclear in 

how far self-reported nutrition intake reflects de facto differences in body metabolite 

composition. To investigate this question on an epidemiological scale we conducted a 

metabolomics study analyzing the association of self-reported nutrition habits with 363 

metabolites quantified in blood serum of 284 male participants of the KORA population 

study, aged between 55 and 79 years. Using data from an 18-item food frequency 

questionnaire, the consumption of 18 different food groups as well as four derived nutrition 

indices summarizing these food groups by their nutrient content were analyzed for association 

with the measured metabolites. The self-reported nutrition intake index “polyunsaturated fatty 

acids” associates with a decrease in saturation of the fatty acid chains of glycero-

phosphatidylcholines analyzed in serum samples. 

Using a principal component analysis dietary patterns highly associating with serum 

metabolite concentrations could be identified. The first principal component, which was 

interpreted as a healthy nutrition lifestyle, associates with a decrease in the degree of 

saturation of the fatty acid moieties of different glycero-phosphatidylcholines.  

In summary, this analysis shows that on a population level metabolomics provides the 

possibility to link self-reported nutrition habits to changes in human metabolic profiles and 

that the associating metabolites reflect the self-reported nutritional intake. Moreover, we 

could show that the strength of association increases when composed nutrition indices are 

used. Metabolomics may, thus, facilitate evaluating questionnaires and improving future 

questionnaire-based epidemiological studies on human health. 
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INTRODUCTION 

 

Potential causes of complex diseases, such as type 2 diabetes and cardiovascular disease, can 

be analyzed from many different perspectives (Figure 1). For instance, a number of genome-

wide association studies (GWAS) identified associations between common genetic 

polymorphisms (SNPs) and diabetes or coronary artery disease [1-3]. In addition to such 

heritable genetic predispositions, environmental factors such as the human lifestyle and 

nutrition habits play an important role in the development of the respective clinical outcome. 

Examples would be the effect of meat and fish consumption on the risk of colorectal cancer, 

metabolic differences in the intake of green and black tea or the metabolic effects of dietary 

isoflavones in humans [4-11]. However, directly associating genes or lifestyle habits with 

clinical endpoints provides only limited information about the underlying disease-causing 

mechanisms. Moreover, the p-values of such associations are most often relatively low. Using 

quantitative targeted metabolomics as an access to intermediate phenotypes (as described in 

detail in [12]) provides a much closer insight into the mechanisms that cause the clinical 

endpoint. Using high resolution electrospray ionization tandem mass spectrometry (ESI-

MS/MS) it is, today, possible to measure hundreds of metabolites at the same time in a single 

sample [13]. Gieger et al. [12] showed that associating genetic variants with changes in the 

homeostasis of metabolic compounds can yield larger effect sizes as well as access to the 

underlying molecular disease-causing mechanisms. Likewise, lifestyle parameters such as 

smoking habits and coffee consumption can be clearly discerned in metabolic profiles. Wang-

Sattler et al. [14] suggest that smoking is associated with plasmalogen-deficiency disorders 

and Altmaier et al. [15] could identify an increase in the concentration of two classes of 

sphingomyelins and a decrease in the acylcarnitine levels with an increased coffee 

consumption. 
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Here, we focus on the effect of nutrition habits on the human metabolism and in particular on 

how self-reported nutrition intake associates with metabolic profiles of the study participants‟ 

blood samples. Epidemiological studies provide growing evidence that diet is associated with 

the risk of many chronic diseases. Thus, an accurate assessment of nutrition habits is of 

growing importance. Though traditional measurement methods are improving and new 

techniques are developed [16-20], the complexity of nutrition intake naturally leads to errors 

in its assessment. Comprehensive information about nutrition habits would include a 

multitude of different factors, such as portion size of foods, frequency of consumption, food 

composition, daily variations in food intake and many more. However, documenting all these 

parameters in epidemiological studies is not always feasible. Thus, errors in the assessment of 

the consumed food are to be expected [21, 22] and an independent validation against 

quantitatively measurable parameters is needed. 

Here, we ask the question, in how far self-reported nutrition habits based on questionnaires 

can be associated with changes in the metabolic homeostasis. For clinical short-term studies, 

where factors like food intake are exactly defined and controlled, finding such associations 

would probably be not astonishing. Here, however, we focus on population studies, where a 

general nutrition habit is self-reported. Analyzing population studies for associations between 

the self-reported nutrition habits and the metabolic profile might then evaluate the quality and 

potential of the used questionnaires.  

We present results from a study where we measured the metabolic profiles of 284 male 

participants from the KORA (Cooperative Health Research in the Region of Augsburg) study 

population. For each participant, information on many different factors concerning disease 

state, medication items or life style is available. In particular, most participants responded to a 

set of 18 questions of a qualitative food frequency questionnaire (see Table 4). Each of the 

queried food groups such as meat, fish, vegetables, cheese or chocolate was reported on a 

scale from 1 (“never”) to 7  (“several times per day”). In a first step we analyzed these KORA 
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food groups for associations with the measured metabolic profiles. In a second step we 

defined nutrition indices by pooling the food groups by their nutrient content, such as “dietary 

fibers”, “saturated fatty acids”, “monounsaturated fatty acids”, and “polyunsaturated fatty 

acids” and tested them for associations with the metabolic data. In a third and final step we 

examined the effect of the overall diet on the human metabolism. For identifying associations 

of the nutrition lifestyle with the clinical outcome, dietary pattern analysis is a common 

approach [23-25]. Following this idea, we identified dietary patterns and analyzed them for 

associations with the measured metabolic profiles. This approach may provide a broader 

picture of the impact of specific nutrition habits on health than the analysis of single food 

groups could do alone.  

 

 

MATERIAL & METHODS 

Experimental Setup 

The research platform KORA (Cooperative Health Research in the Region of Augsburg) 

conducts population-based surveys and subsequent follow-up studies in the fields of health 

care research, epidemiology, health economics and genetics. A multitude of different 

parameters is provided, including life style factors (questionnaires related to physical activity, 

nutrition, alcohol consumption, smoking, etc.), medical history, and socio-demographic 

variables. The dataset analyzed here was taken from the F3 study, which was conducted in 

2004-2005 as a follow-up of the third MONICA (Monitoring of Trends and Determinants in 

Cardiovascular Disease) survey (S3; 1994/1995). For this follow-up study F3, 3006 of the 

4856 participants of the S3 were reexamined for a second time, thus, 10 years apart from the 

baseline examination. From this group, 284 male participants, aged between 55 and 79 years 

at the examination for F3, were chosen randomly for our analysis and were again recruited 

one to two years later for additional blood sampling. In total, 239 of these study participants 
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provided details concerning their intake of the following foods: “Meat (except sausage)”, 

“sausages and ham”, “poultry”, “fish”, “potatoes”, “pasta”, “rice”, “cooked vegetables”, 

“fresh fruit”, “chocolate, chocolates”, cakes, pastries, biscuits”, “salted snacks”, “whole-grain 

bread, black bread, crispbread”, “flaked oats, muesli, cornflakes”, “curds, yoghurt and sour 

milk”, “cheese”, “eggs”, and “milk”. The foods were queried by a score from 1 to 7: “never”, 

“once a month or less”, “several times a month”, “about once a week”, “several times a 

week”, “daily or almost daily”, “several times per day” (see Table 1). Food indices were 

computed as the sum of the responses that make up the given indices (see Table 4). Thus, the 

indices “dietary fibers” and “polyunsaturated fatty acids” can each range from 3 to 21, 

“monounsaturated fatty acids” from 8 to 56, and “saturated fatty acids” ranges from 9 to 63. 

This food frequency questionnaire was validated against a 7-day dietary record (n=899; 

applied in a previous KORA/MONICA study) with the result that it can be used for analysis 

on group level [26].  

 

Blood samples 

For collection of blood samples for metabolic analysis F3 study participants were invited 

again in 2006. To avoid variation due to circadian rhythm, blood was drawn in the morning 

between 8 and 10 am after a period of overnight fasting. Material was immediately 

horizontally shaken (10 min), followed by 40 min resting at 4°C to obtain complete 

coagulation. The material was then centrifuged (2000g; 4°C). Serum was aliquoted and stored 

for 2-4 hours at 4°C, after which it was deep frozen to  

-80°C until mass spectrometry analysis. 

 

Metabolite profiling 

Targeted metabolite profiling by electrospray ionization (ESI) tandem mass spectrometry 

(MS/MS) was performed at Biocrates life sciences AG, Austria. The technique is described in 
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detail in [27, 28]. A comprehensive overview of the field and the related technologies is given 

in the review paper by Wenk [29]. Briefly, the assay preparation was done by an automated 

robotics system (Hamilton Robotics GmbH) on a special double-filter 96 well plate 

containing isotope labeled internal standards. Assays used 10µl plasma and include 

phenylisothiocyanate (PITC)-derivatisation of amino acids, extraction with organic solvent 

and several liquid handling steps. Flow injection analysis coupled with multiple reaction 

monitoring scans (FIA MS/MS) on an API 4000 QTrap instrument (Applied Biosystems) was 

used for quantification of amino acids, acylcarnitines, sphingomyelins, phosphatidylcholines, 

and hexoses. LC-MS/MS methods using multiple reaction monitoring, neutral loss and 

precursor ion scans were applied for biogenic amines, eicosanoids and hydroxylated fatty acid 

derivatives as well as for intermediates of the energy metabolism. The quantification of the 

metabolites is achieved by reference to appropriate internal standards. The method is proven 

to be in conformance with the “Guidance for Industry - Bioanalytical Method Validation” 

published by the FDA (Food and Drug Administration), which implies proof of 

reproducibility within a given error range. This measurement platform has been successfully 

used in the past in different academic and industrial applications [12-14]. 

 

Metabolite spectrum 

For all analyzed metabolites the concentrations are reported in μM. In total, 363 different 

metabolites were measured in plasma: 18 amino acids, nine reducing mono-, di- and 

oligosaccharides (abbreviated as Hn for n-hexose, dH for desoxyhexose, UA for uronic acid, 

HNAc for N-acetylglucosamine), 21 acylcarnitines (Cx:y, where x denotes the number of 

carbons in the side chain and y the number of double bonds), seven hydroxylacylcarnitines 

(C(OH)x:y) and dicarboxylacylcarnitines (Cx:y-DC), free carnitine (C0), seven biogenic 

amines, seven prostaglandins and 293 lipids. These lipids are subdivided into 14 different 

ceramides (Cer) and glucosylceramides (GlcCer), 71 different sphingomyelins (SMx:y) and 
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sphingomyelin-derivatives, such as N-hydroxyldicarboacyloylsphingosyl-phosphocholine 

(SM(OH,COOH)x:y) and N-hydroxylacyloylsphingosyl-phosphocholine (SM (OH)x:y), five 

glycero-phosphatidic acids (PA), 124 glycero-phosphatidylcholines (PC), 42 glycero-

phosphatidylethanolamines (PE), four phosphatidylglycerols (PG), 30 glycero-

phosphatidylinositols (PI) and glycero-phosphatidylinositol-bisphosphate (PIP2), and three 

glycero-phosphatidylserines (PS). Glycero-phospholipids are further differentiated with 

respect to the presence of ester (a) and ether (e) bonds in the glycerol moiety, where two 

letters (aa, ae, or ee) denote that the first as well as the second position of the glycerol unit are 

bound to a fatty acid residue, while a single letter (a or e) indicates a bond with only one fatty 

acid residue; the latter molecular species are usually called lyso-phospholipids. E.g. PC ae 

36:1 denotes a plasmalogen phosphatidylcholine with 36 carbons in the two fatty acid side 

chains and a single double bond in one of them. In some cases, the mapping of metabolite 

names to individual masses can be ambiguous. For example, stereo-chemical differences are 

not always discernable, neither are isobaric fragments.  

 

Statistical analysis 

The statistical analysis system R (http://www.r-project.org/) and SPSS for Windows (Version 

16.0, Chicago: SPSS Inc.) were used for this statistical analysis. 

As a basis for our statistical analysis, we used in particular ratios between metabolite 

concentrations. As shown previously, the use of such ratios leads to a strong reduction in the 

overall variance and therefore improves the strength of association [13]. A high increase in 

the strength of association may also indicate that the two metabolites are linked by a 

metabolic pathway that is influenced by the respective (nutrition) factor. 

Thus, the ratios of the concentrations of all possible pairs (363
2
) of metabolites are computed. 

For the identification of metabolites influenced by the nutrition habits, for each of the 18 food 

groups, the four nutrition indices and the seven dietary patterns, a linear regression test was 

http://www.r-project.org/
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applied to model each metabolite ratio. To control for the effect of testing multiple hypotheses 

and, thus, taking possible correlations among metabolites into account, the positive false 

discovery rate (q-value) was computed for each ratio and each dietary variable. The positive 

false discovery rate is defined by Storey et al. [30] as pFDR = E[V/R | R>0], where “positive” 

means that at least one rejection occurred. The pFDR can be used to define the q-value, which 

is a natural pFDR analogue to the p-value. Thus, the q-value is a measure for the fraction of 

false positives appearing even if the test itself was significant. In contrast to the p-value the q-

value is a multiple hypothesis testing quantity [30]. 

The dietary patterns were identified using principal component analysis on the food groups 

using SPSS. Only principal components with an eigenvalue larger than one were considered 

for further analysis. For each of these principal components a new variable with the 

transformed values (method: regression) was calculated. To each of these new variables a 

linear regression test was applied to model each metabolite ratio analogical to the food 

variables above. Thereby, metabolite ratios can be identified that are influenced by the 

respective dietary pattern. 

 

 

RESULTS 

Food groups associate with saturation and chain length of phospholipids 

As a first step, in order to gain insight into nutrition associated metabolic changes, we tested 

the association of self-reported intake of single food groups with the metabolite profiles in 

human serum using linear regression. The results are summarized in Table 2. Using age and 

BMI as cofactors for the linear regression showed no substantial difference to the analysis 

without any cofactors. All analyzed food groups mainly affected the degree of saturation 

and/or the chain length of the fatty acid residues of the glycero-phosphatidylcholines.  
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An association with a decrease in saturation of the fatty acid residues could be observed for 

the consumption of “sausages, ham” and “fish” (e.g. the ratio between PC aa C40:4 and PC aa 

C40:6 with a q-value of 8.67x10
-10

). In contrast, an increase in saturation was associated with 

“flaked oats, muesli, cornflakes” and “cheese”. The results for “flaked oats, muesli, 

cornflakes” additionally revealed a decrease in the chain lengths of the fatty acid residues. For 

“vegetables, cooked” the ratio between hexanoylcarnitine (C6) and kynurenin concentrations 

was found as association with the lowest q-value (q-value: 5.89x10
-3

). “Fresh fruit” associated 

most strongly with a ratio composed of an acylcarnitine and a glucosylceramide, namely 

C10/GlcCer C22:2 (q-value: 2.27x10
-3

) and “chocolate, chocolates” with ratios containing 

each a sphingomyelin and a glycero-phosphatidylcholine, e.g. SM C22:0/PC aa C38:3 (q-

value: 1,35x10
-4

). “Curds, yoghurt, sour milk” achieved the lowest q-value for association 

with SM (OH) C28:1/SM (OH) C20:1 (q-value: 2.93x10
-2

), a ratio composed of two N-

hydroxylacyloylsphingosyl-phosphocholines. For all these associations positive false 

discovery rates (q-value) below 0.05 were thus obtained. For the following food groups no 

association with a positive false discovery rate (q-value) smaller than 0.05 could be identified: 

“meat (except sausage)”, “poultry”, “potatoes”, “pasta”, “rice”, “cakes, pastries, biscuits”, 

“salted snacks”, “whole-grain bread, black bread, crispbread”, “eggs” and “milk”. In 

summary, the analysis of the food groups shows that associations of several of these food 

groups with different metabolic profiles can be observed, albeit some of them with relatively 

low q-values. Most of these differences are related to the saturation and chain length of 

phospholipids. 
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The nature of the nutrient intake indices matches the character of the associating 

metabolic profiles 

As a next step, we aimed to identify those metabolites that are influenced by the food indices 

“dietary fibers”, “saturated fatty acids”, “monounsaturated fatty acids”, and “polyunsaturated 

fatty acids”.  

The index “dietary fibers” was defined by the food groups “vegetables, cooked”, “whole-

grain bread, black bread, crispbread” and “flaked oats, muesli, cornflakes” (Table 4). For this 

index “dietary fibers” metabolite ratios that suggest a shift towards more saturation and 

smaller chain length of the fatty acid residues showed the strongest association (Table 3), e.g. 

the ratio PC ae C36:1/ PC aa C40:4 with a positive false discovery rate (q-value) of 1.20x10
-5

 

and a positive correlation coefficient of 0.4. In order to investigate this observed shift towards 

more saturation further, sums of the serum concentrations of glycero-phosphatidylcholines 

were used for analysis. The association with the lowest q-value (2.45x10
-7

) was the ratio of 

the sum of all acyl-alkyl-PC with one or two double bonds and the sum of all diacyl-PC with 

4 or 5 double bonds (Figure 2). This supports the idea that “dietary fibers” are associated with 

an increase in phospholipid saturation. To answer the question whether the binding type of the 

fatty acids in the glycero-phosphatidylcholine – acyl or alkyl – may influence the observed 

association, we focused on those ratios that contain exclusively diacyl-PCs (Table 3b) or 

exclusively acyl-alkyl-PCs (Table 3c). For both separately analyzed classes also an increase 

of the saturation of the fatty acid residues could be observed. The sum of all diacyl-PC 

showed only a slight negative association with dietary fibers (p-value: 1.53x10
-3

, q-value: 

1.79x10
-2

), while for the sum of all acyl-alkyl-PC no association could be detected. Thus, the 

intake of dietary fibers mainly associates with the saturation of the fatty acid residues but 

might also have an effect on the type of PC that is formed. 

The index “dietary fibers” is the sum of the food groups “cooked vegetables”, “whole-grain 

bread, black bread, crispbread” and “flaked oats, muesli, cornflakes” (Table 4). The analysis 
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of these factors showed that only self-reported “flaked oats, muesli, cornflakes” (q-value: 

2.24x10
-4

) consumption was also associated with a higher saturation and a smaller fatty acid 

chain length. The analysis of the index “dietary fibers” lead to an increased strength of 

association and, thus, shows that additional information can be obtained when using nutrition 

indices as compared to individual food groups. 

The index “polyunsaturated fatty acids” is composed of the three food groups: “meat (except 

sausage)”, “poultry” and “fish”. This index was associated with a decrease in saturation of the 

fatty acid residues of the glycero-phosphatidylcholines, where the signal of the strongest 

associating ratio is found for PC aa C40:5/PC aa C40:6 with a small positive false discovery 

rate (q-value: 5.94x10
-5

) and a negative correlation coefficient of -0.38 (Figure 3). 

Docosapentaenoyl-CoA (C22:5) and Docosahexaenoyl-CoA (C22:6) are closely connected in 

the biosynthesis of unsaturated fatty acids [31]. Synthesis of these metabolites to a glycerol 3-

phosphate, and further addition of a stearoyl-moiety (C18:0), followed by a 

dephosphorylation step and the addition of a phosphocholin moiety in the Kennedy pathway, 

leads to the formation of the glycerol-phosphatidylcholins PC aa C40:5 and PC aa C40:6, 

respectively. Thus, a decrease of the ratio PC aa C40:5/PC aa C40:6 indicates an increase in 

the polyunsaturated fatty acid C22:6. The index “polyunsaturated fatty acids” is defined by 

the food groups “meat (except sausage)”, “poultry” and “fish”. Among these groups the 

strongest association could be found for fish intake with the ratio PC aa C40:4/PC aa C40:6 

(q-value: 8.67x10
-10

).  

The indices “saturated fatty acids” and “monounsaturated fatty acids” are both composed of 

the eight food groups “meat (except sausage)”, “sausages and ham”, “poultry”, “chocolate, 

chocolates”, “cakes, pastries, biscuits”, “salted snacks”, “cheese” and “eggs”. This nearly 

identical composition of these both indices is typical for southern German (Bavarian) lifestyle 

[32]. The index “saturated fatty acids” in addition contains the food group “curds, yoghurt, 
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sour milk”. Both indices associated with metabolite ratios composed of the different 

phospholipids.  

Three of the index defining food groups, namely “sausages and ham”, “chocolate, chocolates” 

and “cheese”, achieved results with a q-value lower than 5%. The resulting ratios mainly 

describe the state of saturation of the fatty acid residues of the glycero-phosphatidylcholines.  

The index “saturated fatty acids” includes, besides the eight food groups, additionally the 

factor “curds, yoghurt and sour milk”. This difference to “monounsaturated fatty acids” 

became apparent in additionally resulting ratios containing the sphingomyelin SM (OH) 

C20:1, which was, among the food groups, only included in the results of “curds, yoghurt and 

sour milk”. 

The indices “saturated fatty acids” and “monounsaturated fatty acids” present a complex 

pattern of differences in the phospholipid metabolism, which is probably due to the large 

number of food compounds defining these indices suggesting that these indices may need 

refinement in the future. In summary, especially the analysis of the index “polyunsaturated 

fatty acids” provides an impressive example that the self-reported nutrient intake can in fact 

be observed in the metabolite profile of human serum.  

 

Dietary lifestyle can be detected in serum metabolite profile 

To identify the major dietary patterns in the KORA F3 dataset, we analyzed the food groups 

by principal component analysis (Table 4). Seven of the resulting principal components 

achieved an eigenvalue larger than one and were further analyzed. Each of the seven principal 

components can be interpreted as a dietary pattern (DP). The association of these seven DPs 

with the metabolite dataset was tested. Three of the seven DPs yielded results with a false 

discovery rate (q-value) lower than 0.05. The lowest q-value was achieved by the first 

principal component. This first component was composed of a high intake of poultry, fish, 

rice, cooked vegetables, fresh fruit, chocolate, flaked oats, curds, cheese and milk, and a low 
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consumption of meat and sausages.  The metabolite ratios that most strongly associate with 

this DP consisted each of a diacyl-PC with four or five double bonds in the numerator and an 

acyl-alkyl-PC with one or two double bonds in the denominator and showed a positive 

correlation. This fact is particularly visible when examining the ratio of the sums of these both 

groups of glycero-phosphatidylcholines for analysis (q-value: 1.07x10
-8

) (Figure 4, Table 5).  

The fourth and the sixth DP were both associated with different phospho-lipids. The fourth 

DP describes a lifestyle that incorporates a high consumption of meat, poultry, fish, salted 

snacks and eggs and a low intake of potatoes, pasta, cakes, whole-grain bread and flaked oats 

(lowest q-value for association with metabolite ratios: 3.42x10
-3

). It can be interpreted as 

“traditional Bavarian” lifestyle, since meat, sausages, poultry and fish played an important 

role in the nutrition (note that the probands live in Bavaria). The sixth DP indicates a high 

intake of whole-grain bread, eggs and milk, and a low consumption of fish, fresh fruit and 

cakes (lowest q-value: 1.35x10
-5

). These three principal components (component one, four 

and six) explain a variance of 15.6, 7.9% and 6.0% respectively. Because of its high explained 

variance the first principal component was of main interest. The first DP associates with a 

decrease in saturation of the fatty acid side chains of glycero-phosphatidylcholines. Thus, the 

principal component that explains most of the variance in the self-reported dietary intake is 

also the variable that displays the strongest association to serum measured profiles. 

 

 

DISCUSSION 

In this study we asked the question if self-reported nutrition intake reflects de facto changes in 

body metabolite composition. We analyzed the effect of different nutrition habits on the 

metabolism of 239 male participants of the KORA project, aged between 55 and 79 years. In 

total, 363 metabolites were measured for each sample by high-throughput electrospray 

ionization tandem mass spectrometry. 
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Our analysis shows that self-reported information about general nutrition habits collected by 

food frequency questionnaires can be associated with different metabolic profiles. This could 

be done for a population study, which means that food intake was not predetermined as it is 

for clinical short-term studies. Apart from that the associations could be found though the 

time points of the interview and the blood collection differed by a year. This, in reverse, 

indicates that nutrition habits are stable over longer time periods. We could find associations 

between self-reported nutrition intake and serum based metabolite concentrations on three 

levels of analysis: single food groups, nutrition indices and dietary patterns. Using age and 

BMI as cofactors for the linear regression showed no substantial difference to the analysis 

without any cofactors. Life-style factors as well as possible gene-nutrition interactions may 

influence the relationship between nutrition intake and metabolic profile, but were not used as 

cofactors for reasons of possible over-fitting of the statistical model.  

Analyzing the 18 single food groups we showed that even on the lowest level, namely single 

food groups, self-reported information about these single food consumptions can be 

associated with different metabolic profiles. Most of these differences relate to the saturation 

and chain length of different classes of phospholipids.  

In a next step we combined single food groups into indices according to their nutrient content 

and showed that nutrition habits can be associated with metabolic changes and thereby 

provide additional information. For the index “dietary fibers”, we observed an association 

with a shift towards more saturation and smaller chain length of the fatty acid residues of 

phosphatidylcholins. To the best of our knowledge, such an effect of dietary fiber 

consumption on the saturation of fatty acid residues in humans was not reported in literature 

so far. Thus, the observed association was unexpected and confounding by other aspects of 

diet can not totally be excluded. An explanation for the association might be that increased 

dietary fiber intake functions as an indicator for increased carbohydrate intake, which was 

observed to be directly correlated to adipose tissue monounsaturated fatty acids [33]. This 
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association between dietary fiber intake and saturation was stronger than any of the 

associations between the food compounds that build this index and the metabolic data. This 

shows that additional information can be extracted from the data by using nutrition indices 

compared to food groups. For instance, the index “polyunsaturated fatty acids” was associated 

with a decrease in saturation of the fatty acid side chains of the glycero-phosphatidylcholines. 

This provides a convincing example that the self-reported increased intake of polyunsaturated 

fatty acids can be observed in the serum as an increase in glycero-phosphatidylcholins 

containing polyunsaturated fatty acids. Applying a principal component analysis to all food 

groups to identify dietary patterns the effect of the overall diet on the human metabolism was 

shown. The dietary pattern with the largest explained variance can be compared to a similar 

pattern found by Liu et al. [25] in a multi-ethnic US population, who denote this pattern as 

“health conscious”. This lifestyle may be interpreted as “healthy”, basically since meat and 

sausages are replaced by poultry and fish. It was strongly associated with a – as healthy 

considered – decrease in saturation of the fatty acid side chains of glycero-

phosphatidylcholines. Thus, the self-reported healthy lifestyle including a high content of 

consumed fish and poultry can effectively be detected in the human blood and this even 

months or years after the report.  

 

The associations we reported in this paper were found in a metabolite set that contained no 

free fatty acids, but glycerophospholipids. It is true that using free fatty acids would provide 

additional information. Here, however, we use a high-throughput technology that allows
 
the 

measurement of hundreds of metabolites in a fully automated
 
manner for many samples at a 

time which is more appropriate for future large population studies. Moreover, the different 

phospholipid species are not only meant as substitutes for free fatty acid profiles, but carry 

much independent information e.g. on lipid trafficking, membrane composition and others 

[29]. Also discussable is that as study participants only older men were chosen who may not 



 18 

be as good informed about their nutrition intake as their wives. This selection is due to the 

fact that our study originated from an explorative metabolomics study with multiple 

objectives. However, the fact that we still obtain a significant signal under more unfavourable 

conditions supports the validity of our results. 

For our analysis we used information about food frequencies and not about portion sizes of 

food. Of course, using portion sizes would be a more precise way to assess nutrition intake. 

However, in the setting of an epidemiological examination, the questionnaires are limited by 

the very nature of this kind of large scale population studies. The fact, that we obtain 

significant results despite this limitation shows again the power of this approach.  

 

In summary, we have shown that metabolomics provides the possibility to evaluate and 

improve questionnaires and to detect which single foods should be chosen to compose a 

meaningful nutrition index. This, again, may improve future questionnaire-based studies on 

human health. Beyond this, metabolomics might be a future tool to identify biomarkers 

reflecting the effect of nutrition intake on the human metabolism. Such dietary biomarkers 

could then be an objective and independent assessment for the “true” food intake [34-36]. In 

addition, other dietary assessment methods (than questionnaires) [37-39] could be validated 

using metabolic biomarkers. 

 

 

 

 

 

 

 

 



 19 

ACKNOWLEDGEMENTS 

The KORA research platform and the MONICA Augsburg studies were initiated and financed 

by the Helmholtz Zentrum München, - National Research Center for Environmental Health, 

which is funded by the German Federal Ministry of Education, Science, Research and 

Technology and by the State of Bavaria. The KORA study group consists of H.-E. Wichmann 

(speaker), R. Holle, J. John, T. Illig, C. Meisinger, A. Peters, and their coworkers, who are 

responsible for the design and conduct of the KORA studies. We gratefully acknowledge the 

contribution of all members of field staffs who were involved in planning and conducting the 

MONICA/KORA Augsburg studies. Finally, we express our appreciation to all study 

participants for donating their blood and time.  

This work was partially funded by the Federal Ministry of Education and Research within the 

SysMBo project (project number: 0315494A), by the research consortium GANI_MED 

(project number: 03IS2061A) and by the Deutsches Zentrum für Diabetesforschung e.V.. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

REFERENCES 

1. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of 

genome-wide association data and large-scale replication identifies additional susceptibility 

loci for type 2 diabetes. Nat Genet. 2008 May;40(5):638-45. 

2. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust 

associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. 

Nat Genet. 2007 Jul;39(7):857-64. 

3. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. 

Genomewide association analysis of coronary artery disease. N Engl J Med. 2007 Aug 

2;357(5):443-53. 

4. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, et al. Meat, fish, and 

colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl 

Cancer Inst. 2005 Jun 15;97(12):906-16. 

5. Van Dorsten FA, Daykin CA, Mulder TP, Van Duynhoven JP. Metabonomics 

approach to determine metabolic differences between green tea and black tea consumption. J 

Agric Food Chem. 2006 Sep 6;54(18):6929-38. 

6. Walsh MC, Brennan L, Pujos-Guillot E, Sebedio JL, Scalbert A, Fagan A, et al. 

Influence of acute phytochemical intake on human urinary metabolomic profiles. Am J Clin 

Nutr. 2007 Dec;86(6):1687-93. 

7. Solanky KS, Bailey NJ, Beckwith-Hall BM, Bingham S, Davis A, Holmes E, et al. 

Biofluid 1H NMR-based metabonomic techniques in nutrition research - metabolic effects of 

dietary isoflavones in humans. J Nutr Biochem. 2005 Apr;16(4):236-44. 

8. Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T, Moore MA, et al. Meat, fish 

and fat intake in relation to subsite-specific risk of colorectal cancer: The Fukuoka Colorectal 

Cancer Study. Cancer Sci. 2007 Apr;98(4):590-7. 

9. Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, et al. Meat 

consumption and risk of colorectal cancer. JAMA. 2005 Jan 12;293(2):172-82. 

10. Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A 

prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007 

Dec;4(12):e325. 

11. Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, et al. 

Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 2006 

Oct;5(10):2780-8. 

12. Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T, 

et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles 

in human serum. PLoS Genet. 2008 Nov;4(11):e1000282. 

13. Altmaier E, Ramsay SL, Graber A, Mewes HW, Weinberger KM, Suhre K. 

Bioinformatics analysis of targeted metabolomics--uncovering old and new tales of diabetic 

mice under medication. Endocrinology. 2008 Jul;149(7):3478-89. 

14. Wang-Sattler R, Yu Y, Mittelstrass K, Lattka E, Altmaier E, Gieger C, et al. Metabolic 

profiling reveals distinct variations linked to nicotine consumption in humans--first results 

from the KORA study. PLoS ONE. 2008;3(12):e3863. 

15. Altmaier E, Kastenmuller G, Romisch-Margl W, Thorand B, Weinberger KM, 

Adamski J, et al. Variation in the human lipidome associated with coffee consumption as 

revealed by quantitative targeted metabolomics. Mol Nutr Food Res. 2009 Oct 6. 

16. Dowell SA, Welch JL. Use of electronic self-monitoring for food and fluid intake: A 

pilot study. Nephrol Nurs J. 2006 May-Jun;33(3):271-7. 

17. Kikunaga S, Tin T, Ishibashi G, Wang DH, Kira S. The application of a handheld 

personal digital assistant with camera and mobile phone card (Wellnavi) to the general 

population in a dietary survey. J Nutr Sci Vitaminol (Tokyo). 2007 Apr;53(2):109-16. 



 21 

18. Subar AF, Thompson FE, Potischman N, Forsyth BH, Buday R, Richards D, et al. 

Formative research of a quick list for an automated self-administered 24-hour dietary recall. J 

Am Diet Assoc. 2007 Jun;107(6):1002-7. 

19. Slimani N, Valsta L. Perspectives of using the EPIC-SOFT programme in the context 

of pan-European nutritional monitoring surveys: methodological and practical implications. 

Eur J Clin Nutr. 2002 May;56 Suppl 2:S63-74. 

20. Wang DH, Kogashiwa M, Kira S. Development of a new instrument for evaluating 

individuals' dietary intakes. J Am Diet Assoc. 2006 Oct;106(10):1588-93. 

21. Michels KB. The role of nutrition in cancer development and prevention. Int J Cancer. 

2005 Mar 20;114(2):163-5. 

22. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA. Biomarkers in nutritional 

epidemiology: applications, needs and new horizons. Hum Genet. 2009 Jun;125(5-6):507-25. 

23. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr 

Opin Lipidol. 2002 Feb;13(1):3-9. 

24. Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, 

and the risk of type 2 diabetes in women. Arch Intern Med. 2004 Nov 8;164(20):2235-40. 

25. Liu L, Nettleton JA, Bertoni AG, Bluemke DA, Lima JA, Szklo M. Dietary pattern, 

the metabolic syndrome, and left ventricular mass and systolic function: the Multi-Ethnic 

Study of Atherosclerosis. Am J Clin Nutr. 2009 Jun 10. 

26. Winkler G, Doring A. Validation of a short qualitative food frequency list used in 

several German large scale surveys. Z Ernahrungswiss. 1998 Sep;37(3):234-41. 

27. Weinberger KM. [Metabolomics in diagnosing metabolic diseases]. Ther Umsch. 2008 

Sep;65(9):487-91. 

28. Weinberger KM, Graber A. Using Comprehensive Metabolomics to Identify Novel 

Biomarkers. Screening Trends in Drug Discovery. 2005;6:42–5. 

29. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005 

Jul;4(7):594-610. 

30. Storey JD. The positive false discovery rate: A Bayesian interpretation and the q-

value. The Annals of Statistics 2003;31(6):2013–35. 

31. Sprecher H, Luthria DL, Mohammed BS, Baykousheva SP. Reevaluation of the 

pathways for the biosynthesis of polyunsaturated fatty acids. J Lipid Res. 1995 

Dec;36(12):2471-7. 

32. Winkler G, Doring A, Keil U. Trends in dietary sources of nutrients among middle-

aged men in southern Germany. Results of the MONICA Project Augsburg: dietary surveys 

1984/1985 and 1994/1995. MONItoring trends and determinants in CArdiovascular disease. 

Appetite. 2000 Feb;34(1):37-45. 

33. Rubba P, Fidanza F, Gautiero G, Leccia G, Cozzolino G, Mancini M. Influence of 

dietary intake of energy and carbohydrate on the proportion of saturated and monounsaturated 

fatty acids in adipose tissue of middle aged men. Int J Vitam Nutr Res. 1990;60(4):383-91. 

34. Day N, McKeown N, Wong M, Welch A, Bingham S. Epidemiological assessment of 

diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers 

of nitrogen, potassium and sodium. Int J Epidemiol. 2001 Apr;30(2):309-17. 

35. Kaaks R, Ferrari P, Ciampi A, Plummer M, Riboli E. Uses and limitations of statistical 

accounting for random error correlations, in the validation of dietary questionnaire 

assessments. Public Health Nutr. 2002 Dec;5(6A):969-76. 

36. Sugar EA, Wang CY, Prentice RL. Logistic regression with exposure biomarkers and 

flexible measurement error. Biometrics. 2007 Mar;63(1):143-51. 

37. Bingham SA. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002 

Dec;5(6A):821-7. 

38. Potischman N, Freudenheim JL. Biomarkers of nutritional exposure and nutritional 

status: an overview. J Nutr. 2003 Mar;133 Suppl 3:873S-4S. 



 22 

39. Tasevska N, Runswick SA, McTaggart A, Bingham SA. Urinary sucrose and fructose 

as biomarkers for sugar consumption. Cancer Epidemiol Biomarkers Prev. 2005 

May;14(5):1287-94. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

FIGURES AND TABLES 

 

 

Figure 1: Overview over different perspectives for analyzing complex diseases:  

A number of genome-wide association (GWA) studies could identify associations between 

genetic polymorphisms and diseases. One step closer to the possible causes are the so called 

intermediate phenotypes (IP) like metabolic profiles. In addition to the genetic background, 

environmental factors such as the human lifestyle play an important role in the development 

of the respective clinical outcome. The lifestyle is usually reported by questionnaires, where 

the information about the nutrition is split into information about food groups. To identify 

associations between the ingested nutrients and the metabolic profile, the food groups are 

pooled by their nutrient content to indices. 

 

 

Figure 2: Dietary fibers associate with an increase in saturation of the fatty acid residues of 

glycero-phosphatidylcholines. Here, we show the boxplots of the plasma concentrations [μM] 

of the sum of all acyl-alkyl-PC with one or two double bonds on their fatty acid residues 

divided by the concentrations of the sum of all diacyl-PC with four or five double bonds as a 

function of dietary fiber intake. The linear regression q-value for the association is 2.45x10
-7

. 

Boxes extend from 1
st
 quartile (Q1) to 3

rd
 quartile (Q3); median is indicated as a horizontal 

line; whiskers are drawn to the observation that is closest to, but not more than a distance of 

1.5(Q3-Q1) from the end of the box. Observations that are more distant than this are shown 

individually on the plot. The number of individuals in each group is given in the boxes. 
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Figure 3: Polyunsaturated fatty acid intake associates with a decrease in the concentration of     

the ratio PC aa C40:5/PC aa C40:6 (legend see Fig. 2; q-value: 5.94x10
-5

).  

 

 

 

Figure 4: First principal component generated by principal component analysis on all food 

groups associates with a decrease in saturation of the fatty acid residues of glycero-

phosphatidylcholines. The plasma concentrations [μM] of the sum of all acyl-alkyl-PC with 

one or two double bonds on their fatty acid residues (PC ae Cx:1,2) divided by the 

concentrations of the sum of all diacyl-PC with four or five double bonds (PC aa Cx:4,5) is 

plotted as a function of this first principal component. The linear regression q-value for the 

association is 1.07x10
-8

. The linear regression line is shown. 
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 Minimum Maximum Mean 
Standard 

deviation 
Variance 

Meat (except sausage) 2 6 3.09 .818 .670 

Sausages, ham 1 7 2.86 .932 .868 

Poultry 2 7 4.75 1.165 1.357 

Fish 1 7 4.69 1.113 1.239 

Potatoes 1 7 3.17 .906 .821 

Pasta 2 7 3.43 .830 .689 

Rice 2 7 4.69 1.219 1.487 

Vegetables, cooked 1 7 3.38 .951 .905 

Fresh fruit 1 7 2.59 1.178 1.388 

Chocolate, chocolates 1 7 4.67 1.738 3.022 

Cakes, pastries, biscuits 1 7 4.10 1.467 2.152 

Salted  snacks 2 7 5.86 1.236 1.527 

Whole-grain bread, black 

bread, crispbread 
1 7 3.33 1.747 3.052 

Flaked oats, muesli, 

cornflakes 
1 7 5.76 1.732 3.000 

Curds, yoghurt, sour milk 1 7 4.07 1.852 3.430 

Cheese 2 7 3.09 1.089 1.186 

Eggs 2 7 4.67 1.166 1.359 

Milk 1 7 4.63 1.978 3.912 

Age 55 79 65.91 6.892 47.506 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1:  Characteristics of the population related to nutrition habits and age. The foods were queried in a 

food frequency questionnaire by a score from 1 to 7: “never”, “once a month or less”, “several times a 

month”, “about once a week”, “several times a week”, “daily or almost daily”, “several times per day”. 
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Metabolites p-value q-value 

F
o

o
d

 G
ro

u
p

s 

Meat (except sausage) −  >0.05 

Sausages. ham 
↓  PC ae C32:0*/ PC aa C40:4                     

↑  PC aa C38:4                                             

5.01x10
-8

 

8.27x10
-5

 

2.20x10
-3

 

4.10x10
-3

 

Poultry −  >0.05 

Fish ↓  PC aa C40:4/PC aa C40:6                        9.91x10
-15

 8.67x10
-10

 

Potatoes −  >0.05 

Pasta −  >0.05 

Rice −  >0.05 

Vegetables. cooked ↓ C6/Kynurenin                          7.58x10
-8

 5.89x10
-3

 

Fresh fruit ↓ C10/GlcCer C22:2                   5.89x10
-8

 2.27x10
-3

 

Chocolate. chocolates 
↑ SM C22:0/PC aa C38:3           

↓ PC aa C38:3/SM (OH.COOH) C18:2    
1.43x10

-9
 

7.53x10
-9

 

1.35x10
-4 

3.13x10
-4

 

Cakes. pastries. biscuits −  >0.05 

Salted  snacks −  >0.05 

Whole-grain bread. black 

bread. crispbread 
−  >0.05 

Flaked oats. muesli. cornflakes ↑ PC ae C36:1*/PC aa C38:4                       2.91x10
-9

 2.24x10
-4

 

Curds. yoghurt. sour milk ↓ SM (OH) C28:1/SM (OH) C20:1                                                  2.22x10
-7

 2.93x10
-2

 

Cheese ↓ PC ae C34:6*/PC ae C34:1*                     2.06x10
-8

 7.07x10
-4

 

Eggs −  >0.05 

Milk −  >0.05 

In
d

ic
e
s 

Dietary fiber ↑ PC ae C36:1*/ PC aa C40:4                        9.12x10
-11

 1.20x10
-5

 

Polyunsaturated fatty acids ↓ PC aa C40:5/PC aa C40:6                           4.51x10
-10

 5.94x10
-5

 

Monounsaturated fatty acids ↑ SM (OH.COOH) C18:2/ PC aa C36:4 1.09x10
-8

 1.43x10
-3

 

Saturated fatty acids 
↑ SM (OH.COOH) C18:2/ PC aa C36:4  

↑ SM (OH) C20:1/PC aa C40:5    

2.10x10
-8

 

3.96x10
-8

 

1.66x10
-3

 

1.66x10
-3 

 

P
ri

n
ci

p
a

l 

co
m

p
o

n
en

ts
 

Component 1 ↑ PC aa C36.4*/PC ae C36:2 6.94x10
-13

 3.11x10
-8

 

Component 4 ↓ PC aa C38:0*/Lysine 3.45x10
-8

 3.31x10
-3 

Component 6 ↓ PC ae (COOH) C30:3/PC aa C40:6 9.92x10
-11 

1.31x10
-5

 

Table 2:  Selected results of the linear regression test. For each analyzed factor the associating ratio of 

metabolites is listed together with the p-value and the positive false discovery rate (q-value). The 

arrows indicate the direction of the correlation coefficient for each result.  

* alternative assignments of the metabolites are possible 
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Numerator Denominator Mean 
Standard 

Deviation 
p-value q-value Pearson R 

PC ae C36:1 * PC aa C40:4 1.915 0.680 9.1x10
-11

 1.2x10
-5

 0.403 

PC ae C36:1 * PC aa C38:4 0.085 0.029 8.6x10
-10

 2.8x10
-5

 0.383 

PC ae C36:1 * PC aa C36:4 0.043 0.013 2.9x10
-9

 6.4x10
-5

 0.372 

PC ae C36:1 * PC aa C40:5 0.644 0.203 8.8x10
-9

 1.4x10
-4

 0.361 

PC ae C36:2 PC aa C40:4 3.016 1.247 5.5x10
-10

 2.5x10
-5

 0.388 

PC ae C36:2 PC aa C38:4 0.133 0.052 5.7x10
-10

 2.5x10
-5

 0.387 

PC ae C36:2 PC aa C36:4 0.068 0.024 2.7x10
-9

 6.4x10
-5

 0.373 

PC ae C36:2 PC aa C40:5 1.012 0.365 2.5x10
-8

 2.6x10
-4

 0.351 

PC ae C34:1 * PC aa C40:4 2.495 0.886 8.2x10
-9

 1.4x10
-4

 0.362 

PC ae C32:1 * PC aa C40:4 1.866 0.665 1.6x10
-8

 2.1x10
-4

 0.355 

PC ae C32:1 * PC aa C38:4 0.082 0.028 9.6x10
-8

 6.3x10
-4

 0.337 

PC ae C38:1 * PC aa C40:4 1.360 0.529 8.2x10
-8

 6.0x10
-4

 0.338 

PC ae C38:1 * PC aa C38:4 0.060 0.021 8.6x10
-8

 6.0x10
-4

 0.338 

Numerator Denominator Mean 
Standard 

Deviation 
p-value q-value Pearson R 

PC aa C34:2 PC aa C40:4 94.600 33.152 3.0x10
-7

 1.0x10
-3

 0.324 

PC aa C34:2 PC aa C38:4 4.186 1.369 3.2x10
-7

 1.0x10
-3

 0.323 

PC aa C34:2 PC aa C36:4 2.131 0.591 5.5x10
-7

 1.3x10
-3

 0.317 

PC aa C36:3 PC aa C40:4 28.351 7.324 3.3x10
-7

 1.1x10
-3

 0.323 

PC aa C36:3 PC aa C38:4 1.261 0.309 6.4x10
-6

 4.2x10
-3

 0.287 

PC aa C32:2 PC aa C40:4 1.526 0.499 1.8x10
-6

 2.2x10
-3

 0.303 

PC aa C32:2 PC aa C38:4 0.068 0.022 2.3x10
-5

 8.1x10
-3

 0.270 

PC aa C36:2 PC aa C40:4 47.536 15.306 1.9x10
-6

 2.2x10
-3

 0.303 

PC aa C36:2 PC aa C38:4 2.103 0.600 2.6x10
-6

 2.6x10
-3

 0.299 

Table 3: Results of the linear regression test with the strongest association to dietary fibers (A); limited to those ratios 

containing only diacyl-PC (B) and those  containing only acyl-alkyl-PC (C).  

 

A 

B 
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C 
 

Numerator Denominator Mean 
Standard 

Deviation 
p-value q-value Pearson R 

PC ae C36:2 PC ae C38:3 2.431 0.496 1.2x10
-6

 1.8x10
-3

 0.308 

PC ae C36:2 PC ae C38:5 0.811 0.260 5.1x10
-6

 3.7x10
-3

 0.290 

PC ae C36:2 PC ae C36:5 * 1.422 0.513 6.2x10
-6

 4.0x10
-3

 0.288 

PC ae C36:2 PC ae C36:4 0.760 0.244 8.8x10
-6

 4.9x10
-3

 0.283 

PC ae C34:2 PC ae C36:5 * 1.291 0.442 8.4x10
-6

 4.8x10
-3

 0.284 

PC ae C34:2 PC ae C36:4 0.688 0.198 9.1x10
-6

 5.0x10
-3

 0.283 

PC ae C34:2 PC ae C38:5 0.739 0.230 1.7x10
-5

 6.8x10
-3

 0.275 

PC ae C34:3 PC ae C36:5 * 0.619 0.190 8.4x10
-6

 4.8x10
-3

 0.284 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* alternative assignments of the metabolites are possible 
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Food groups Principal components (explained variance in %) Indices 

 1 2 3 4 5 6 7 

D
ie

ta
r
y
 f

ib
er

 

P
o

ly
u

n
sa

tu
r
a

te
d

 

fa
tt

y
 a

ci
d

s 

M
o

n
o

u
n

sa
tu

ra
te

d
 

fa
tt

y
 a

ci
d

s 

S
a

tu
r
a

te
d

 f
a

tt
y

 

a
ci

d
s 

 
15.693 9.291 8.936 7.967 6.729 6.006 5.565 

Meat (except sausage) -.264 .370 .465 .300 .239 .070 .262  x x x 

Sausages. ham -.290 .048 .647 .261 .134 -.072 .191   x x 

Poultry .325 .151 -.134 .644 -.261 .014 .093  x x x 

Fish .473 .067 -.075 .450 .193 -.348 -.174  x   

Potatoes .250 .563 .372 -.273 .054 .111 -.039     

Pasta .253 .547 .307 -.240 -.378 .135 -.175     

Rice .472 .214 -.298 .150 -.369 .125 -.150     

Vegetables. cooked .492 .412 .024 -.010 .091 -.172 -.031 x    

Fresh fruit .579 -.005 .027 .019 .293 -.260 .066     

Chocolate. chocolates .324 -.436 .523 .010 -.256 .150 -.166   x x 

Cakes. pastries. biscuits .215 -.332 .457 -.315 -.197 -.244 .051   x x 

Salted snacks .066 -.502 .268 .310 -.101 -.071 -.335   x x 

Whole-grain bread. black bread. crispbread .296 -.091 -.123 -.325 .492 .345 -.301 x    

Fleaked oats. muesli. cornflakes .464 -.204 .016 -.223 .319 -.148 .240 x    

Curds. yoghurt. sour milk .695 -.059 .006 .004 .064 -.105 .279    x 

Cheese .559 -.075 .160 -.045 -.079 .112 -.144   x x 

Eggs .191 -.084 .129 .383 .345 .639 -.081   x x 

Milk .353 -.234 -.124 -.064 -.256 .382 .634     

Table 4: Composition of the principal components on the food groups and composition of the food indices. Positive values indicate a positive contribution to the respective 

compound (analogous for negative values). The principal components with an eigenvalue larger than one are listed together with their explained variance. The „x‟ indicates 

that the index is deduced from the respective food. 
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Table 5: Results of the linear regression test with the strongest association to the first principal component. In cases where alternative assignments of the 

metabolites are possible. these are indicated by a „*‟. 

 

 

 

 

 

 

 

 

 

 

 

 

Numerator Denominator Mean 
Standard 

Deviation 
p-value q-value Pearson R 

PC aa C36:4 Sum( PC ae Cx:1.2 ) 3.043 0.905 1.52x10
-13

 1.07x10
-8

 0.445 

Sum( PC aa Cx:4.5 ) Sum( PC ae Cx:1.2 ) 6.289 1.934 2.44x10
-13

 1.07x10
-8

 0.442 

Sum( PC ae Cx:1.2 ) PC aa C36:4 0.357 0.104 5.07x10
-13

 1.07x10
-8

 -.436 

PC aa C40:4 PC ae C36:2 0.400 0.195 5.59x10
-13

 1.07x10
-8

 0.436 

Sum( PC ae Cx:1.2 ) Sum( PC aa Cx:4.5 ) 0.172 0.049 6.46x10
-13

 1.07x10
-8

 -.434 

PC aa C36:4 PC ae C36:2 16.802 6.170 6.94x10
-13

 1.07x10
-8

 0.434 

PC aa C40:4 SM (OH) C20:1 0.657 0.436 7.08x10
-13

 1.07x10
-8

 0.434 
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