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ABSTRACT
In this paper, we present a new fully automatic approach for noise
parameter estimation in the context of fluorescence imaging sys-
tems. In particular, we address the problem of Poisson-Gaussian
noise modeling in the nonstationary case. In microscopy practice,
the nonstationarity is due to the photobleaching effect. The pro-
posed method consists of an adequate moment based initialization
followed by Expectation-Maximization iterations. This approach is
shown to provide reliable estimates of the mean and the variance
of the Gaussian noise and of the scale parameter of Poisson noise,
as well as of the photobleaching rates. The algorithm performance
is demonstrated on both synthetic and real fluorescence microscopy
image sequences.

Index Terms— Noise identification, confocal imaging systems
calibration, fluorescence photobleaching, Expectation-Maximization
algorithm, image calibration

1. INTRODUCTION

The purpose of this work is to provide an estimation method for
the noise parameters arising in fluorescence imaging systems. In
many image restoration methods, these parameters are required to
be known [1, 2]. Moreover, noise parameters provide feedback
concerning imaging conditions, and thereby they can be used in
the microscope calibration process [3]. The noise sources were
described from a physical viewpoint in [4], where also the corre-
sponding statistical characteristics were studied. In practice, one
usually considers simplified models e.g. either Gaussian [5] or
Poisson [6]. Recently some works have begun investigating a more
realistic Poisson-Gaussian model with non-zero mean [7, 8]. In
the literature addressing the noise parameter identification problem,
one can also find methods handling more sophisticated models that
include multiplicative components in addition to Poisson and Gaus-
sian ones [9, 10]. However, to the best of our knowledge, we are not
aware of any restoration methods actually taking such sophisticated
formulations into account. Consequently, we focus on the non-zero
mean Poisson-Gaussian model in this paper. Indeed, despite its prac-
tical usefulness, especially when a low level signal is expected, this
model is nonetheless little-studied in the literature. Among the few
existing contributions, the author in [11] proposes a cumulant-based
approach. A regression based approach is proposed for estimating
General Anscombe transform parameters in [7, 8]. Finally, a method
estimating only the Gaussian component was proposed in [12].
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In this paper, we propose a novel approach based on an
Expectation-Maximization (EM) algorithm, following our previous
work in [13]. We focus on fluorescence imaging systems, especially
in the field of confocal microscopy and so-called MACROscopy
systems [14]. As input data we use time-lapse fluorescence images,
which consist of repeated images of motionless specimens at given
times. The considered problem is more challenging than the one
investigated in [13] due to the nonstationarity of the acquired sig-
nal caused by photobleaching. This effect is a process of intensity
decay in time usually modeled with an exponentially decreasing
function [15, 3]. Although other photobleaching forms were also
investigated [16], our analysis in this paper is based on the lat-
ter model, also known as three-parameter exponential model [17].
More specifically, in order to characterize the dependency between
Poisson noise and photobleaching, we adopt the same model as
the one presented in [6]. However, we relax the assumption of
constant bleaching decay for the whole image, which is not real-
istic according to our experiments in the last section of this paper.
Since the EM optimization framework is not guaranteed to converge
to a global minimizer of the negative log-likelihood, its behavior
can be improved by carefully setting its initialization. Usually the
choice of a good starting value is discussed in the context of spe-
cific applications [18, 19, 20, 13]. We address this key problem for
Poisson-Gaussian parameter estimation in the presence of photo-
bleaching by proposing an adequate moment based initialization.
Moreover, we provide an extension of the EM approach developed
in [13] in order to allow us to jointly estimate Poisson-Gaussian
noise parameters, to reconstruct the original signal and to estimate
its photobleaching rates.

The paper is organized as follows. We provide a description of
the noise identification problem from a time-series standpoint in Sec-
tion 2. We then present the proposed iterative method in Section 3.
Section 4 illustrates the algorithm performance on synthetic data and
real confocal MACROscope image sequences. Section 5 concludes
the paper.

2. NOISE MODEL

2.1. Adopted scheme

We consider data (us)1≤s≤S where s corresponds to a location index
(e.g. locating pixel (x, y) in 2D or voxel (x, y, z) in 3D), which are
corrupted with a Poisson-Gaussian noise, and for which we observe
T realizations. Each realization will be indexed by the time index
t ∈ {1, . . . , T}. Such a framework leads us to the following model:

(∀s ∈ {1, . . . , S})(∀t ∈ {1, . . . , T}) Rs,t = αQs,t +Ns,t (1)



where α ∈ R is a scaling parameter andRs,t is the observed random
variable at time t and location s. In the above model, the following
auxiliary random variables intervenes

Qs,t ∼ P
(
use
−kst) (2)

Ns,t ∼ N (c, σ2) (3)

where (us)1≤s≤S ∈ [0,+∞)S is the “clean” image (possibly result-
ing from a blur of the original image and some offset), (ks)1≤s≤S ∈
(0,+∞)S denote the photobleaching rates, and c ∈ R (resp. σ > 0)
is the mean value (resp. standard-deviation) of the Gaussian noise.

2.2. Considered problem

The problem is to estimate u = (us)1≤s≤S , k = (ks)1≤s≤S , α, c
and σ2 from the available observation vector r = (rs,t)1≤s≤S,1≤t≤T ,
which is a realization of the random field R = (Rs,t)1≤s≤S,1≤t≤T .
We have thus 2S + 3 parameters to estimate. We define the vector
of unknown parameters as θ = (u, k, α, c, σ2).

In the following, it is assumed that u is deterministic and that
Q = (Qs,t)1≤s≤S,1≤t≤T and N = (Ns,t)1≤s≤S,1≤t≤T are mu-
tually independent random fields. In addition, the components of
N (resp. Q) are assumed to be independent. These assumptions
let us define the cumulant of order n as κn[Rs,t] = αnκn[Qs,t] +
κn[Ns,t]. This leads to following results:

• mean value: κ1[Rs,t] = E[Rs,t] = αe−kstus + c (4)

• variance: κ2[Rs,t] = Var[Rs,t] = α2e−kstus + σ2 (5)

• higher-order cumulants: n ≥ 3, κn[Rs,t] = αnuse
−kst.

(6)

3. NOISE ESTIMATION METHOD

3.1. Moment based method

Several procedures may be derived from (4), (5), and (6) in order to
estimate θ, but they are not equally reliable. For example, accord-
ing to our observations, κ4[Rs,t]

κ3[Rs,t]
does not provide a very accurate

estimate of α. Thus, we propose to define preliminary estimates of
(ks)1≤s≤S , c and (as = αus)1≤s≤S by noticing that (4) can be
reexpressed as

Rs,t = ase
−kst + c+ Es,t (7)

where (Es,t)1≤s≤S,1≤t≤T are independent zero-mean random vari-
ables. This suggests to employ a nonlinear least squares approach
to compute estimates â = (âs)1≤s≤S , k̂ = (ks)1≤s≤S , ĉ of the
parameters:

(â, k̂, ĉ) = argmin
a,k,c

S∑
s=1

T∑
t=1

ωs,t
(
rs,t − c− ase−kt

)2

(8)

where (ωs,t)1≤s≤S,1≤t≤T are positive weights. In order to effi-
ciently solve the associated minimization problem, we propose to
use an alternating optimization method (see Algorithm 1). For every
s ∈ {1, . . . , S}, the minimization subproblem to be solved at each
iteration reduces to a linear least squares one for a given value of ks.
The minimization procedure thus reduces to a one-variable search
(over ks) which can be performed by standard numerical methods,
e.g. the Nelder-Mead simplex method [21].

The estimates provided by this method are sufficiently stable, as
only first order statistics are used. These results allow us to provide

Algorithm 1
c(0) = min{ 1

T

∑T
t=1 rs,t, 1 ≤ s ≤ S}

For n = 1 . . . N
For s = 1 . . . S⌊

(a
(n)
s , k

(n)
s ) = argmin

as,ks≥0

∑T
t=1 ωs,t

(
rs,t − c(n−1) − ase−kst

)2

c(n) =
∑S
s=1

∑T
t=1 ωs,t(rs,t − a

(n)
s e−k

(n)
s t)/

∑S
s=1

∑T
t=1 ωs,t

â = a(N), k̂ = k(N), ĉ = c(N)

simple estimates of the remaining parameters. Indeed, by rewriting
(5) as

E[(Rs,t − E[Rs,t])
2] = αase

−kst + σ2, (9)

the following least squares estimate for α can be derived:

α̂ =
W
∑S
s=1 νsmsvs −

∑S
s=1 νsms

∑S
s=1 νsvs

W
∑S
s=1 νsm

2
s − (

∑S
s=1 νsms)2

, (10)

where (νs)1≤s≤S are positive weights, W = T
∑S
s=1 νs and

(∀s ∈ {1, . . . , S}) ms = âse
−k̂s 1− e−k̂sT

1− e−k̂s
(11)

vs =

T∑
t=1

vs,t (12)

with, for every t ∈ {1, . . . , T}, vs,t = (rs,t− âse−k̂st− ĉ)2. Then,
the estimate of u is given by:

(∀s ∈ {1, . . . , S}) ûs =
âs
α̂
. (13)

Finally, the estimation process is completed by computing:

σ̂2 =

∑
(s,t)∈I νs

(
vs,t − α̂âse−k̂st

)∑
(s,t)∈I νs

(14)

where

I =
{
(s, t) ∈ {1, . . . , S} × {1, . . . , T} | vs,t − α̂âse−k̂st ≥ 0

}
.

3.2. Refined estimation

The main limitation of the previous moment based method is that the
unknown parameters are not jointly estimated. Due to this fact, we
may face large error propagation with respect to the estimation of
some parameters. Thus, similarly to the work in [13], we propose to
improve the moment based method results by resorting to an EM ap-
proach. The proposed noise identification procedure is summarized
in Fig. 1.

Fig. 1. Flowchart of the proposed noise identification method.

It must be emphasized that photobleaching was not discussed
in [13], so that significant modifications of the EM algorithm were



necessary to include this effect into this framework. More precisely,
in the (n + 1)-th maximization step, it can be shown that, for ev-
ery s ∈ {1, . . . , S}, the photobleaching rate k(n+1)

s = − lnx(n+1)

where x(n+1) is the solution in (0, 1) of the polynomial equation of
order T :

(1 + TxT+1 − (T + 1)xT )

T∑
t=1

EQ|R=r,θ(n) [Qs,t]

= (1− x− xT + xT+1)

T∑
t=1

tEQ|R=r,θ(n) [Qs,t]. (15)

We propose to compute x(n+1) from (15) using Halley’s algo-
rithm [22]. Then, u can be derived as follows

(∀s ∈{1, . . . , S}) u(n+1)
s =

1− x(n+1)

x(n+1)(1− |x(n+1)|T )

T∑
t=1

EQ|R=r,θ(n) [Qs,t]. (16)

Finally, the maximization step is completed by update formulas for
α(n+1), c(n+1) and (σ2)(n+1), which are unchanged with respect to
the stationary case described in [13]. In the n-th expectation step,
taking into account the photobleaching effect yields the following
expressions:

EQ|R=r,θ(n) [Qs,t] =
ζ
(n)
s,t

η
(n)
s,t

(17)

ζ
(n)
s,t =

+∞∑
qs,t=1

e
−

(rs,t−α(n)qs,t−c(n))2

2(σ2)(n) (u
(n)
s )qs,t

(qs,t − 1)!
e−tk

(n)
s qs,t (18)

η
(n)
s,t =

+∞∑
qs,t=0

e
−

(rs,t−α(n)qs,t−c(n))2

2(σ2)(n) (u
(n)
s )qs,t

qs,t!
e−tk

(n)
s qs,t . (19)

4. SIMULATION EXAMPLES

In this section, we present experiments on both synthetic and real
data in order to demonstrate the performance of the proposed ap-
proach. In particular, the simulations on synthetic data allow us to
evaluate the reliability of our algorithm (Section 4.1) and the real
data case study illustrates its potentials in microscopy applications
(Section 4.2).

4.1. Synthetic data validation

We evaluate the proposed algorithms using S = 200 randomly
generated us values uniformly distributed over [0, 150] and ks
values uniformly distributed over

[
10−4, 10−3

]
. Signal rs,t is

generated according to (1) for c = 10, α = 30 and σ2 =
100 and T = 180 . The algorithm performance is measured
by the SNR defined as the average of 10 log10(P ) with P =

(ST )−1∑
(t,s)

(
ase
−kst

)2
/
∑

(t,s)

(
ase
−kst − âse−k̂st

)2

com-
puted over 50 noise realization, where the estimated value are
designated with a hat. Moreover, we examine the estimator prop-
erties by presenting the bias and standard deviation of the resulting
noise parameters α̂, ĉ and σ̂.

The results presented in Table 1 indicate that in the first step
of the algorithm (Fig. 1) a majority of the unknown parameters are
identified accurately. As expected, the estimates are further im-
proved in the second step by EM, achieving high accuracy, indicated

Method. σ̂ ĉ α̂
SNRbias std bias std bias std

Init. 357.5 3.1 1.9 1.0 −0.3 0.4 39.5
EM 2.9 0.9 1.4 0.8 −0.3 0.4 39.7

Table 1. Synthetic data results.

by high SNR values, and low standard deviation of the estimated
noise parameters.

4.2. True data results

In the real case, the noise parameters identification and the true im-
age intensities reconstruction follows registration of time lapse series
of images. The measurements were acquired using fluorescence con-
focal MACROscope. The following settings were applied: pinhole
1.06 airy, 800 Hz scan speed, PMT Offset −4.3% and PMT Gain
848. The reported signal intensities at each location within a sam-
ple is produced by fluorescence induced by tissue itself, namely in
the mixed autofluorescence process caused by the presence of lignin
molecules. As discussed in the literature [23], one can expect in this
case the photobleaching profiles to depend on the concentration of
the dye and its interaction with the medium.

The processed time lapse sequence consists of 180 images with
12-bit resolution of size 128 × 128, which translates into T = 180
and S = 16384. The first and last images of the sequence are
illustrated in Fig. 2 (a) and Fig. 2 (b), respectively. One can ob-
serve that, due to the photobleaching effect, some parts of the image
rs,1 (Fig. 2 (a)) are not visible in the last image rs,180 (Fig. 2 (b)),
e.g. quadrant 4. Thus these parts of the image are essentially lost
when calculating the mean over all realizations (Fig. 2 (c)). In con-
trast, these areas are well preserved in our result (Fig. 2 (d)). It is
also worth noticing that our image provides significantly more vi-
sual details. Our algorithm also allows us to establish the parame-
ters of the noise model (1), which are given as 25.8P

(
ûse
−k̂st

)
+

N (8, 119). The plots in Fig. 3 illustrate the change of the mea-
sured and reconstructed signal along t, while s is fixed. They show
the variety of acquired signals. For instance, the signal presented
in Fig. 3(b) corresponds to a weak photobleaching effect, while in
Fig. 3(c), a strong photobleaching effect is identified. One can ob-
serve a good match between the predicted bleaching curves and the
experimental ones. The identified bleaching rates k̂s belong to the
set
(
0, 3.9× 10−6

]
Hz, and ûs lie in [0, 147]. This example shows

that the proposed method is well suited for fluorescence imaging
systems.

5. CONCLUSIONS

The present study has addressed the problem of Poisson-Gaussian
noise parameter identification from time-lapse data, taking into ac-
count the photobleaching effect. We have proposed a new, fully auto-
matic, two step statistical approach to deal with this problem. It has
been demonstrated through both simulations and experiments that it
can lead to quite accurate results. The proposed algorithm has direct
applications in the calibration of fluorescence microscopy imaging
systems and as a preliminary step of image restoration tasks.
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