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ABSTRACT 

Organic metal-semiconductor field-effect transistors (OMESFETs) were fabricated with a 

polycrystalline organic semiconductor (pentacene) and characterized in order to systematically analyze 

their operation mechanism. Impedance measurements confirmed full depletion of the thick pentacene 

film (1 m) due to the low doping concentration of unintentional doping (typically less than 1014 cm-3). 

The necessity of developing a specific device model for OMESFET is emphasized as the classical 

(inorganic) MESFET theory based on the depletion modulation is not applicable to a fully-depleted 

organic semiconductor. By means of joint electrical measurements and numerical simulation, it is 

pointed out that the gate voltage controls the bulk-distribution of injected carriers, so that the 

competition between the gate and drain currents is critical for determining the operation mode. Finally, 

the geometrical effect is investigated with comparing a number of transistors with various channel 

widths and lengths. 
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1. Introduction 

 

Organic electronics is regarded as a future technology for the realization of low-cost, flexible 

devices. The recent development of organic devices such as organic light-emitting diodes (OLEDs) [1], 

organic thin-film transistors (OTFTs) [2], and organic photovoltaic cells (OPVs) [3] is impressive and 

some of them already entered into the commercial market. However, in spite of these remarkable 

progresses, the fundamental physics of organic devices is still incomplete, and many physical topics are 

highly controversial. For instance, the existence of a depletion (or space-charge) region in organic 

semiconductors is not a universally accepted concept until today. While the depletion region plays a 

key role in most classical (inorganic) semiconductor devices [4], most organic semiconductors are 

undoped (or unintentionally doped) and the expected depletion width normally exceeds the thickness of 

the semiconductor [5, 6]. 

This study begins from this fundamental question on the charge depletion in organic semiconductors. 

By characterizing pentacene-based organic diodes, it was found that pentacene diodes with the 

thickness up to 1 m are fully depleted as shown by the fact that the reverse bias capacitance is 

voltage-independent. This result strongly motivates the development of a proper understanding of 

‘organic’ metal-semiconductor field-effect transistor (OMESFET) because the ‘inorganic’ MESFET is 

always described with the modulation of a depletion width by the gate voltage (VG) [4].  

Even though there were few recently published articles on OMESFET, physical description of the 

device operation was not sufficiently provided. The reported devices were fabricated with a polymeric 

semiconductor (poly(3-hexylthiophene)) [7, 8] or a single crystalline semiconductor (rubrene) [5]. The 

suggested main features of OMESFET were as follows: First, when compared to OTFTs, the 

OMESFET structure does not contain any insulating layer so that the intrinsic injection and transport 
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physics of organic semiconductors could be properly elucidated (In OTFTs, semiconductor/insulator 

interface dominates the device operation). Second, as the current modulation can generally be achieved 

within a relatively small voltage range, it could be a nice candidate for low-voltage application with 

fewer process steps.  

Here, we report on the first experimental results of OMESFETs based on a polycrystalline organic 

semiconductor (pentacene). The operation mechanism of the device is systematically developed on the 

basis of coordinated electrical measurements and numerical simulations. It is shown that the operation 

of OMESFET mainly relies on the control of the distribution of injected carriers by VG. In addition, the 

geometrical effects is discussed by taking into account that the gate current (IG) and the drain current 

(ID) are in competition for charge transports. 

 

2. Experimental 

 

Organic diodes and OMESFETs were fabricated according to the same process run, following the 

structures depicted in Figure 1. Subsequently evaporated Au (anode), pentacene (organic 

semiconductor), and Al (cathode) make up a metal-semiconductor-metal (MSM) type organic diode. 

An OMESFET consists of two organic diodes with a common semiconductor layer and a common top 

‘gate’ electrode. The two separated bottom electrodes are denoted as ‘source’ and ‘drain’. 

All evaporation processes were done under a pressure of about 2×10-7 mbar with the substrate kept 

at room temperature. The evaporation rate of pentacene was 0.1 nm/sec with a final thickness of 1 m 

for both the organic diodes and OMESFETs. 

Current-voltage (I-V) measurements were carried out using a semiconductor characterization system 

(Keithley 4200) and impedance measurements were conducted using a HP 4192A LF impedance 

analyzer. All electrical measurements were done in the dark at room temperature. Tapping-mode 
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atomic force microscopy (AFM) images of pentacene were taken using Veeco Dimension 5000 AFM 

system.  

 

3. Results and discussion 

 

3.1. Full depletion in unintentionally doped pentacene 

 

Organic diodes can serve as a starting point for understanding the OMESFET because as explained 

in Section 2, the OMESFET is the superposed structure of two organic diodes. A representative 

current-voltage characteristic (I-V) of the pentacene diode (active area: 4.3×10-4
 cm2) is shown in 

Figure 2. The inset shows the polycrystalline morphology of the deposited pentacene (1 m-thick) 

layer on Au electrode (AFM scan size: 2 × 2 m2). 

In order to accurately understand the I-V curves, it is worth reminding the relative position of energy 

levels of each material. Au electrode favors hole injection into the HOMO of pentacene because the 

work function of (not atomically clean) Au is 4.9 eV while the ionization potential of pentacene is 5.2 

eV (the resulting injection barrier is 0.3 eV). By contrast, Al is a low-work function metal (4.2 eV) and 

it cannot supply significant amount of either type of carriers into the HOMO or LUMO of pentacene 

(the electron affinity of pentacene is 2.8 eV). As a result, the I-V curve is inevitably asymmetric and a 

strong rectification behavior is obtained. 

The applied voltage (Va) in Fig. 2 corresponds to the voltage at the Au electrode (anode) with the Al 

electrode (cathode) grounded. As expected from the energy levels, the current in the reverse-bias 

regime (Va < 0 V) is extremely low due to the low current injection at the Al contact. Under forward-

bias (Va > 0 V), the current starts to increase exponentially (injection-limited current) owing to the 
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injected holes from Au electrode and when the voltage becomes higher than the built-in potential, the 

current is determined by the bulk conductivity of the semiconductor (bulk-limited current) [9, 10]. 

Since the diode characteristics resemble that of (inorganic) Schottky diodes and the physics of 

organic diodes is not yet fairly established, the current trend is to adopt the Schottky model to interpret 

the experimental data of organic diodes [11-14]. However, we could confirm by means of impedance-

voltage (Z-V) measurements that the pentacene layer is fully depleted so that the Schottky model is not 

appropriate in that case. 

Figure 3 is the impedance-voltage (Z-V) curve of the same pentacene diode.  Two distinguishable 

regimes (reverse and forward regimes) are also observed in this graph. Under reverse-bias, the device is 

a perfect capacitor as the measured phase angle is constant as -90 degrees [15]. Furthermore, the 

capacitance does not depend of the applied reverse-bias (the impedance modulus is constant). This is at 

variance with the case of the Schottky diode, where the reverse-bias ‘depletion’ capacitance depends on 

the applied voltage as the depletion width is modulated by the applied voltage [4]. In the forward-bias 

regime, the device becomes more resistive (the phase angle approaching 0 degree) as a consequence of 

the rising current flow. 

The observed voltage-independent reverse-capacitance is a clear evidence for the ‘full’ depletion of 

the thick pentacene layer. Keeping in mind that the depletion width is determined by the doping 

concentration, it points out that the doping concentration of pentacene layer is so low that the expected 

depletion width (by calculation) exceeds the whole thickness of the semiconductor.  

Pentacene, along with many other reported organic semiconductors, is described as an 

‘unintentionally’ doped semiconductor because some chemical reactions with ambient air or the 

presence of residues of its chemical synthesis could introduce dopant-like species, most often in an 

uncontrollable manner [16]. In order to further associate the observed full depletion of pentacene with 

the unintentional doping, physically-based two-dimensional device simulation (ATLAS simulator by 
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SILVACO, Inc.) was conducted. This simulation involves solving under a finite-element framework a 

set of coupled Poisson’s, continuity and transport equations (drift-diffusion model in this case) within 

the defined two-dimensional device structure. 

Figure 4 is the simulated potential profiles in the pentacene organic diode at thermal equilibrium 

(Va=0 V) by ATLAS simulation. The above-mentioned energy levels of Au, pentacene, and Al are 

taken for the calculation and the reference potential (0 V) is that of the cathode. It should be noted that 

as long as the doping concentration lies under 1014 cm-3 the potential profiles are straight lines and do 

not show the quadratic shape that characterize the presence of a depletion region (full depletion). This 

indicates that a fully depleted MSM diode has in fact the energy diagram of a metal-insulator-metal 

(MIM) capacitance without any band bending. The potential difference between the two electrodes 

corresponds to the built-in (or diffusion) potential, which stems from the work function difference of 

the two metals (0.7 eV). When the doping concentration increases up to 1016 cm-3, the diode becomes a 

Schottky-type diode with a visible depletion region located at the pentacene/Al contact (larger Fermi-

level mismatch exists here). The simulation confirms that for doping concentrations lower than 1014 

cm-3, full depletion of the 1 m-thick pentacene film takes place. Importantly, this also implies that the 

current flow in organic diodes is entirely due to charge carriers ‘injected’ from the electrode because 

there are practically no ‘thermally generated’ carriers in the pentacene layer. 

  

3.2. Operation mechanism of the OMESFET 

 

The experimentally-proved full depletion of pentacene infers a specific device model for the 

OMESFET because inorganic MESFET operates through the depletion modulation by VG [4]. This 

Section presents the experimental data of pentacene OMESFETs together with physical simulations 

that will explain its operation under different biasing conditions. 
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Figure 5 shows the diodes characteristics of a representative pentacene OMESFET with a channel 

width (W) of 400 m and a channel length (L) of 50 m (the inset is the microscope image of the 

device). As indicated in the cross-sectional view of the OMESFET in Fig. 1, two organic diodes are 

formed between the gate electrode and the two bottom electrodes, respectively. From the I-V curves in 

Fig. 5, one can obviously see that these two diodes are equivalent. VG and the drain voltage (VD) are the 

relative potentials to the grounded source electrode. Note that VG is now applied to the Al electrode, so 

that the diodes in the OMESFET are ‘forward’-biased when VG is negative as shown in Fig. 5. 

In Figure 6, output characteristics (ID-VD) are presented with different VG values. The transistor 

functions as a normally-on device (non-zero current at VG=0 V) and the current modulation is observed 

over a very small range of VG. In order to investigate the role of VG in OMESFETs, the structure was 

simulated with ATLAS as it allows to explore various physical information inside the semiconductor. 

Figure 7 contains a two-dimensional contour mapping of the hole concentration (in log scale) in the 

pentacene layer with different bias conditions. It should be kept in mind that the hole concentration at 

the metal-semiconductor interface is determined by the injection barrier; the concentration is high at the 

source/drain electrode (Au) but negligibly low at the gate electrode (Al) and these ‘interface’ features 

do not depend on the bias conditions (Fig. 7. (a), (b), and (c)). However, VG controls the distribution of 

injected holes inside the semiconductor layer, so that one can see significant changes of the hole 

concentration in the volume of the semiconductor. When a positive VG is applied (Fig. 7. (a)), the 

‘bulk’ conductivity of pentacene is lowered (lower hole concentration) and the current is lowered as 

well (Fig. 6). A negative VG functions inversely (Fig. 7. (c)); it draws the injected holes toward the gate 

electrode the conductivity and the current increase as a result (Fig. 6). 

  Figure 8 shows the measured transfer characteristics (ID-VG) of the same transistor. As VG 

decreases toward the negative regime, ID increases steadily but below a given value, ID starts to sharply 

decrease. The normal-operation regime (VG lower than about -1 V) is already explained in Figs. 6 and 7 
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by the VG-controlled bulk conductivity. To help understand the reason for the abrupt decline of ID, 

another set of simulation is provided in Figure 9. This figure shows the hole current density (Jh+) 

contour map as well as vectors indicating the direction and magnitude of Jh+. One should focus the 

attention on the current vectors in the region between the gate and the drain electrodes (the right side of 

the structure). When VG=-1 V (Fig. 9. (a)), current vectors in this region are directed toward the drain 

electrode. With VG=-2 V (Fig. 9. (b)), vectors of opposite directions are compensating each other so 

that the net current in this region is negligible. Finally, when VG =-3 V (Fig. 9. (c)), all the vectors are 

pointing toward the gate electrode because now the gate-drain diode is forward-biased. The above 

discussion can be otherwise explained by the competition between ID and IG. Because of the absence of 

a gate insulator which can block the current toward the gate, IG and ID are in competition. It means that 

when VG is too high (negatively), all carriers tend to transport toward the gate (IG becomes dominant) 

and ID decreases dramatically. The polarity of ID can be even reversed with higher VG (the negative ID 

in Fig. 8 corresponds to the net current flowing ‘into the drain’ and the positive ID mirrors the net 

current coming ‘out of the drain’). 

Due to the above-detailed mechanisms with competing ID and IG, the allowed operation regime of 

OMESFET should be limited within low VG range for ‘normal’ operation. 

 

3.3. Effect of the device geometry 

 

The model of the metal-insulator-semiconductor field-effect transistor (MISFET) (including the 

TFT structure) leads to I-V equations with a geometrical scaling factor equal to the ratio of W to L 

where the drain current is expected to be proportional to this W/L ratio. In this Section, the influence of 

the channel geometry in OMESFET is discussed by separately varying W and L and monitoring the 
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change of ID. The results revealed that ID in an OMEFSET does not follow the simple linear 

relationship with W and L. 

In Figure 10 (a), the output curves of four different transistors with L=40, 60 , 80, and 100 m are 

depicted with the same W (400 m). ID tends to decrease as the channel becomes longer, like in 

MISFETs. A simple explanation is that because L represents the spacing between source and drain, the 

longitudinal electric field strength is a decreasing function of L for the same VD. The variation of ID is 

then plotted taking L as a variable (Fig. 10. (b)). ID is monotonously decreasing with increasing L but 

the graph is not perfectly linear. This non-linearity is accounted for by the fact that the MESFET is a 

bulk-type device while the MISFET involves surface conduction at the semiconductor/insulator 

interface. The current in OMESFET is not confined at the interface; rather, it is distributed in the whole 

semiconductor bulk as shown in Fig. 9. As a consequence, the integrated trajectories of all current 

components cannot be perfectly proportional to the channel spacing and the IG component that always 

exists makes the dependence more complicated (The insulator blocks IG in case of MISFET). 

As the effect of the channel ‘length’ is well explained, another set of results on the effect of channel 

‘width’ is now presented (Figure 11). This W-dependence on ID gives important insight for OMESFET 

operation. The three output curves in Fig. 11. (a) are those of transistors with W=400, 1000, and 1500 

m with L=30 m. The current is lower with larger channels and this is the opposite of what is 

expected for MISFETs. Fig. 11 (b) shows well that ID abruptly decreases with increasing W and even 

goes to nearly zero with 1500-m channel. This effect could be explained by the current competition 

between ID and IG (described in Section 3.2). The reason why ID in MISFETs is proportional to W is 

that the current cross section (the area through which the current passes) is larger with bigger W and it 

seems to be also true in MESFET. However, in our MESFET structure, there is another factor that 

intervenes in the situation; the current cross section from the source/drain to the gate also linearly 

increases with W.  Even though both cross sections for ID and IG are simultaneously increasing with W 
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the contribution for IG is much stronger because the source-gate electric field is much stronger than the 

source-drain electric field with similar order of VG and VD (the thickness of pentacene is 1 m and the 

source-drain spacing (L) is 30 m). In other words, increasing W cannot possibly favor any increase of 

ID because the ‘greatly’ increasing IG component ‘strongly’ depresses the current flow toward the drain 

and even leads to the decrease of ID. 

 

4. Conclusion 

 

The operation mechanism of OMESFET was elucidated by simultaneously characterizing and 

simulating pentacene-based OMESFETs. The full depletion of 1 m-thick pentacene diode was proved 

by impedance analysis and this result confirmed very low unintentional doping concentrations (less 

than 1014 cm-3). In an attempt to model the OMESFET excluding depletion modulation, measured 

output and transfer characteristics were analyzed with the physical pictures obtained by the two-

dimensional device simulations. The proper function of VG was identified as a control of the 

distribution of injected carriers which determines the bulk conductivity. The limitation of operation 

mode was then emphasized by taking into account the competition between IG and ID in the absence of 

an insulating layer. In order to further investigate the behavior of OMESFET, channel geometry-

dependent I-V characteristics were dealt with by systematically comparing a number of devices with 

different W and L. The results showed that small transistor is desirable for expecting high ID because 

the ID decreases as both W and L increase. From this comprehensive study on OMESFET, the overall 

operation of OMESFET is well understood and we expect that this will help for the further modelling 

and application of the OMESFETs.   
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FIGURE CAPTIONS 

Figure 1. Devices structure of the organic diode and the OMESFET adopted in this study. 

Figure 2. Representative I-V characteristic of pentacene-based organic diode on semi-logarithmic plot. 

Inset shows the AFM morphology of 1 m-thick pentacene film on Au bottom electrode.  

Figure 3. Impedance-voltage (Z-V) data showing fully depleted organic layer at the reverse-bias regime. 

Figure 4. Simulated potential profiles by ATLAS showing variation of the potential profiles as setting 

different (p-type) doping concentration into the simulator (Va=0 V). 

Figure 5. Diode characteristics in an OMESFET device measured from a gate-source biasing (G-S 

diode) and a gate-drain biasing (G-D diode). Inset is the optical microscopic image of this OMESFET 

(W=400 m and L=50 m). 

Figure 6. Output characteristics (ID-VD) of the OMESFET. 

Figure 7. Simulated two-dimensional structures of the OMESFET showing the variation of hole 

concentration in the pentacene layer with (a) VG=0.8 V, (b) VG=0 V, and (c) VG=-0.8 V. 

Figure 8. Transfer characteristics (ID-VG) of the OMESFET. Two operation regimes are indicated; the 

normal-operation regime with proper ID modulation by VG, the IG-dominant regime where ID is 

depressed by strong IG component. 

Figure 9. Simulated two-dimensional structures of the OMESFET showing the hole current density 

(contours and vectors) in the pentacene layer with different biasing conditions; (a) VG=-1 V, VD=-2 V, 

(b) VG=-2 V, VD=-2 V, and (c) VG=-3 V, VD=-2 V. 

Figure 10. Geometrical effect of the channel length on the current; (a) output characteristics of four 

OMESFETs with W=400 m and L=40, 60, 80, 100 m, (b) ID-L plots. 

Figure 11.  Geometrical effect of the channel width on the current; (a) output characteristics of three 

OMESFETs with L=30 m and W=400, 1000, 1500 m, (b) ID-W plots. 
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