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ABSTRACT: Probability theory is well suited to treat uncertainties when their origin comes only from the
natural variability of components’ failure (aleatory uncertainty). On the other hand, if the uncertainties are due
to incompleteness, imprecision or ignorance of the reliability data (epistemic uncertainty), several theories can
be used. Previous studies have shown that the Transferable Belief Model (TBM) which is an interpretation of
the Dempster Shafer theory is a well suited framework to treat both types of uncertainties. Nevertheless, past
experiences have proven that the computational cost of the TBM based model grows exponentially with the size
of the system. To overcome this situation, generalized expressions were defined so as to have a more efficient
way to study the systems’ reliability of series-parallel and parallel-series configurations. Through the use of
these expressions, there is no need to go by the TBM operations (conjunctive rule, extensions, etc.) to evaluate
the overall system’s reliability.

1 INTRODUCTION

Over the last two decades, many researchers have
used other theories different from probability theory,
in reliability and risk assessments to treat uncertain-
ties.

There are different ways of classifying uncertainty.
One of the most widely used is to divide it in two dif-
ferent types: aleatory uncertainty and epistemic un-
certainty. The former, also called irreducible uncer-
tainty, arises from natural stochasticity or environ-
mental variation across space or through time. The
latter, also called reducible uncertainty, arises from
incompleteness or ignorance of knowledge or data
(Oberkampf et al. 2004).

For many years, the probability theory has been
used as the primary tool in reliability and risk assess-
ments. However, in the presence of epistemic uncer-
tainty, other theories are better suited than probability
theory. Moreover, it has been proven that uncertain-
ties in reliability and risk assessments are mainly epis-
temic (Drouin et al. 2009). The most promising theo-
ries to treat aleatory and epistemic uncertainty are:

• Probability bound analysis (Moore 1979).

• Upper and lower previsions (Walley 1991).

• Fuzzy set theory (Zadeh 1965).

• Possibility theory (Zadeh 1965).

• Dempster-Shafer theory (Dempster 1967, Shafer
1976).

From the above theories, the Dempster-Shafer (D-
S) theory has been proven as a well suited theory for
the treatment of aleatory and epistemic uncertainty
in the reliability analysis (Sallak et al. 2010, Aguirre
et al. 2010), furthermore, it allows also the modeli-
sation of failure dependencies between components.
D-S theory generalizes both the probability theory
and sets theory, even though the mechanics of oper-
ations in these three theories are completely different.
The D-S theory has several interpretations: Dempsters
model (Dempster 1967), the theory of hint (Kohlas
and Monney 1995), the probability of modal proposi-
tions model (Ruspini 1986) and the Transferable Be-
lief Model (TBM) (Smets and Kennes 1994). In this
work, the TBM has been chosen because it is a model
developed outside the scope of probability theory and
avoids the criticisms that the D-S theory is understood
as a special form of upper and lower probability the-
ory (Aven 2010).

Past experiences have proven that the computa-
tional cost of the TBM based model grows rapidly
with the size of the system. This is due to the fact
that the cardinality of the domain where the resulting
mass function is defined is equal to 3n, with n be-
ing the size of the system. To overcome this situation,
generalized expressions are introduced on the paper
so as to have a more efficient way to study the reli-



ability of systems. These expressions can be used to
study series-parallel, parallel-series and combinations
of series-parallel and parallel-series systems.

The expressions were obtained using the method of
minimal cuts and the general expressions of reliabil-
ity of series and parallel systems presented in (Sal-
lak et al. 2010). The advantage of this equations is
that any system that can be represented as a parallel-
series or series-parallel system can be studied easily
and faster. This way, there is no need to go by the
TBM operations, like the conjunctive rule of combi-
nation, thus, avoiding the exponential growth of the
TBM.

Section 2 presents an introduction to the TBM the-
ory and explains the mechanics of the TBM reliability
assessment model. Section 3 talks about the compu-
tational cost of the TBM based model and discusses
possible optimization methods. Section 4 introduces
the generalized expressions for series-parallel and
parallel-series systems. Finally, section 5 exposes two
applications of the expressions and section 6 finishes
with some conclusions.

2 TBM BASED RELIABILITY MODEL

The TBM was introduced by Smets & Kennes (1994)
as a subjectivist interpretation of D-S theory. The D-
S theory, also called evidence theory, was first de-
scribed by Dempster (1967) with the study of up-
per and lower probabilities and extended by Shafer
(1976). The TBM represents a unique framework for
representing and manipulating aleatory and epistemic
uncertainties. In a finite discrete space, the TBM can
be interpreted as a generalization of probability theory
where probabilities can be assigned to any subsets in-
stead of singletons only. In this section, basic notions,
extended operations, and terminology of TBM are ex-
plained. For a more detailed exposition see (Smets &
Kennes 1994).

2.1 Basic Probability Assignment (BPA)

A Basic Probability Assignment (BPA) on the frame
of discernment Ω, also called Basic Belief Assign-
ment (BBA), is a function, mΩ : 2Ω → [0,1], which
maps belief masses not only on events but also on sub-
sets of events (The power set 2Ω), such that:∑
A∈2Ω

mΩ(A) = 1 (1)

As an example, let’s consider Ω = {x1, x2, x3}
as our frame of discernment. Then, x1, x2 and x3

are elementary propositions and mutually exclusive
to each other. Through the use of the TBM, a
piece of evidence represented by a BPA allocates
beliefs to the subsets belonging to the power set 2Ω =
{{∅},{x1},{x2},{x3},{x1, x2},{x1, x3},{x2, x3},Ω}
in such a way that equation 2.1 is respected.

Every subset A to which a belief different from zero
is allocated (mΩ(A) 6= 0) is called a focal element and
this value represents the belief that the answer is in
A (Smets & Kennes 1994). A BPA having a single-
ton {x} (x ∈ Ω) as a unique focal set represents full
knowledge. A BPA having only singletons as focal
sets is equivalent to probabilities. A BPA having Ω as
a unique focal set represents complete ignorance and
is called vacuous. In addition, BPAs has further prop-
erties, which distinguishes it from being a probability
function:

• It is not required that m(Ω) = 1.

• It is not required that m(A) ≤ m(B) when A ⊆
B.

• There is no relationship between m(A) and
m(Ā).

• m(A) + m(Ā) does not always have to be 1.

2.2 Conjunctive combination rule

The conjunctive combination rule is used to combine
two distinct pieces of evidence mΩ

i and mΩ
j that are

reliable and come from two different sources i and
j (Smets & Kennes 1994). The rule is implemented
using the following equation:

mΩ
i∩j(H) =

∑
A∩B=H

mΩ
i (A)mΩ

j (B),∀A,B,H ⊆ Ω (2)

Other combination rules exit (see Sentz & Ferson
2002) but, in this paper, only the conjunctive rule of
combination is needed

2.3 Operations on Joint Spaces

The marginalisation of a BPA mΩxΩy↓Ωx on the frame
of discernment Ωx is defined by:

mΩxΩy↓Ωx(A) =
∑

B⊆ΩxΩy/Proj(B↓Ωx)=A

mΩxΩy(B)

∀A ⊆ Ωx

(3)

Where Proj(B ↓Ωx) = {x ∈Ωx/∃y ∈Ωy, (x, y) ∈
B}. The inverse operation is a particular instance of
vacuous extension. Consider a BPA mΩx defined on
Ωx. Its vacuous extension on ΩxΩy is defined by:

mΩx↑ΩxΩy(B) =

{
mΩx(A) if B = A×Ωy

0 otherwise.

∀ A ⊆ Ωx

(4)



2.4 Belief and plausibility functions

The belief Bel and plausibility Pl functions for a sub-
set A are defined as follows:

Bel(A) =
∑
B⊆A

mΩ(B) (5)

Pl(A) =
∑

B∩A 6=∅
mΩ(B) ∀ A ⊆ Ω, ∀ B ⊆ Ω (6)

Bel(A) is the degree to which the evidence sup-
ports A and Pl(A) is the maximal degree of support
that could be assigned to A if there were more avail-
able evidence. Pl(A) may also be defined as the ex-
tent to which we fail to disbelieve the hypothesis of
A. [Bel(A), P l(A)] can be viewed as the interval that
describes the uncertainty of A. The functions Bel and
Pl, although being also function mapping events A
into [0,1] and mapping ∅ into 0 and Ω into 1, do not
fulfill in the general case the sub-additivity properties
given for probability.

2.5 Reliability assessment

A proper reliability model using the TBM was intro-
duced by Sallak et al. (2010) and further studied in
(Aguirre et al. 2010, Aguirre et al. 2011). In these
works, different points are treated concerning the elic-
itation of reliability masses, the representation of the
system’s configuration, the failure dependencies be-
tween components and a comparison with other meth-
ods is made. Expressed in words, the reliability anal-
ysis through the use of the TBM can be defined as
follows:

1. A binary state is considered. Components’ states
and the system states are defined over a frame of
discernment Ω = {Fi,Wi}, with i being a num-
ber that represents a component or s for the sys-
tem.

2. The reliability of each component is expressed
in the form of a mass function mΩi that maps
the power set 2Ωi = {(Fi), (Wi), (Fi,Wi)} to the
interval [0,1]. The masses given to Fi and Wi

represents, respectively, the belief on the Fail-
ure state and on the Working state. The mass
given to (Fi,Wi) represents the epistemic uncer-
tainty, that is, a measure of the ignorance about a
components state. The elicitation process of this
masses is based on experts’ opinions.

mΩi({Fi}) = fi
mΩi({Wi}) = wi

mΩi({Wi, Fi}) = 1−wi − fi
i = 1,2 . . . n

(7)

Note that if mΩi({Wi, Fi}) = 0, the mass is
called bayesian mass function and if this holds
for every component i, then, the TBM model will
yield the same results as the classical probabil-
ity reliability analysis. Here there are two things
to notice: first, this proves that probability the-
ory is a particular case of the D-S theory (in our
case we use the TBM interpretation). Second, the
epistemic uncertainty is represented by the value
assigned to mΩi({Wi, Fi}), therefore, this value
being equal to zero means that only aleatory un-
certainty is present for the given component.

3. The configuration of the system is then repre-
sented by a categorical mass function mΩ

Config.
This type of mass is simply a mass containing
only one focal element and represents the certi-
tude that the truth can be found in this focal el-
ement. As it is consider that the system configu-
ration is well known, this certitude is expressed
by coding the truth table of the system configu-
ration to a focal element and giving it a mass of
1. The focal element will contain every possible
combined states and will act as a filter that keeps
only the states representing the given system.

4. Once the reliability of components and the sys-
tem’s configuration are expressed by a mass
function, all these masses are combined so as to
obtain at the end the system’s reliability. First,
each reliability mass mΩi must be extended to
the product space Ω1Ω2 · · ·ΩnΩS using Eq. (4).
Then, all of the components’ reliability masses
and the system’s configuration mass mΩ

Config are
combined using the conjunctive rule of combi-
nation (Eq. 2). Finally, the obtained mass is pro-
jected to the frame of discernment of the sys-
tem’s states Ωs using Eq. (3). This process is rep-
resented by Eq. (8)

mΩS = (⊕n
i=1m

Ωi↑Ω1Ω2···ΩnΩS ⊕mΩ1Ω2···ΩnΩS
Config )↓ΩS (8)

The system’s reliability RS is expressed in terms
of a belief and a plausibility measure obtained
from the resulting mass mΩs using Eqs. (5) and
(6). It will be bounded by:

RS ∈ [Bel({WS}), P l({WS})] (9)

For further detail of the TBM reliability model, see
Sallak et al. 2010.

3 COMPUTATIONAL COST OF THE TBM
MODEL

The TBM reliability model and the classical probabil-
ity reliability model have their differences. From one
side, the TBM model is capable of treating epistemic
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Figure 1: Computational time as a function of the size of the
system (launched in a server with 32 Gb of RAM and an octo
dual core Opteron 8218)

uncertainty about the reliability of components, about
the systems configuration and even about the depen-
dencies between the failure of components. This ca-
pability is one of the most important things the TBM
has to offer in comparison to the classical probabil-
ity model, a proper treatment of epistemic uncertainty,
not leaving a side off course the aleatory uncertainty.
However, it is a capability that has a cost in terms of
computational time. Indeed, the computational cost of
the model grows exponentially with the size of the
studied system.

From Eq. (7), it can be seen that the reliability mass
mΩi of each component is defined over 3 focal el-
ements. As depicted in step 4 of section 2.5, each
mΩi is extended to the product space Ω2 · · ·ΩnΩS

and then, all the mΩi are combined with each other
(⊕n

i=1m
Ωi↑Ω1Ω2···ΩnΩS ).

As each component is defined over three focal el-
ements, and thanks to the nature of the conjunctive
combination rule, the resulting mass after combina-
tion is defined over 3n focal elements with each of
the focal elements having from 2 to 2n+1 elementary
events (defined over the product space Ω2 · · ·ΩnΩS).

To start with, doing the calculation by hand can
be a pretty hard task for a system of as little as four
components. The resulting mass would have 81 fo-
cal elements with up to 32 elementary events. As a
response to this inconvenient, a Matlab TBM Tool-
box has been created capable of doing a reliability
analysis using the TBM model, hence, avoiding the
tough task of doing this by hand. The toolbox makes
a numerical and analytical analysis. However, as the
computational cost grows exponentially (Figure 1) a
clever way to combine the masses and treat the model
has to be implemented.

In order to optimize the TBM operations and saving
time and space, some computation algorithms were
given in (Shafer et al. 1987, Almond 1995). The idea

of these algorithms lies in doing local calculations in
smaller product spaces so as to reduce the exponen-
tial growth of the TBM. For the case of reliability
analysis, the idea of the algorithms is to divide the
system in subsystems and to analyze the reliability
of each subsystem to further calculate the reliability
of the whole system. This approach can go as deep
as needed and even divide the subsystems in more
subsystems substantially extending the computational
limit of the size of the system.

On the other hand, Smets (1993) introduced a
different approach that propagates conditional belief
functions over a directed acyclical network called be-
lief network. The advantage is that the edges of the
graphs are weighted by conditional belief functions
and not by joint belief functions over a product space,
thus, its a more optimal method in terms of compu-
tational cost. The approach is less general but, the
loss of generality doesn’t affect the reliability anal-
ysis, plus, its also more natural to asses conditional
belief functions than joint probabilities over a product
space. Using this method, fault trees analysis could be
extended in a proper way to integrate belief functions
to model the gates and the failure occurrences.

Smets (2002) introduced matrix calculus using the
Möbius transformation to the TBM. This approach
simplifies greatly the development of software and
optimizes the computational time but, there is still the
problem of the exponential growth.

To overcome the computational time limit, gen-
eralized expressions were defined so as to have a
more efficient way to study the reliability of systems.
These expressions can be used to study series-parallel,
parallel-series.

4 GENERALIZED EXPRESSIONS FOR
SERIES-PARALLEL AND
PARALLEL-SERIES SYSTEMS USING THE
TBM

The expressions were obtained using the method of
minimal cuts and minimal paths. The advantage of
this equations is that any system that can be repre-
sented as a parallel-series or series-parallel system
can be studied easily and faster. This way, there is no
need to go by the TBM operations each time you want
to compute the reliability of a system, thus, the inher-
ent exponential growth of the TBM is avoided.

The system success can be represented trough the
use of minimal cuts Scut or minimal paths Spath with
the following equations:

Spath =
NT⋃
i=1

n(Ti)⋂
j=1

WTi(j) Scut =
NC⋂
i=1

n(Ci)⋃
j=1

WCi(j) (10)

Starting from the generalized equations of the par-
allel and series systems (Table 1) and from the prin-
ciple of minimal paths and minimal cuts (Eqs. 10),



the generalized reliability expressions shown in table
2 are obtained. The system reliability will be bounded
by Rs ∈ [Bel{WS}, P l{WS}]. The following nota-
tion is used:

NT Nb. of minimal paths in the system
NC Nb. of minimal cuts in the system

n(Ti) Nb. of components in the ith minimal path
n(Ci) Nb. of components in the ith minimal cut

Ti Index set of the ith minimal path
Ci Index set of the ith minimal cut

Table 1: Reliability belief function of parallel and series systems
with n components

Parallel system Series system

Bel(WS) 1−
n∏

i=1

(1−m{Wi})
n∏

i=1

m{Wi}

Pl(WS) 1−
n∏

i=1

m{Fi}
n∏

i=1

(1−m{Fi})

Table 2: Generalized reliability belief functions through the use
of minimal cuts and minimal paths.

Minimal cuts

Bel(WS)
NC∏
i=1

1−
n(Ci)∏
j=1

(
1−m{WCi(j)}

)
Pl(WS)

NC∏
i=1

1−
n(Ci)∏
j=1

m{FCi(j)}


Minimal paths

Bel(WS) 1−
NT∏
i=1

1−
n(Ti)∏
j=1

m{WTi(j)}


Pl(WS) 1−

NT∏
i=1

1−
n(Ti)∏
j=1

(
1−m{FTi(j)}

)

It has to be taken into account that the presented
expressions are limited to series-parallel and parallel-
series systems (Kuo 2001, pp. 13–16). In the case of
repeated events, the correct way to proceed is to use
disjoint cuts or paths. In this work, we use the minimal
paths expressions for the series-parallel systems and
the minimal cuts expressions for the parallel-series
systems.

For the case were all of the components
have the same reliability values (mΩi({Wi}) = w,
mΩi({Fi}) = f ) and the system is symmetrical (e.g.,
fig. 2, system b), the expressions are reduced to those
shown in table 3.

Furthermore, if the reliability belief functions
for the components are bayesian belief functions
(mΩi({Wi, Fi}) = 0, ∀i = 1,2 . . . n), the system re-
liability will also be defined by a bayesian belief func-
tion and the following equality will hold: Bel(WS) =
Pl(WS).

Table 3: Generalized reliability belief functions through the use
of minimal cuts and minimal paths. Special case where the sys-
tem is symmetric and its components have the same reliability

Minimal cuts

Bel(WS)
(
1− (1−w)n(C)

)NC

Pl(WS)
(
1− fn(C)

)NC

Minimal paths

Bel(WS) 1−
(
1−wn(T )

)NT

Pl(WS) 1−
(
1− (1− f)n(T )

)NT
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Figure 2: Reliability block diagram of the studied systems.

5 APPLICATION

In order to demonstrate the applicability of the ex-
pressions and the advances in computational time that
can be achieved, a reliability analysis of the two dif-
ferent systems depicted in figure 2 is performed. For
simplicity, all of the components have the same reli-
ability, however the expressions can be used for the
more general case where all of the components have
different reliabilities.

System (a) is composed of three subsystems, two
series subsystems and one series-parallel subsystem.
Using the generalized expressions from table 2, the
obtained belief and plausibility on the working state
of the system is:

Bel(WS) = (1− (1−w)2(1−w2))w4

= w5(w3 − 2w2 + 2)

Pl(WS) = (1− f 2(1− (1− f)2))(1− f)4

= (1− f)4(f 4 − 2f 3 + 1)

(11)

System (b) is a parallel-series system, using the
generalized expressions from table 3, The belief and
plausibility on the working state of the system is:

Bel(WS) = (1− (1−w)3)3

Pl(WS) = (1− f 3)3
(12)

5.1 Comparison

Using the Matlab TBM toolbox, the same results are
obtained as in Eqs. (11) and (12) but, at a higher com-
putational cost. For the system (a), the time of calcu-
lation is of approximately one hour and for system
(b) it is of approximately ten minutes (launched in



a server with 32 Gb of RAM and an octo dual core
Opteron 8218). On the other hand, using the general
expressions the computational cost is insignificant (a
fraction of a second). The reliability of both of the
proposed systems can be easily studied by hand us-
ing the proposed general expressions, whereas by the
means of the TBM reliability model it would be an
long task for systems of these sizes or bigger.

Note that thanks to the nature of the TBM reliabil-
ity model, the computational time depends very lit-
tle on the architecture of the system compared to the
computational cost of the TBM. In fact, the compu-
tational time depends greatly on the size of the sys-
tem, as shown in the application, a system of 8 com-
ponents takes' 10min and a system of 9 components
takes' 1hr. Furthermore, a system of 10 components
takes ' 5hr. It can be noted that the computational
time grows exponentially with the size of the system.
In contrast, using a simple code that implements the
presented generalized expressions, the computational
limit is significantly higher. For example, a parallel-
series system of 10 million components can still be
studied in a fraction of a second.

6 CONCLUSIONS

Generalized reliability expressions for parallel-series
and series-parallel systems using the TBM have been
presented. The expressions represent a significant ad-
vance in terms of the computational limit of the the-
ory. More precisely, they allow us to study systems
with a considerably higher number of components.
However, even if the TBM reliability model has a
higher computational cost, it still represents a formal
framework to continue the advances in the application
of the TBM theory in the reliability analysis. More-
over, the model can be further optimized by using
graphical methods based on local computations on
reduced product spaces or by the implementation of
conditional belief functions.
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