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ERRATUM ON ‘POPULATION GENETICS MODELS
WITH SKEWED FERTILITIES: A FORWARD AND
BACKWARD ANALYSIS’

Thierry Huillet1 and Martin Möhle2

November 18, 2011

Abstract

The article ’Population genetics models with skewed fertilities: a forward and back-
ward analysis’, Stochastic Models 27, 521–554 (2011) contains on top of page 536 a
formula for the joint factorial moments of the offspring numbers µ1, . . . , µN , which is
wrong in that generality. It is clarified for which compound Poisson models this for-
mula holds true. It turns out that the only compound Poisson models for which this
formula holds true are skewed generalized Wright–Fisher models and skewed generalized
Dirichlet models. An erratum is provided correcting the results in Section 4 of the men-
tioned article from Proposition 4.2 on. The main conclusion (Theorem 3.2) that many
symmetric compound Poisson population models are in the domain of attraction of the
Kingman coalescent, remains valid, however, its proof turns out to be more involved.
A key analytic tool in the proof is the saddle point method. In particular, the correct
time-scaling (effective population size) is provided.

Keywords: Bell polynomials; compound Poisson model; Dirichlet model; Kingman coa-
lescent; saddle point method; Wright–Fisher model

2010 Mathematics Subject Classification: Primary 60J10; Secondary 60K35, 92D10,
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1 Introduction

Let us briefly recall the definitions of conditional branching process models and compound
Poisson models. Conditional branching process models are population models with fixed
population size N ∈ N := {1, 2, . . .} and non-overlapping generations. They are defined in
terms of a sequence (ξn)n∈N of independent non-negative integer-valued random variables
satisfying P(ξ1 + · · · + ξN = N) > 0. If, for i ∈ {1, . . . , N}, µN,i denotes the number of
offspring of the ith individual alive in some fixed generation, then the random variables
µN,1, . . . , µN,N have (by definition) joint distribution

P(µN,1 = j1, . . . , µN,N = jN ) =
P(ξ1 = j1) · · ·P(ξN = jN )

P(ξ1 + · · ·+ ξN = N)
,

j1, . . . , jN ∈ N0 := {0, 1, . . .} with j1 + · · ·+ jN = N . For convenience we will often drop the
index N and simply write µi instead of µN,i. For more information on conditional branching
process models we refer the reader to [7, Section 3].
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We now turn to the definition of compound Poisson population models. Let θ1, θ2, . . . be
strictly positive real numbers and let φ(z) =

∑∞
m=1 φmz

m/m!, |z| < r, be a power series
with radius r ∈ (0,∞] of convergence and with nonnegative coefficients φm ≥ 0, m ∈ N. It is
also assumed that φ1 > 0. Compound Poisson models are particular conditional branching
process models where each random variable ξn has probability generating function (pgf)

fn(x) := E(xξn) = exp(−θn(φ(z)− φ(zx))), |x| ≤ 1. (1)

In (1), z is viewed as a fixed parameter satisfying |z| < r. However, in order to analyze
compound Poisson models it is useful to view z as a variable and to introduce, for θ ∈ [0,∞),
the Taylor expansion

exp(θφ(z)) =
∞∑

k=0

σk(θ)
k!

zk, |z| < r.

The coefficients σk(θ) depend on (φm)m∈N and they satisfy the recursion σ0(θ) = 1 and

σk+1(θ) = θ
k∑

l=0

(
k

l

)
φk−l+1σl(θ), k ∈ N0, θ ∈ [0,∞). (2)

The coefficients σk(θ) are mainly introduced, since, by (1), the distribution of ξn, n ∈ N,
satisfies

P(ξn = k) = σk(θn)
zk

k!
exp(−θnφ(z)), k ∈ N0. (3)

From φ1 > 0 it follows that σk(θ) is a polynomial in θ of degree k. In the literature (see, for
example, [1] or [3]) the σk(θ) are called the exponential polynomials. We have σ1(θ) = θφ1,
σ2(θ) = θφ2+θ2φ2

1, σ3(θ) = θφ3+3θ2φ1φ2+θ3φ3
1, σ4(θ) = θφ4+θ2(4φ1φ3+3φ2

2)+6θ3φ2
1φ2+

θ4φ4
1, and so on. The coefficients Bkl(φ1, φ2, . . .), k ∈ N0, l ∈ {0, . . . , k}, of the polynomials

σk(θ) =
∑k

l=0Bkl(φ1, φ2, . . .) θl, k ∈ N0, are called the Bell coefficients. It is readily checked
that ξn has descending factorial moments

E((ξn)k) = f (k)
n (1) = zk

k∑
l=0

Bkl(φ′(z), φ′′(z), . . .) θl
n, n ∈ N, k ∈ N0,

i.e. E(ξn) = θnzφ
′(z), E((ξn)2) = θnz

2φ′′(z)+θ2nz
2(φ′(z))2 and so on. The descending factorial

moments therefore satisfy the recursion

E((ξn)k+1) = θn

k∑
l=0

(
k

l

)
zk−l+1φ(k−l+1)(z)E((ξn)l), n ∈ N, k ∈ N0.

Throughout the article, for x ∈ R and k ∈ N0, the notations (x)k := x(x− 1) · · · (x− k + 1)
and [x]k := x(x + 1) · · · (x + k − 1) are used for the descending and ascending factorials
respectively, with the convention that (x)0 := [x]0 := 1.
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2 Results

We derive the correct formula for the joint factorial moments of the offspring random vari-
ables µ1, . . . , µN for an arbitrary compound Poisson population model. It is known (see, for
example, [7, p. 535]) that µ = (µ1, . . . , µN ) has distribution

P(µ = j) =
N !

σN (ΘN )

N∏
n=1

σjn
(θn)
jn!

, j = (j1, . . . , jN ) ∈ ∆(N), (4)

where ΘN := θ1 + · · · + θN and ∆(N) denotes the discrete N -simplex consisting of all
j = (j1, . . . , jN ) ∈ NN

0 satisfying j1 + · · · + jN = N . Note that the distribution of µ is not
necessarily exchangeable. It follows that µ has joint factorial moments

E((µ1)k1 · · · (µN )kN
) =

∑
j=(j1,...,jN )∈∆(N)

(j1)k1 · · · (jN )kN
P(µ = j)

=
N !

σN (ΘN )

∑
j1,...,jN∈N0

j1+···+jN =N

(j1)k1 · · · (jN )kN

σj1(θ1) · · ·σjN
(θN )

j1! · · · jN !

=
N !

σN (ΘN )

∑
j1≥k1,...,jN≥kN

j1+···+jN =N

σj1(θ1) · · ·σjN
(θN )

(j1 − k1)! · · · (jN − kN )!
, (5)

N ∈ N, k1, . . . , kN ∈ N0, θ1, . . . , θN ∈ (0,∞), which is not a simple expression. However, it is
known that for some compound Poisson models, for example for the Wright–Fisher model,
the alternative and simpler formula

E((µ1)k1 · · · (µN )kN
) = (N)k

σk1(θ1) · · ·σkN
(θN )

σk(θ1 + · · ·+ θN )
(6)

holds for all k1, . . . , kN ∈ N0 and all θ1, . . . , θN ∈ (0,∞), where k := k1 + · · · + kN . In the
following it is clarified which compound Poisson models satisfy (6). Our results are based on
the following basic but fundamental lemma, which essentially coincides with [9, Lemma 2.1],
however, we prefer here to state it slightly different.

Lemma 2.1 A compound Poisson model (with given fixed power series φ) satisfies the fac-
torial moment formula (6) for all population sizes N ∈ N, all k1, . . . , kN ∈ N0 and all
θ1, . . . , θN ∈ (0,∞) if and only if the coefficients σk(θ), k ∈ N0, θ ∈ (0,∞), satisfy the
relation

σk+1(θ)
σk(θ)

+
σk′+1(θ′)
σk′(θ′)

=
σk+k′+1(θ + θ′)
σk+k′(θ + θ′)

, k, k′ ∈ N0, θ, θ
′ ∈ (0,∞). (7)

Proof. Suppose first that (7) holds. We essentially follow the proof of [9, Lemma 2.1]. By
induction on N ∈ N it follows that

N∑
j=1

σkj+1(θj)
σkj

(θj)
=

σk+1(θ1 + · · ·+ θN )
σk(θ1 + · · ·+ θN )

, k1, . . . , kN ∈ N0, θ1, . . . , θN ∈ (0,∞). (8)

3



Let us now verify (6) by backward induction on k = k1 + · · ·+ kN . For k > N both sides of
(6) are equal to zero. For k = N we have

E((µ1)k1 · · · (µN )kN
) = k1! · · · kN !P(µ1 = k1, . . . , µN = kN ) = N !

σk1(θ1) · · ·σkN
(θN )

σk(θ1 + · · ·+ θN )
,

which is (6) for k = N . The backward induction step from k + 1 to k (∈ {0, . . . , N − 1})
works as follows. From µ1 + · · ·+ µN = N and by induction it follows that

(N − k)E((µ1)k1 · · · (µN )kN
) = E((µ1)k1 · · · (µN )kN

N∑
j=1

(µj − kj))

=
N∑

j=1

E((µ1)k1 · · · (µj)kj+1 · · · (µN )kN
) =

N∑
j=1

(N)k+1

σk1(θ1) · · ·σkj+1(θj) · · ·σkN
(θN )

σk+1(θ1 + · · ·+ θN )

= (N)k+1
σk1(θ1) · · ·σkN

(θN )
σk+1(θ1 + · · ·+ θN )

N∑
j=1

σkj+1(θj)
σkj (θj)

= (N)k+1
σk1(θ1) · · ·σkN

(θN )
σk(θ1 + · · ·+ θN )

, (9)

where the last equality holds by (8). Division of (9) by N − k shows that (6) holds for k
which completes the backward induction.
Conversely, if (6) holds for all N ∈ N, k1, . . . , kN ∈ N0 and all θ1, . . . , θN ∈ (0,∞), then

(N)k+1
σk1(θ1) · · ·σkN

(θN )
σk(θ1 + · · ·+ θN )

= (N − k)E((µ1)k1 · · · (µN )kN
)

= (N)k+1
σk1(θ1) · · ·σkN

(θN )
σk+1(θ1 + · · ·+ θN )

N∑
j=1

σkj+1(θj)
σkj

(θj)
,

where the last equation is obtained by doing the same calculations as above. Thus, (8) holds.
Choosing N = 2 in (8), it follows that (7) holds which completes the proof. 2

Relation (7) puts strong constrains on the coefficients σk(θ), k ∈ N0, θ ∈ (0,∞), and,
consequently, on the power series φ of the compound Poisson model. Lemma 2.1 of [9] and
the remarks thereafter show that (7) holds if and only if φ(z) = φ1z or

φ(z) = −φ
2
1

φ2
log

(
1− φ2

φ1
z

)
, |z| < φ1

φ2
. (10)

The only compound Poisson models satisfying the factorial moment formula (6) for all N ∈ N,
all k1, . . . , kN ∈ N0, and all θ1, . . . , θN ∈ (0,∞) are therefore generalized Wright–Fisher
models (with φ of the form φ(z) = φ1z for some constant φ1 ∈ (0,∞)) and generalized
Dirichlet models with φ of the form (10) for some constants φ1, φ2 ∈ (0,∞). For all other
compound Poisson models the formula (6) does not hold for all N ∈ N, all k1, . . . , kN ∈ N0

and all θ1, . . . , θN ∈ (0,∞), a typical counter example being the compound Poisson model
with power series φ of the form φ(z) = ez − 1, or, equivalently, φm = 1 for all m ∈ N.
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3 Corrections and further results

We comment which parts of [7] need correction. The results in [7, Sections 5 and 6] are correct,
since the models studied there satisfy (6). The statements in [7, Section 7] are as well correct,
since the Kimura model does not belong to the compound Poisson class. Thus, only [7, Section
4] from [7, Proposition 4.2] on needs correction. From the results of the previous Section 2
it follows that [7, Proposition 4.2] and [7, Theorem 4.3] and the remarks thereafter are valid
for generalized Wright–Fisher models and generalized Dirichlet models with power series φ
as given at the end of Section 2. However, for general compound Poisson models, Proposition
4.2 and Theorem 4.3 of [7] and the remark thereafter are wrong. Proposition 4.2 of [7] should
be replaced by the following proposition.

Proposition 3.1 If, for each n ∈ N, the random variable ξn has a pgf of the form [7,
Eq. (13)], then the backward process X̂ of the associated skewed conditional branching process
model has transition probabilities

P̂i,j =
1(
N
i

) ∑
1≤n1<···<nj≤N

∑
k1,...,kj∈N0

k:=k1+···+kj≤N

(N)k

k1! · · · kj !
·

·
(
∏j

i=1 σki
(θni

))σN−k(ΘN −
∑j

i=1 θni
)

σN (ΘN )

∑
l1,...,lj∈N

l1+···+lj=i

(
k1

l1

)
· · ·

(
kj

lj

)
, i, j ∈ S, (11)

with the convention that P̂i,0 = δi0, i ∈ S. Here ΘN := θ1 + · · · + θN , S := {0, . . . , N}, and
the coefficients σk(θ), k ∈ N0, θ ∈ [0,∞), are recursively defined via (2). In particular,

P̂i,1 =
N∑

n=1

N∑
k=i

(
N − i

k − i

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
, i ∈ {1, . . . , N}. (12)

Proof. For j ∈ {1, . . . , N}, pairwise distinct n1, . . . , nj ∈ {1, . . . , N}, and k1, . . . , kj ∈ N0

with k := k1 + · · ·+ kj ≤ N we have

P(µn1 = k1, . . . , µnj
= kj) =

(
∏j

i=1 P(ξni
= ki)) P(

∑
m∈[N ]\{n1,...,nj} ξm = N − k)

P(ξ1 + · · ·+ ξN = N)

=
(N)k

k1! · · · kj !
σk1(θn1) · · ·σkj

(θnj
)σN−k(ΘN −

∑j
i=1 θni

)
σN (ΘN )

and, therefore, for l1, . . . , lj ∈ N0,

E
( j∏

i=1

(
µni

li

))
=

∑
k1,...,kj

( j∏
i=1

(
ki

li

))
(N)k

k1! · · · kj !
σk1(θn1) · · ·σkj

(θnj
)σN−k(ΘN −

∑j
i=1 θni

)
σN (ΘN )

,

where the sum
∑

k1,...,kj
extends over all k1, . . . , kj ∈ N0 satisfying k := k1 + · · · + kj ≤ N .

Thus (11) follows from [7, Eq. (4)]. For j = 1, (11) reduces to (12). Alternatively, (12) follows
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as well via

P̂i,1 =
N∑

n=1

E((µn)i)
(N)i

=
N∑

n=1

N∑
k=i

(k)i

(N)i
P(µn = k)

=
N∑

n=1

N∑
k=i

(k)i

(N)i

(
N

k

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )

=
N∑

n=1

N∑
k=i

(
N − i

k − i

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
.

2

Remark. Proposition 3.1 in particular yields the coalescence probability

cN := P̂2,1 =
N∑

n=1

N∑
k=2

(
N − 2
k − 2

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
, N ≥ 2 (13)

and the probability

dN := P̂3,1 =
N∑

n=1

N∑
k=3

(
N − 3
k − 3

)
σk(θn)σN−k(ΘN − θn)

σN (ΘN )
, N ≥ 3 (14)

that three individuals share a common parent. For the unbiased case, when all the parameters
θn = θ are equal to some constant θ ∈ (0,∞), (13) and (14) reduce to

cN = N

N∑
k=2

(
N − 2
k − 2

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
(15)

and

dN = N
N∑

k=3

(
N − 3
k − 3

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
. (16)

It is clear that Theorem 4.3 of [7] does not hold for arbitrary symmetric compound Poisson
models. Theorem 4.3 of [7] should be replaced by the following Theorem 3.2, which clarifies
that many symmetric compound Poisson models are in the domain of attraction of the
Kingman coalescent.

Theorem 3.2 Fix θ ∈ (0,∞) and suppose that the equation θzφ′(z) = 1 has a real solution
z(θ) ∈ (0, r), where r ∈ (0,∞] denotes the radius of convergence of φ. Then, µN,1 → X
in distribution as N → ∞, where X is a nonnegative integer valued random variable with
distribution

P(X = k) = σk(θ)
(z(θ))k

k!
e−θφ(z(θ)), k ∈ N0. (17)

Moreover, the associated symmetric compound Poisson model is in the domain of attrac-
tion of the Kingman coalescent in the sense of [7, Definition 2.1 (a)]. The effective pop-
ulation size Ne := 1/cN satisfies Ne ∼ %N as N → ∞, where % := 1/E((X)2) =
1/(1 + θ(z(θ))2φ′′(z(θ))) ∈ (0, 1].

6



Remarks. 1. If φ′(r−) = ∞, then for all θ ∈ (0,∞) the equation θzφ′(z) = 1 has a real
solution z(θ) ∈ (0, r). If φ′(r−) < ∞, then a real solution z(θ) ∈ (0, r) of the equation
θzφ′(z) = 1 exists if and only if θrφ′(r−) > 1. A concrete model satisfying φ′(r−) < ∞ is
provided in Example 4.8 in Section 4. The solution z(θ) ∈ (0, r) (if it exists) is unique since
the map z 7→ zφ′(z) is strictly monotone increasing on (0, r).
2. The following proof even shows the convergence of all moments E(µp

N,1) → E(Xp) as
N → ∞, p > 0. The distribution of the limiting variable X coincides with the distribution
(3) of ξ1 with the parameter z in (3) replaced by z(θ). Note that X has mean E(X) =
θz(θ)φ′(z(θ)) = 1. Thus, conditioning ξ1 on the event that ξ1 + · · ·+ ξN = N and afterwards
taking N → ∞, has altogether the effect that we ‘nearly’ recover the distribution of ξ1. We
only loose the information about the mean of ξ1.
3. Closed expressions for the solution z = z(θ) of the equation u(z) := zφ′(z) = 1/θ seem
to be not available in general. By the inversion formula of Lagrange (see, for example, [4,
Section 3.8]), for k ∈ N and x ∈ (0,∞),

[xk]u−1(x) =
[zk−1](z/u(z))k

k
=

[zk−1](1/φ′(z))k

k
= Bk−1,k(ψ0, ψ1, . . .),

where ψn := ψ(n)(0), n ∈ N0, with ψ(z) := 1/φ′(z). Choosing x := 1/θ and noting that
z(θ) = u−1(x) yields the formal expansion

z(θ) =
∞∑

k=1

[zk−1](ψ(z))k

k
θ−k =

∞∑
k=1

Bk−1,k(ψ0, ψ1, . . .)θ−k.

Note however that, depending on φ and θ, this series does not necessarily need to converge,
so we can only speak about a formal expansion here.

Proof. Fix k, l ∈ N0 and θ ∈ (0,∞). Let us verify that

σn−k((n− l)θ)
(n− k)!

∼ (a(θ))n

√
2πn

bkl(θ), n→∞, (18)

where

a(θ) :=
eθφ(z(θ))

z(θ)
and bkl(θ) :=

(z(θ))ke−lθφ(z(θ))√
1 + θ(z(θ))2φ′′(z(θ))

. (19)

We proceed similarly as in the proof of Theorem 2.1 of [3]. However, note that in [3], asymp-
totic expansions for σn(θ) are provided whereas we are essentially interested in asymptotic
expansions of σn(nθ). By Cauchy’s integral formula, σn(θ)/n! = (2πi)−1

∫
C
z−(n+1)eθφ(z) dz,

n ∈ N0, where C is some contour around the origin. Replacing n by n− k and θ by (n− l)θ
it follows that

σn−k((n− l)θ)
(n− k)!

=
1

2πi

∫
C

e(n−l)θφ(z)

zn−k+1
dz

=
1

2πi

∫
C

zk−1e−lθφ(z)en(θφ(z)−log z) dz =
1

2πi

∫
C

h(z)eng(z) dz,

where h(z) := zk−1e−lθφ(z) and g(z) := θφ(z) − log z. Note that g′(z) = θφ′(z) − 1/z and
that g′′(z) = θφ′′(z) + 1/z2. In particular, g′ has a single real zero at the point z(θ) solving
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the equation θz(θ)φ′(z(θ)) = 1. Note that g′′(z) > 0 for all z ∈ R with |z| < r. In order to
derive the asymptotics of the integral

∫
C
h(z)eng(z) dz we use the saddle point method (see,

for example, [2] or [5] for general references) and choose the contour C to be the circle around
the origin with radius z(θ) such that it passes through the zero z(θ) of the derivative g′. Note
that g′(z(θ)) = 0, so g(z(θ)eit) has Taylor expansion

g(z(θ)eit) =
∞∑

j=0

g(j)(z(θ))
j!

(z(θ))j(eit − 1)j

= g(z(θ)) +
g′′(z(θ))

2
(z(θ))2(eit − 1)2 +

g′′′(z(θ))
3!

(z(θ))3(eit − 1)3 +O(t4)

leading to the expansions Re(g(z(θ)eit)) = g(z(θ)) − (z(θ))2g′′(z(θ))t2/2 + O(t4) and
Im(g(z(θ)eit)) = O(t3). The saddle point method yields the asymptotics∫

C

h(z)eng(z) dz ∼ i

√
2π

ng′′(z(θ))
eng(z(θ))h(z(θ)).

Dividing this expression by 2πi and writing z instead of z(θ) for convenience yields

σn−k((n− l)θ)
(n− k)!

∼ eng(z)h(z)√
2πng′′(z)

=
1√
2πn

(a(θ))nbkl(θ)

with a(θ) := eg(z) = eθφ(z)/z and bkl(θ) := h(z)/
√
g′′(z) = zk−1e−lθφ(z)/

√
z−2 + θφ′′(z) =

zke−lθφ(z)/
√

1 + θz2φ′′(z). Thus, (18) is established. Note that for k = l = 0 we have

σn(nθ)
n!

=
1

2πi

∫
C

eng(z)

z
dz =

1
2πi

∫ π

−π

eng(z(θ)eit)

z(θ)eit
iz(θ)eit dt =

1
2π

∫ π

−π

eng(z(θ)eit) dt.

Taking the real part yields

σn(nθ)
n!

=
1
2π

∫ π

−π

Re(eng(z(θ)eit)) dt ∼ 1
2π

∫ π

−π

enRe(g(z(θ)eit)) dt, (20)

where the last asymptotics is based on the Laplace method as follows. Choose a sequence
(δn)n∈N of positive real numbers satisfying nδ2n → ∞ and nδ3n → 0, for example, δn := n−α

for some fixed α ∈ (1/3, 1/2). Decomposing the first integral in (20) into the two parts

I1 :=
∫ δn

−δn

Re(eng(z(θ)eit)) dt and I2 :=
∫
{δn<|t|≤π}

Re(eng(z(θ)eit)) dt

we can approximate I1 and show that I2 is negligible (in comparison to I1) for large n.
Obviously, 1 − x2/2 ≤ cosx ≤ 1 for all x ∈ R. Choosing x := nIm(g(z(θ)eit)) and using
Im(g(z(θ)eit)) = O(t3) and nt3 → 0 as n→∞ uniformly for all |t| ≤ δn it follows that

lim
n→∞

sup
|t|≤δn

| cos(nIm(g(z(θ)eit)))− 1| = 0.

8



Thus, as n→∞, the map t 7→ cos(nIm(g(z(θ)eit))) converges uniformly on [−δn, δn] to the
constant map t 7→ 1, which implies that

I1 =
∫ δn

−δn

cos(nIm(g(z(θ)eit)))enRe(g(z(θ)eit)) dt ∼
∫ δn

−δn

enRe(g(z(θ)eit)) dt.

The second integral I2 is negligible (in comparison to I1) since

|I2| ≤
∫
{δn<|t|≤π}

enRe(g(z(θ)eit)) dt,

Re(g(z(θ)eit)) = g(z(θ)) − (z(θ))2g′′(z(θ))t2/2 + O(t4) and nt2 ≥ nδ2n → ∞ uniformly for
|t| > δn. Thus, (20) is established. For all N ∈ N and all k ∈ N0 it follows from (18) that

P(µN,1 = k) =
(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
=

σk(θ)
k!

σN−k((N−l)θ)
(N−k)!

σN (Nθ)
N !

∼ σk(θ)
k!

(a(θ))nbk1(θ)/
√

2πn
(a(θ))nb00(θ)/

√
2πn

=
σk(θ)
k!

bk1(θ)
b00(θ)

= σk(θ)
(z(θ))k

k!
e−θφ(z(θ)).

Thus, µN,1 → X in distribution as N →∞, where X has distribution (17). In the following,
for arbitrary but fixed p > 0, the convergence E(µp

N,1) → E(Xp) as N → ∞ of the p-th
moments is established. For all k, l ∈ N0 and all N ∈ N we have

σN−k((N − l)θ)
(N − k)!

≤ σN−k(Nθ)
(N − k)!

=
1

2πi

∫
C

zk−1eNg(z) dz

=
1

2πi

∫ π

−π

(z(θ)eit)k−1eNg(z(θ)eit) iz(θ)eit dt =
(z(θ))k

2π

∫ π

−π

eikteNg(z(θ)eit) dt.

Taking the complex absolute value it follows for all k, l ∈ N and all N ∈ N that

σN−k((N − l)θ)
(N − k)!

≤ (z(θ))k

2π

∫ π

−π

|eNg(z(θ)eit)| dt =
(z(θ))k

2π

∫ π

−π

eNRe(g(z(θ)eit)) dt.

Since, by (20), (2π)−1
∫ π

−π
eNRe(g(z(θ)eit)) dt ∼ σN (Nθ)/N !, it follows that there exists a

constant N0 ∈ N (which may depend on θ and φ but not on k and l) such that

σN−k((N − l)θ)
(N − k)!

≤ 2(z(θ))k σN (Nθ)
N !

for all k, l ∈ N0 and all N ≥ N0. In particular, for all N ≥ N0 and all k ∈ N0,

P(µN,1 = k) =
σk(θ)
k!

σN−k((N−1)θ)
(N−k)!

σN (Nθ)
N !

≤ σk(θ)
k!

2(z(θ))k = κ(θ)P(X = k),

where κ(θ) := 2eθφ(z(θ)) ∈ (0,∞). For arbitrary but fixed p > 0 the map k 7→ kpP(X = k),
k ∈ N0, is integrable with respect to the counting measure εN0 on N0, since

∫
kpP(X =

9



k)εN0(dk) =
∑∞

k=0 k
pP(X = k) = E(Xp) <∞. By dominated convergence we therefore have

convergence E(µp
N,1) → E(Xp) of all moments. In particular, (N − 1)cN = E((µN,1)2) →

E((X)2) > 0 and (N − 1)(N − 2)dN = E((µN,1)3) → E((X)3) as N → ∞. Thus, dN/cN =
O(1/N) → 0 as N → ∞, which ensures (see [10] or [8, Theorem 4 (b)]) that the considered
symmetric compound Poisson model is in the domain of attraction of the Kingman coalescent.
2

4 Examples

We start with the two most popular examples, the Wright–Fisher model and the Dirichlet
model. Note that (7) holds for these two models. These two examples have the advantage
that most calculations can be done explicitly. For example, we will verify the asymptotic
results stated in Theorem 3.2 directly.

Example 4.1 (Wright–Fisher model) For the standard symmetric Wright–Fisher model,
φ(z) = z. Therefore, ξn has a Poisson distribution with parameter θz and σk(θ) = θk, k ∈ N0,
θ ∈ (0,∞). For k ∈ N0 and θ ∈ (0,∞) it follows that

P(µN,1 = k) =
(
N

k

)
σk(θ)σN−k((N − 1)θ)

σN (Nθ)
=

(
N

k

)(
1
N

)k(
1− 1

N

)N−k

.

Thus, µN,1 has a binomial distribution with parameters N and 1/N . In particular, for arbi-
trary but fixed p ∈ N, E((µN,1)p) = (N)p/N

p → 1 = E((X)p) as N → ∞, where X has a
Poisson distribution with parameter 1. The solution z(θ) of the equation θz(θ)φ′(z(θ)) = 1 is
z(θ) = 1/θ. Note that (18) holds with a(θ) := eθ and bkl(θ) := θ−ke−l, k, l ∈ N0, θ ∈ (0,∞).
The effective population size Ne = 1/cN = N coincides with the actual population size N , a
well known result.

Example 4.2 (Dirichlet model) For the symmetric Dirichlet model, φ(z) = − log(1− z),
|z| < 1. Therefore, ξ1 has a negative binomial distribution with parameters θ and 1 − z. In
particular, E(ξ1) = θzφ′(z) = θz/(1− z). Moreover, σk(θ) = [θ]k := θ(θ+ 1) · · · (θ+ k− 1) =
Γ(k + θ)/Γ(θ), k ∈ N0, θ ∈ (0,∞). Thus, for k ∈ N0 and θ ∈ (0,∞),

P(µN,1 = k) =
(
N

k

)
[θ]k[(N − 1)θ]N−k

[Nθ]N
=

[θ]k
k!

(N)k
Γ(Nθ − θ +N − k)Γ(Nθ)

Γ(Nθ − θ)Γ(Nθ +N)
.

Since Γ(x+ c) ∼ xcΓ(x) as x→∞ for any c ∈ R, it follows that

P(µN,1 = k) ∼ [θ]k
k!

(N)k
(Nθ +N)−θ−kΓ(Nθ +N)Γ(Nθ)

(Nθ)−θΓ(Nθ)Γ(Nθ +N)

=
[θ]k
k!

(N)k

(Nθ +N)k

(
θ + 1
θ

)−θ

→ [θ]k
k!

(
1

θ + 1

)k(
θ

θ + 1

)θ

.

Thus µN,1 → X in distribution as N →∞ where X has a negative binomial distribution with
parameters θ and θ/(θ + 1) ∈ (0, 1). Moreover, for arbitrary but fixed p ∈ N, E((µN,1)p) =
(N)p[θ]p/[Nθ]p → [θ]p/θp = E((X)p) as N → ∞. Thus, E(µp

N,1) → E(Xp) as N → ∞ for
all p ∈ N in agreement with the general results derived in the proof of Theorem 3.2. The
solution z(θ) of the equation θz(θ)φ′(z(θ)) = 1 is z(θ) = 1/(θ+1). Note that (18) holds with
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a(θ) := (θ + 1)θ+1/θθ and bkl(θ) := (θ/(θ + 1))lθ+1/2(1/(θ + 1))k, k, l ∈ N0, θ ∈ (0,∞). The
symmetric Dirichlet model has effective population size Ne = 1/cN = (N − 1)/E((µN,1)2) =
(Nθ + 1)/(θ + 1) ∼ N% with % = θ/(θ + 1) = 1/E((X)2), in agreement with Theorem 3.2.

In the following examples are studied which do not satisfy (7). We start with a model which
involves the absolute Lah numbers. This example was the starting point for writing this
erratum, since we recognized that the formula (6), and, hence, the relation (7), are not
satisfied for this model.

Example 4.3 Suppose that φm = m! for all m ∈ N or, equivalently, that φ(z) = z/(1− z),
|z| < 1. Note that φ′(z) = 1/(1− z)2 and that φ′′(z) = 2/(1− z)3 = 2φ′(z)/(1− z), |z| < 1.
Then (Comtet [4, Section 3.3, p. 135, Theorem B]), σn(θ) =

∑n
k=1 L(n, k)θk, n ∈ N, θ ∈ R,

where L(n, k) := Bnk(1!, 2!, . . .) = n!(n−1)!/(k!(k−1)!(n−k)!), n ∈ N, k ∈ {1, . . . , n}, denote
the absolute Lah numbers. The solution z = z(θ) ∈ (0, 1) of the equation 1 = θzφ′(z) =
θz/(1− z)2 is z(θ) = 1 + θ/2−

√
θ(θ + 4)/2. By Theorem 3.2, the model is in the domain of

attraction of the Kingman coalescent and the effective population size Ne satisfies Ne ∼ %N
with % := 1/(1 + θz2φ′′(z)) = (1− z)/(1 + z) < 1, since

1 + θz2φ′′(z) = 1 + θz2φ′(z)
2

1− z
= 1 +

2z
1− z

=
1 + z

1− z
.

Note that (18) holds with a(θ) = eθφ(z)/z = eθz/(1−z)/z = e1−z/z and bkl(θ) :=
zke−lθφ(z)/

√
1 + θz2φ′′(z) = zke−l(1−z)/

√
(1 + z)/(1− z), k, l ∈ N0, θ ∈ (0,∞).

Let us generalize Example 4.3 as follows.

Example 4.4 Suppose that (see [1, p. 402, Eqs. (50) and (51)])

φm = (m− 1)!
(

am

m− 1

)
bm−1, m ∈ N,

where it is assumed that the real parameters a and b are either both negative or b > 0 and
a ≥ 1 (such that all the coefficients φm are nonnegative). Note that [1, Eq. (43)] the power
series φ(z) =

∑∞
m=1 φmz

m/m! is the solution of the functional equation φ(z) = zf(φ(z))
with f(x) := (1 + bx)a and that φ is related to the generalized binomial series Ba (see, for
example, [6, p. 200]) via φ(z) = (Ba(bz) − 1)/b. It is readily checked that φ has radius of
convergence

r := lim
m→∞

(m+ 1)φm

φm+1
=

1
ab

(
1− 1

a

)a−1

∈ (0,∞)

and that φ(r−) = 1/(b(a− 1)) (= ∞ for a = 1), since, for a 6= 1, φ(r−) = 1/(b(a− 1)) is the
only positive solution of the equation φ(r−) = rf(φ(r−)). Differentiating both sides of the
functional equation φ(z) = zf(φ(z)) yields the derivatives

φ′(z) =
f(φ(z))

1− zf ′(φ(z))
and φ′′(z) =

2f ′(φ(z))φ′(z) + zf ′′(φ(z))(φ′(z))2

1− zf ′(φ(z))
, |z| < r.

For a = 1 (and b > 0) we have φm = m!bm−1, m ∈ N, and φ(z) = z/(1 − bz), |z| < 1/b.
For a = b = 1 we are back in the previous example involving the absolute Lah numbers.
For a = 2 we have φ(z) = 4z/(1 +

√
1− 4bz)2, |z| < 1/(4b). For a = −1 (and b < 0)

11



we have φm = (2m − 2)!/(m − 1)!(−b)m−1, m ∈ N, and φ(z) = (
√

1 + 4bz − 1)/(2b) =
2z/(1 +

√
1 + 4bz), |z| < 1/(−4b). For general parameters a and b, to the best of the authors

knowledge, there seems to be no special function related to the power series φ. Nevertheless,
an explicit expression for the solution z = z(θ) of the equation θzφ′(z) = 1 is obtained as
follows. Let x = x(θ) be the solution in the open interval (0, 1) of the quadratic equation
θx = b(1− x)(a− x), i.e.

x(θ) =
θ + b+ ab−

√
(θ + b+ ab)2 − 4ab2

2b
∈ (0, 1). (21)

We have 0 < (1 − x)/θ < 1/(b(a − 1)) = φ(r−) (= ∞ for a = 1). Thus, z = z(θ) :=
φ−1((1− x)/θ) ∈ (0, r) is well defined. From (1− x)/θ = φ(z) = zf(φ(z)) = zf((1− x)/θ) it
follows that

z =
1− x

θ

1
f( 1−x

θ )
=

1− x

θ

1
(1 + b 1−x

θ )a
=

1− x

θ

1
(1 + x

a−x )a

=
1− x

θ

(
a− x

a

)a

=
1− x

θ

a− x

a

(
a− x

a

)a−1

=
x

ab

(
a− x

a

)a−1

. (22)

Moreover,

f ′(φ(z)) = f ′
(

1− x

θ

)
= ab

(
1+b

1− x

θ

)a−1

= ab

(
1+

x

a− x

)a−1

= ab

(
a

a− x

)a−1

=
x

z

and, hence,

θzφ′(z) =
θzf(φ(z))

1− zf ′(φ(z))
=

θφ(z)
1− zf ′(φ(z))

=
1− x

1− z x
z

= 1.

Thus, z = z(θ) satisfies θzφ′(z) = 1. Theorem 3.2 is therefore applicable. Straightforward
computations show that the limiting random variable X in Theorem 3.2 has second factorial
moment E((X)2) = 1+θz2φ′′(z) = (a−x2)/(a(1−x)2). By Theorem 3.2, the model is in the
domain of attraction of the Kingman coalescent and the effective population size Ne satisfies
Ne ∼ %N as N → ∞ with % = 1/E((X)2) = (a(1 − x)2)/(a − x2) ∈ (0, 1). Note that the
asymptotics (18) holds with a(θ) = eθφ(z)/z = e1−x/z and

bkl(θ) =
zke−lθφ(z)√
1 + θz2φ′′(z)

= zke−l(1−x)

√
a(1− x)2

a− x2

with x = x(θ) and z = z(θ) defined in (21) and (22). At first glance the solution x(θ) of the
quadratic equation θx = b(1 − x)(a − x) seems to come ‘from nowhere’. In the following an
intuitive argument is provided showing how x(θ) comes into play. It is known [1, Eq. (51)]
that σn(θ) =

∑n
j=1B(n, j)θj with

B(n, j) =
(n− 1)!
(j − 1)!

(
an

n− j

)
bn−j . (23)

The fraction

B(n, n− j + 1)(nθ)n−j+1

B(n, n− j)(nθ)n−j
=

nθj

(n− j)(an− j + 1)b
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is equal to 1 for j = jn with

jn :=
n(θ + b+ ab) + b−

√
(n(θ + b+ ab) + b)2 − 4b(bn+ abn2)

2b

∼ n
θ + b+ ab−

√
(θ + b+ ab)2 − 4ab2

2b
= nx(θ). (24)

Intuitively, when n is large, the contribution to the sum σn(nθ) =
∑n−1

j=0 B(n, n− j)(nθ)n−j

is essentially entirely originated from indices j having the property that j/n belongs to a
(small) neighborhood of x(θ). The choice of the neighborhood is rather unimportant. It is
hence not surprising that x(θ) plays a crucial role in finding the asymptotics of σn(nθ). Since
the Bell numbers (23) are known explicitly, one may carry out the Laplace method in detail
leading to an alternative proof of (18). We leave the details to the reader.

Example 4.5 Suppose that φm = 1 for all m ∈ N or, equivalently, that φ(z) = ez−1, z ∈ C.
Then (see, for example, Comtet [4, Section 3.3, p. 135, Theorem B]) σn(θ) =

∑n
k=1 S(n, k)θk,

n ∈ N, θ ∈ R, where the S(n, k) denote the Stirling numbers of the second kind. In this case
the solution z = z(θ) of the equation 1 = θzφ′(z) = θzez cannot be expressed in closed
form anymore. By Theorem 3.2, µN,1 → X in distribution, where X is a random variable
with distribution (17). Of course, by Theorem 3.2, the model is in the domain of attraction
of the Kingman coalescent and the effective population size Ne satisfies Ne ∼ %N with
% := 1/(1 + θz2φ′′(z)) = 1/(1 + θz2ez) = 1/(1 + z) < 1.

Example 4.6 As in [7, Example 4.6], let α ∈ (0, 1) and assume that φm = −Γ(m −
α)/Γ(−α) = (−1)m+1(α)m, m ∈ N, or, equivalently, that φ(z) = 1− (1− z)α, |z| < 1. Note
that φ′(z) = α(1− z)α−1 and that φ′′(z) = α(1−α)(1− z)α−2 = φ′(z)(1−α)/(1− z). Closed
forms for the positive real solution z = z(θ) of the equation θzφ′(z) = 1 are only available for
particular values of the parameter α. For example, z(θ) = 2θ−2(

√
θ2 + 1−1) for α = 1/2. By

Theorem 3.2, the model is in the domain of attraction of the Kingman coalescent and the ef-
fective population sizeNe satisfiesNe ∼ %N with % := 1/(1+θz2φ′′(z)) = (1−z)/(1−αz) ≤ 1,
since

1 + θz2φ′′(z) = 1 + θz2φ′(z)
1− α

1− z
= 1 + z

1− α

1− z
=

1− αz

1− z
,

which corrects the wrong asymptotic result for Ne provided at the bottom of p. 538 of [7].

Example 4.7 As in [7, Example 4.7] let α ∈ (0,∞) and assume that φm = Γ(m+α)/Γ(α) =
(−1)m(−α)m, m ∈ N, or, equivalently, that φ(z) = (1 − z)−α − 1, |z| < 1. Note that
φ′(z) = α(1 − z)−α−1 and that φ′′(z) = α(α + 1)(1 − z)−α−2 = φ′(z)(α + 1)/(1 − z). For
α = 1 we are back in Example 4.3. Again, closed forms for the solution z of the equation
θzφ′(z) = 1 are only available for particular values of α. Theorem 3.2 is again applicable and
the effective population size Ne satisfies Ne ∼ %N with % := (1− z)/(1 + αz), since

1 + θz2φ′′(z) = 1 + θz2φ′(z)
α+ 1
1− z

= 1 + z
α+ 1
1− z

=
1 + αz

1− z
,

which again corrects the wrong asymptotic result for Ne provided on top of p. 539 of [7].

All examples considered so far satisfy φ′(r−) = ∞ such that for all θ ∈ (0,∞) the equation
θzφ′(z) = 1 has a unique real solution z(θ) ∈ (0, r). We finally provide an example satisfying
φ′(r−) <∞.
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Example 4.8 (Polylog model) Fix α ∈ (0,∞) and suppose that φ is the polylog function,
i.e. φ(z) :=

∑∞
m=1m

−αzm, |z| < 1. For α = 1 the polylog model coincides with the Dirichlet
model (Example 4.2). For α→ 0 we are back in Example 4.3 whereas for α→∞ we approach
the Wright–Fisher model (Example 4.1).
If α ≤ 2, then φ′(1−) = ∞, so Theorem 3.2 is applicable for all θ ∈ (0,∞). There seems to
be no closed expression available for the solution z = z(θ) of the equation zφ′(z) = 1/θ. The
case α = 2 is a nice exception where it is easily seen that z(θ) = 1− e−1/θ, θ ∈ (0,∞).
If α > 2, then φ′(1−) = ζ(α − 1) < ∞. In this case the equation θzφ′(z) = 1 admits a
solution z = z(θ) ∈ (0, 1) if and only if θ > θc with critical value θc := 1/φ′(1−) < 1. Thus,
Theorem 3.2 is not applicable for θ ≤ θc. We leave it open for future work to discuss the
limiting behavior of the random variable µN,1 in this case.

Acknowledgement. The authors thank Elmar Teufl for fruitful discussions concerning the
Laplace method and the saddle point method.
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