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Mathematics, Image and Applications Laboratory, University of La Rochelle,

17000 La Rochelle, FRANCE
hoel.le capitaine@univ-lr.fr & carl.frelicot@univ-lr.fr

Abstract—Since a clustering algorithm can produce as many partitions
as desired, one needs to assess their quality in order to select the partition
that most represents the structure in the data if there is any. This is the
rationale for the cluster validity problem and indices. This paper presents
a cluster validity index that helps to find the optimal number of clusters
of data from partitions generated by a fuzzy clustering algorithm such as
the Fuzzy C-Means (FCM) or its derivatives. Given a fuzzy partition, this
new index uses a measure of multiple clusters overlap and a separation
measure for each data point, both based on an aggregation operation of
membership degrees. Experimental results on artificial and benchmark
data sets are given to demonstrate the performance of the proposed index
as compared to traditional and recent indices.

Index Terms—Cluster validity, fuzzy cluster analysis, aggregation
operators, triangular norms.

I. INTRODUCTION

Clustering is the unsupervised classification of data points or
patterns into groups or clusters, such that patterns in the same
group are similar to each other while patterns in different groups are
dissimilar [1]. An alternative to traditional crisp clustering methods
that generate partitions where each pattern belongs to only one cluster
is fuzzy clustering where each pattern is associated with every cluster
to various membership degrees [2]. Such methods are less sensitive
to local minimum problems than crisp ones because of the fuzzy
updating at each iteration. Unfortunately, fuzzy methods as well as
crisp ones are not robust to the existence of isolated points (outliers)
and noisy data for which other approaches have been proposed such
as possibilistic clustering [3]. In this work, we are interested in fuzzy
clustering and we use the Fuzzy C-Means (FCM) partitioning method
introduced by Bezdek [2] because it is the most widely used fuzzy
clustering algorithm.

The main drawback of clustering methods is that they require
the user to specify the number, c, of clusters which the user does
not usually know or may not want to specify. A resulting fuzzy c-
partition has to be validated because its quality highly depends on this
parameter. A very challenging problem in cluster analysis, called the
Cluster Validity (CV) problem in the literature, consists of finding the
optimal value for c [4]. One may compare the resulting partition to a
reference one obtained from background knowledge, using a different
algorithm, or the same algorithm with a different specified c value.
Such comparisons can be done using so-called relative indices, as in
[5], [6], [7]. An alternative approach is to select the most appropriate
number of clusters, given a particular clustering algorithm, based on
so-called internal indices, referred hereafter to as Cluster Validity
Indices (CVIs). In addition, clustering algorithms always produce a
partition even if there is no cluster structure. This checking step,
called Cluster Tendency, is done prior to CV, and is outside the scope
of this paper. It has received more attention in recent years, e.g. in [8],
[9], [10], mainly by use of re-ordering similarity/distance matrices.

Many CVIs have been proposed for this purpose in the last three
decades and their number has been increasing in recent years, (see
[11], [12] for reviews). Historically CVIs only use partial membership

degrees, e.g. [13], [14]. They are easy to compute, well-adapted to
situations where clusters overlap with each other, but suffer from
a monotonic tendency with respect to c. Another widely reported
problem is that such indices may not have any relation to the
geometrical structure of the data, e.g. the distances between the
patterns of similar and different clusters. More recently developed
CVIs are based on compactness and/or separation measures that
simultaneously use membership degrees and clusters’ centroids, e.g.
[15], [16], [17], [18], [19], [20], [21]. They are less monotonic with
respect to c but are more difficult to compute and not as efficient in
case of overlapping clusters. Furthermore, the way compactness and
separation measures are computed does not allow for distinguish-
ing numerous different situations [22]. Some reported problems of
existing CVIs, whatever the category they belong to, are worsened
by the inability of the underlying fuzzy clustering algorithm to deal
with noisy points and outliers. Noisy points cause cluster-overlap by
building bridges between separated clusters, and outliers may result
in singleton clusters, such that the natural number of clusters can
not be correctly assessed. Examples of such difficult situations are
illustrated in Figure 2-(c) to -(f). Fuzzy modeling approaches have
been proposed (see [23]), but we restrict ourselves to commonly used
indices involving compactness, separability and/or overlap measures.

In this paper, we present a new CVI for fuzzy clustering which aims
to overcome most of the well-known difficulties discussed above.
It consists of the average value of the ratio of two measures: an
overlap measure and a separation measure. Both measures are based
on an aggregation operator which combines triangular norms applied
to membership degrees.

The rest of the paper is organized as follows. Section II briefly
describes the FCM fuzzy clustering algorithm, and recalls some
traditional and recent CVIs that will be used for comparison. In
section III, the necessary background on aggregation operators is
given and the new CVI is presented. We discuss its properties and
illustrate its behavior on a simple example. Experimental results on
synthetic and real data sets are provided in section IV and concluding
remarks are given in section V.

II. CLUSTER VALIDITY INDICES FOR FUZZY CLUSTERING

In this section, we first recall the well-known FCM fuzzy clustering
algorithm. We then give nine previous CVIs that will be used in the
experiments, described in section IV.

A. The fuzzy c-means algorithm

Let X = {x1, · · · , xn} be a n point data set in a p-dimensional
feature space, Rp, with the usual Euclidean norm ||.||. The fuzzy
c-means (FCM) algorithm partitions X into c > 1 clusters by
minimizing the following objective function [2]:

Jm(U, V ) =

n∑
k=1

c∑
i=1

umik ||xk − vi||2 (1)



2 IEEE TRANS. ON FUZZY SYSTEMS

TABLE I
OTHER CLUSTER VALIDITY INDICES ACCORDING TO THE LITERATURE.

Name & Reference Index Search for

Normalized Partition Entropy [13] NPE(U, c) =
−
∑n
k=1

∑c
i=1 uik log(uik)

n− c
min

Normalized Partition Coefficient [14] NPC(U, c) =
c
n

∑n
k=1

∑c
i=1 u2

ik − 1

c− 1
max

Fukuyama & Sugeno [15] FS(U, V,X, c) = Jm(U, V )−
n∑
k=1

c∑
i=1

u
m
ik ||vi − v||2 min

Fuzzy Hypervolume [16] FHV (U, V,X, c) =
c∑
i=1

√√√√det

(∑n
k=1 umik(xk − vi)(xk − vi)T∑n

k=1 umik

)
min

Xie & Beni [17] XB(U, V,X, c) =
Jm(U, V ) /n

mini,j=1,c;j 6=i ||vi − vj ||2
min

Bensaid et al. [18] SC(U, V,X, c) =
c∑
i=1

∑n
k=1 umik||xk − vi||2A∑n

k=1 uik ·
∑c
j=1 ||vi − vj ||2A

min

Kwon [19] K(U, V,X, c) =
Jm(U, V ) + 1

c

∑c
i=1 ||vi − v||2

mini,j=1,c;j 6=i ||vi − vj ||2
min

Pakhira et al. [20] PBM(U, V,X, c) =

(
1

c
×
∑n
k=1 ||xk − v||
Jm(U, V )

× c
max
i,j=1

||vj − vi||
)2

max

Wu & Yang [21] WY (U, V, c) =
c∑
i=1

n∑
k=1

u
2
ik/ min

1≤i≤c

(
n∑
k=1

u
2
ik

)

−
c∑
i=1

exp

(
−min
j 6=i

(
||vi − vj ||2/

c∑
i=1

||vi − v||2/c
))

max

where uik is the membership degree of xk in the ith cluster
represented by its centroid vi ∈ Rp. Centroids are gathered into
a (p × c) matrix V = [v1, ...,vc]. Degrees uik are subject to∑c
i=1 uik = 1 for all xk in X and to 0 <

∑n
k=1 uik < n (∀i = 1, c),

and are elements of the fuzzy c−partition matrix U = [u1, ...,un] of
size (c× n). The so-called fuzzifier m > 1 is a weighting exponent
which makes the resulting partition more or less fuzzy [11]. The
higher m, the more fuzzy the clusters’ boundaries. Given X and c,
minimization of (1) is obtained by alternatively updating (U, V ) (see
[4] p.17 for details). The Euclidean distance used in FCM induces
hyperspherical clusters with similar numbers of points. Thus, this
partitioning is not well suited to every possible situation, e.g.: bridges,
outliers, additional noisy points. CV is then a more challenging
problem when using FCM instead of other algorithms that behave
better in such situations.

B. Cluster validity and previous cluster validity indices

Validating the provided clustering (U, V ) of X consists of assess-
ing whether the resulting partition reflects the structure in the data or
not. Due to the unsupervised aspect of the method, the user does not
have any prior knowledge of the structure of the data and c is a user-
defined parameter of clustering algorithms such as FCM. Most of the
work on CV focuses on the “optimal number of clusters” problem
and many CVIs have been proposed. Given a CVI, the procedure to
automatically select the optimal number of clusters cbest consists of
running the FCM algorithm with c varying in a user-defined range
[cmin, cmax], computing CV I(c) for each partition produced, and
selecting cbest such that CVI(cbest) is optimal within the predefined
range.

Many CVIs have been proposed in the last three decades with
their number increasing in recent years. It is not practical to review
all of them. Nine indices are summarized in Table I, some of them
being the most frequently referred to in the literature and some more
recent that address the drawbacks of the former ones. We invite
the interested reader to refer to review papers [24], [25], [4], [12],
[26] and individual references for details on each CVI. They can be
classified into possibly mixed categories according to:
i) the type of information they handle: only membership degrees

in clusters, e.g. [13], [14], vs additional information on the

geometrical structure of clusters, e.g. [15], [16], [17], [18], [19],
[20], [21]

ii) cluster properties: compactness within each cluster, e.g. [13],
[14], [16], and/or separation between clusters, e.g. [15], [17],
[18], [19], [20], [21].

III. THE NEW CLUSTER VALIDITY INDEX

A. Background on aggregation operators and proposed approach

The aggregation of several input values into a single one is a
fundamental step in many data analysis problems. In such problems,
one has to represent a multidimensional vector by a single value; it
may be a prototype, or a class, for clustering or pattern classification,
or it may be an overall satisfaction degree for multi-criteria decision
making. Generally speaking, an aggregation function is an operator
that, with a number of input values, say c, will associate a typical
value, representing as much as possible all the inputs. Since a
rescaling operation is always possible, we restrict ourselves to the
interval I = [0, 1] for inputs and outputs.

Definition 1: A c-ary aggregation operator (AO for short) is a
mapping A : [0, 1]c → [0, 1], {a1, · · · , ac} 7→ A(a1, · · · , ac).
Among these operators, one finds a lot of commonly used functions
such as arithmetic and geometric means, triangular norms, fuzzy
integrals and OWA (Ordered Weighted Averaging) operators, (see
[27], [28] for large surveys). These operators are divided into several
categories, depending on the way the values are aggregated: conjunc-
tive, disjunctive, compensative, or weighted operators.

Definition 2: An AO A is said to be conjunctive if
A(a1, · · · , ac) ≤ min(a1, · · · , ac).
If we add properties of non decreasingness, commutativity and
associativity, we obtain the triangular norms (t-norms for short)
family.

Definition 3: A t-norm is a commutative, associative and mono-
tonic function > : [0, 1]2 → [0, 1], satisfying >(a, 1) = a, i.e. 1 is
the neutral element of t-norms.
It follows from these properties that >(a, b) ≤ min(a, b). Since the
minimum operator satisfies the above mentioned properties, it is a
t-norm. Consequently, the minimum operator is the largest t-norm
for all [a, b] ∈ [0, 1]2.



LE CAPITAINE AND FRÉLICOT: A CLUSTER VALIDITY INDEX 3

TABLE II
EXEMPLES OF BASIC AND PARAMETRIZED T-NORM AND T-CONORM

COUPLES.

Name a>b a⊥b
Standard (S) min(a, b) max(a, b)

Algebraic (A) ab a+ b− ab
Łukasiewicz (L) max(a+ b− 1, 0) min(a+ b, 1)

Hamacher (Hγ ) ab
γ+(1−γ)(a+b−ab)

a+b−ab−(1−γ)ab
1−(1−γ)ab

Dombi (Dγ ) 1

1+
(
( 1−a
a

)γ+( 1−b
b

)γ
)1/γ 1− 1

1+
(
( a
1−a )γ+( b

1−b )
γ
)1/γ

Definition 4: An AO A is said to be disjunctive if
A(a1, · · · , ac) ≥ max(a1, · · · , ac).
If we add the same properties of non decreasingness, commutativity
and associativity, we obtain the family of triangular conorms (t-
conorms for short).

Definition 5: A t-conorm is a commutative, associative and mono-
tonic function ⊥ : [0, 1]2 → [0, 1] satisfying ⊥(a, 0) = a, i.e. 0 is
the neutral element of t-conorms.
It follows from these properties that ⊥(a, b) ≥ max(a, b). Since
the maximum operator is a t-conorm, it is the smallest one. Besides
the classical triangular norm couples, many parametric families have
been introduced, e.g. the Hamacher or Dombi families (see Table II).
Introducing parameters allows to control the way the values are
aggregated, and special values of the parameter generally correspond
to some basic couples, e.g. the Hamacher couple reduces to the
algebraic one if γ = 1. A complete review of triangular norms
can be found in [29]. Returning to the clustering problem, we
assume that the values uik of a fuzzy c-partition matrix U to be
aggregated represent the degree to which an object xk satisfies
the ith group, i.e. its similarity to the prototypes describing each
group. Using this knowledge contained in the membership vector
uk(xk) = [u1k, · · · , uck], clustering consists of selecting the most
appropriate group to which the object will be assigned. The maximum
operator, or standard triangular conorm, is commonly used in this
situation, but we may be interested in the lower values that interact
with the largest value. The maximum operator does not allow the
aggregated values to compensate each other, whereas other triangular
conorms do (see [29]; especially the Archimedean ones for which
⊥(a, a) > a). This property can be very useful, in particular in
situations where objects satisfy more than one group description,
making an exclusive partitioning inefficient. A fundamental issue is
the determination of the overall degree of strict membership in a
group or a cluster.

In [30], the authors define the l-order fuzzy OR operator (fOR-l
for short) and use it in the context of supervised classification with
reject options. This operator evaluates degrees of satisfaction at a
given order by combination of triangular norms.

Definition 6: Let P be the power set of C = {1, 2, · · · , c} and
Pl = {A ∈ P : |A| = l} where |A| denotes the cardinality of
the subset A. The fOR-l operator is an aggregation operator that

associates uk with a single value
l

⊥(uk) ∈ [0, 1] defined by:

l

⊥
i=1,c

uik = >
A∈Pl−1

(
⊥

j∈C\A
ujk
)
. (2)

It can be viewed as some kind of generalization of the notion of “lth

largest” value, with l in C. In particular, it is easy to show that in

case of standard triangular norms,
l

⊥(uk) is exactly the “lth largest”
element of uk (see proof in [30]). We use the ability of the fOR-
l to evaluate membership degrees for various orders in a different
context: unsupervised classification and in particular the selection of

the optimal number of clusters. For convenience and without loss of
generality, we will use u(l)k to denote the “lth largest” value of uk.

B. The new CVI combining a separation measure and an overlap
measure

A reliable validity index for the FCM algorithm must consider
both compactness and separation within a fuzzy c-partition. If only a
measure of compactness is considered, the best partition is obtained
when each data point is considered as a separate (singleton) cluster.
On the other hand, if only a separation measure is considered, the
trivial solution corresponding to one cluster is obtained.

It is generally accepted that a CVI has to consider both separation
and compactness measures (see [4], [12]), provided that such mea-
sures reflect the right data structure. This is not always true. CVIs
that use the objective function (1) to quantify compactness, e.g. XB,
FS, K and PBM , are not as efficient as one could expect. The
reason is the multiplication of uik and ||xk − vi||2 that act in an
opposite way. If one is increasing then the other is decreasing, and
vice-versa. Furthermore, these indices tend to monotonically decrease
when the number of clusters tends to the number of points in the data
set, i.e. limc→n ||xk − vi||2 = 0 (see [11], [19]). It is not anymore
correct for CVIs that use distances between centroids to quantify
separation, e.g. XB, SC, K, WY and PBM , namely ||vj−vi6=j ||2.
Since these quantities do not take into account the shape and/or the
scattering of the clusters, two close but not dispersed clusters can
be more separated than two dispersed clusters that overlap despite
the distance between the centroids being large. Furthermore, using
only centroid information is not sufficient to interpret the geometrical
structure of the data, and therefore not sufficient for the separation
between clusters either (see [22] for examples).

We propose to use, for each point xk, two measures that overcome
these drawbacks: a fuzzy overlap measure which evaluates the degree
of overlap of a specified number, l, of fuzzy clusters and a fuzzy
separation measure corresponding to the largest membership degree,
with respect to the c − 1 other ones. A low value of this latter
measure will denote a large separation of the most probable cluster
xk from the others. In terms of fuzzy membership degrees, a high
separation denotes how well a given point matches its supposedly true
cluster description, while the overlap measure defines how much a
given point satisfies several cluster descriptions. The ability to deal
with overlapping clusters is now considered to be a major criterion
when comparing indices [31]. Despite its importance, the majority of
the existing work is based on an intuitive representation of overlap.
An overlap measure between l fuzzy clusters for each point xk in
X described by its membership degrees can be obtained by (2) as
illustrated in Figure 1 where overlap values of three fuzzy clusters
are plotted for various orders and triangular norm couples. According
to Figure 1, the l-order overlap value is null when l− 1 clusters are
overlapping, and increases as the clusters increasingly overlap. By

successively computing
l

⊥(uk) for different values of l, we get a
combination of l-order overlap degrees for xk. In order to determine
the overall degree of overlap for a given point, we have to determine
which order(s) induce(s) high overlap. The best order(s) is(are)
obtained by the fuzzy disjunction of the l-order overlap measures
(l = 2, c).

Definition 7: We define the overall overlap measure for xk as:

O⊥(uk(xk), c) =

1

⊥
l=2,c

( l

⊥
i=1,c

uik
)
. (3)

Several other CVIs use overlap measures between couples of clusters
(see [22], [26]) that can be viewed as 2-order overlap measures.
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Fig. 1.
l
⊥(uk) for three fuzzy sets A, B and C with triangular membership functions at orders l = 2 (left) and l = 3 (right) using four different triangular

norm couples: Standard, Algebraic, Hamacher (γ = 0) and Dombi (γ = 2).

In (3), not only couples, but also triplets of clusters up to a c-
tuple of clusters combinations are taken into account. We will not
compare the new CVI with these CVIs because it would require an
exponential combination of them (to extend couples to all possible
l-uples) resulting in a prohibitive computation time.

In [24], Bezdek and Pal show that inter cluster separation plays a
more important role in CV than diameters. We propose to introduce
such a measure by quantifying the fuzzy separation of each point xk

with
1

⊥(uk). This denotes how well xk matches the cluster in which
it has the largest membership; thus how well this cluster is separated
from the others when only considering xk. Notice that, according to
(3), this individual measure also corresponds to the overlap measure
within one cluster, i.e. its separation from the other fuzzy clusters
since uk components sum up to one. For normalization purpose, and
because there are (c− 1) other clusters, we use the fuzzy disjunction

of the (c− 1) individual measures
1

⊥(uk) in order to select the most
probable cluster.

Definition 8: We define the fuzzy separation of xk with respect
to the c clusters as:

S⊥(uk(xk), c) =

1

⊥
(

1

⊥
i=1,c

uik, · · · ,
1

⊥
i=1,c

uik︸ ︷︷ ︸
c−1 times

)
. (4)

A small value of the overlapping degree O⊥(uk(xk), c) and a large
value of the separation degree S⊥(uk(xk), c) indicates that xk lies
in a well separated and not overlapping part of a cluster.

Definition 9: We define the overlap-separation measure from the
perspective of xk as:

OS⊥(uk(xk), c) =
O⊥(uk(xk), c)

S⊥(uk(xk), c)
. (5)

This measure can be related to measures of fuzziness in the sense
that it measures the amount of average ambiguity between fuzzy
sets. However, OS⊥ is not a measure of fuzziness H as defined in
[32] because of the maximality property P2: H(u) is maximum ⇔
ui = 0.5 for all i. For OS⊥, it holds only for (⇒): OS⊥(u) is
maximal if ui = 0.5 for all i. Nevertheless, OS⊥ defines a measure
of nonspecificity, (see [33] for a definition). We have OS⊥(u) = 0
iff u is a singleton, OS⊥(∅) is undefined, but can be set to one by
convention, and for two normal fuzzy sets u, v such that u ⊂ v,

then OS⊥(u) ≤ OS⊥(v) for all t-norm couples, (see [32], [34] for
a discussion on uncertainty measures).

Definition 10: We define the Overlap and Separation Index (OSI)
taking values in [0, 1] as the average value of the individual overlap-
separation measures:

OSI⊥(U, c) =
1

n

n∑
k=1

OS⊥(uk(xk), c). (6)

Minimizing (6) over the range [cmin, cmax] gives the local optimal
number of clusters for the data in X . A short discussion about the
range specification is provided in Section IV. Note that we already
proposed to average the ratio of the overlap measure O⊥(uk, c) over
another separation measure S′⊥(uk, c) based on the fOR-l operator in
order to define a CVI in a recent paper [35]. Unfortunately, S′⊥(uk, c)
can be lower than O⊥(uk, c), depending on the norm couple (>,⊥),
so that the ratio is not always in [0,1]. A consequence is that such
a large ratio value can significantly affect the average value in (6).
This inconvenience does not hold for the new index (see Proposition
1 below).

C. Properties and example

Let us show some properties that the proposed family of indices
OSI (6) satisfy. For all properties, c is supposed to be greater or
equal to 2.

Proposition 1: For all (>,⊥) norm couples, we have 0 ≤
OSI⊥(U, c) ≤ 1.

Proof: It is proved in [30] that
1

⊥(uk) ≥
2

⊥(uk) · · · ≥
c

⊥(uk),
for all (>,⊥). If o denotes the (c−1)-dimensional vector constructed

by
l

⊥(uk) and s the one constructed with the (c− 1) values
1

⊥(uk),
we have oi ≤ si for all i ∈ {1, · · · , c− 1}. By monotony of >, we
finally have O⊥(uk, c) ≤ S⊥(uk, c). Q.E.D.

Proposition 2: If U is a crisp partition matrix, then
OSI⊥(U, c) = 0, for all (>,⊥).

Proof: For all k, uik ∈ {0, 1} and
∑c
i=1 uik = 1, then one

value equals 1 while the others are 0, say u(1)k = 1 and u(2)k =
· · · = u(c)k = 0. Since 0 is the absorbing element of > (i.e. a>0 = 0



LE CAPITAINE AND FRÉLICOT: A CLUSTER VALIDITY INDEX 5

for all >), we easily verify that O⊥(uk, c) = 0 for all (>,⊥):
1

⊥
l=2,c

( l

⊥
i=1,c

uik
)
=
( 2

⊥
i=1,c

(1, 0, · · · , 0)
) 1

⊥ · · ·
1

⊥
( c

⊥
i=1,c

(1, 0, · · · , 0)
)

=

1

⊥(0, · · · , 0︸ ︷︷ ︸
c−1 times

) = 0 .

(7)

Since 1 is the absorbing element of ⊥ (i.e. a⊥1 = 1 for all

>), then
1

⊥(1, 0, · · · , 0) = 1. Hence, we have OSI⊥(U, c) =
1
n

∑n
k=1 0/1 = 0. Q.E.D.

Proposition 3: If U is a totally fuzzy partition matrix, then
OSI⊥S (U, c) = 1.

Proof: For all k, uik = 1
c

. From (3), we can write O⊥(uk, c)
as:

1

⊥
l=2,c

( l

⊥
i=1,c

uik
)
=
( 2

⊥
i=1,c

(1
c
, · · · , 1

c

)) 1

⊥· · ·
1

⊥
( c

⊥
i=1,c

(1
c
, · · · , 1

c

))
.

(8)
With standard triangular norms (> = min,⊥ = max), it becomes:

1

⊥
l=2,c

( l

⊥
i=1,c

uik
)
=

1

⊥
( 1

c
, · · · , 1

c︸ ︷︷ ︸
c−1 times

)
= max

( 1

c
, · · · , 1

c︸ ︷︷ ︸
c−1 times

)
=

1

c
.

(9)
It is easy to check that it is the value of S⊥S (uk, c) for all uk such as
uik = 1/c. Therefore, we have OSI⊥S (U, c) =

1
n

∑n
k=1

1
c
/ 1
c
= 1.

Q.E.D.
Proposition 4: If we use standard triangular norms, then

OSI⊥S (U, c) =
1
n

∑n
k=1

u(2)k

u(1)k
.

Proof: It is proved in [30] that, when using standard trian-

gular norms,
l

⊥S(uk) = u(l)k and
1

⊥S(uk) = maxi=1,cuik.
Then, we have O⊥S (uk, c) = maxl=2,cu(l)k = u(2)k by
(3) and S⊥S (uk, c) = max(maxi=1,cuik, ...,maxi=1,cuik) =
max(u(1)k, ..., u(1)k) = u(1)k by (4). Therefore, we have
OSI⊥S (U, c) =

1
n

∑n
k=1

u(2)k

u(1)k
. Q.E.D.

Let us illustrate the ability of the proposed index to find the right
number of clusters and the right partition for a toy example, inspired
by [36], that we call Diamond+. It consists of the eleven two-
dimensional points first introduced by Windham [37] and an outlier,
with coordinates (6, 6), (see Figure 2-(f)). Ignoring the outlier, the
correct partition is composed of the c? = 2 touching clusters. Most of
CVIs that only consider compactness and separation will select three
clusters, (see Table V in section IV). The membership degrees of
the twelve points (i.e. U ) provided by the fuzzy c-means algorithm,
for c = 2 and c = 3 clusters, are given in Table III, as well as
the values of the overlap (3), separation (4) and overlap-separation
(5) measures. The standard norms > = min and ⊥ = max are
used for simplicity, so the three measures are respectively the second
largest value, the largest value and the ratio of both, regardless c
(refer to Proposition 4). Since the membership degrees are given for
both cases (c = 2 and c = 3), the values of the three measures
are easy to compute: O⊥S (uk, c) = u(2)k, S⊥S (uk, c) = u(1)k and
OS⊥S (uk, c) = u(2)k/u(1)k, as well as their average value over the
twelve points which gives the index values. The obtained index values
are OSI⊥S (U, 2) = 0.132 and OSI⊥S (U, 3) = 0.142 showing that
the proposed CVI recovers the natural partition. Note that for c = 2,
the membership degrees of the eleven diamonds points, and therefore
the measures, are not symmetrical because of the non central outlier’s
position. Let us focus on two particular points, compared to the ten
others: the middle of the two diamonds x6 and the outlier x12. As

expected, independently of c, x6 is the most ambiguous (0.387 and
0.466) and the less separated (0.613 and 0.477) point. For c = 2,
x12 does not belong to an overlapping part of the cluster (0.222), and
is more separated (0.778) than x6. However, x12 is less separated
and more ambiguous than the ten other points so the resulting ratio,
even if it is much greater than the others (except x6 of course),
does not make the average value OSI⊥S (U, 2) be significantly high.
For c = 3, x12 is the most (and only) representative point of the
third cluster as expected, but also the most separated (0.999) and
least ambiguous (0.001) point so that the resulting ratio is much
lower. The overlap (respectively separation) measure for x6 increases
(respectively decreases) significantly because the second cluster that
it belongs to does not contain x12 anymore. For the ten other points,
its depends on their relative position to the three centroids (from
one side, between) and the ratios increase or decrease in a very
compensatory way with respect to the average value because they
belong to two well-balanced and symmetrical clusters. Therefore,
the main changes in contributions to the index are due to both
x6 and x12. When c increases from 2 to 3, the decrease of the
ratio for x12 is not sufficient to compensate for the increase of
the ratio for x6 when averaging, so that OSI⊥S (U, 3) does not
become less than OSI⊥S (U, 2). However, as well as others, the
proposed CVI is sensitive to the number of outliers, their relative
position and their scattering (i.e. are they still outliers or noisy
points?), because overlap and separation measures highly depend
on the number and distribution of clusters. For instance, we find
that OSI⊥S (U, 3) < OSI⊥S (U, 2) if x12 is put far away from the
diamonds or if there are a few additional points close to it. This is the
reason why experiments on various mixed situations are presented
in section IV - Figure 2. We experimentally found that when a
data set contains about 50% (or more) of uniformly distributed and
sufficiently scattered (noisy) points, all the CVIs fail in recovering
the right number of clusters if a large range for c is tested.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed OSI by conducting
an extensive comparison with the nine CVIs and the validation
procedure described in section II-B in conjunction with the FCM
algorithm. As in almost all papers dealing with fuzzy CV, the fuzzifier
exponent m is set to 2, the termination parameter for the test for
convergence is set to 10−3 and the Euclidean distance is used. The
optimal number of clusters is sought in the range [cmin = 2, cmax]
with cmax = 10 for real data sets and cmax = min(10, b

√
nc) for

artificial data sets, where b.c denotes the floor function, in order to
ensure a good balance between the number of clusters and the number
of points, (see [11]).

A. Data sets

We make use of eleven data sets with varying properties such as
good separation, overlapping clusters, presence of outliers, additional
noisy points, making the CV problem more or less easy. Most of
these data sets are described in the CV literature. The first six data
sets are two-dimensional artificial data sets such that the true number
of clusters can be visually assessed, the five others are real data
sets from the public domain, (see Table IV). The data set Bridge is
composed of four connected clusters, (see Figure 2-(c)). The data
set 4over contains 200 points drawn from a mixture of c = 4
bivariate normal distributions of 50 points each, with two of them
slightly overlapping. The 4noise data set is 4over to which 100 points
drawn from a uniform distribution are added to simulate a noisy
environment, (Figure 2-(e)).
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TABLE III
MEMBERSHIP DEGREES, OVERLAP AND SEPARATION MEASURES, AND OSI⊥S VALUES FOR c = 2, 3 CLUSTERS ON THE Diamond+ DATA SET,

RESULTING IN CVI VALUES OSI⊥S (2) = 0.132 < OSI⊥S (3) = 0.142.

c x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 OSI⊥S (avg.)

2

uk =

(
u1k

u2k

)
.946 .944 .996 .943 .945 .613 .174 .129 .018 .022 .039 .222
.054 .056 .004 .057 .055 .387 .826 .871 .982 .978 .961 .778

O⊥S (uk, c) .054 .056 .004 .057 .055 .387 .174 .129 .018 .022 .039 .222
S⊥S (uk, c) .946 .944 .996 .943 .945 .613 .826 .871 .982 .978 .961 .778
OS⊥S (uk, c) .057 .059 .004 .060 .058 .631 .210 .148 .018 .022 .040 .285 0.132

3

uk =

u1k

u2k

u3k

 .933 .913 .998 .921 .876 .466 .100 .055 .001 .058 .042 .000
.047 .063 .001 .061 .100 .477 .874 .905 .998 .824 .866 .001
.019 .024 .001 .018 .024 .057 .026 .039 .001 .119 .092 .999

O⊥S (uk, c) .047 .063 .001 .061 .100 .466 .100 .055 .001 .119 .092 .001
S⊥S (uk, c) .933 .913 .998 .921 .876 .477 .874 .905 .998 .824 .866 .999
OS⊥S (uk, c) .050 .069 .001 .066 .114 .976 .114 .061 .001 .144 .106 .001 0.142

TABLE V
OPTIMAL NUMBER OF CLUSTERS cbest OBTAINED USING DIFFERENT CVIS ON ARTIFICIAL AND REAL DATA SETS.

data set cmax NPE NPC FS FHV XB SC K PBM WY
OSI⊥ c?⊥S ⊥H10

⊥A ⊥D2

X30 5 3 3 4 3 3 5 2 3 3 3 3 3 3 3
Bensaid 7 2 3 7 6 3 7 3 6 6 3 3 3 3 3
Bridge 8 2 4 6 5 5 8 4 4 5 4 4 4 4 4
4over 10 3 4 4 4 3 3 3 4 4 4 4 4 4 4
4noise 10 2 3 5 4 2 8 3 4 3 4 4 3 4 4
Diamond+ 4 2 3 3 4 3 4 3 3 2 2 2 3 2 2
Iris 10 2 3 5 3 2 3 2 3 2 2 2 2 2 2 or 3
Wine 10 2 3 10 3 2 6 2 3 3 3 3 3 3 3
Starfield 10 2 2 7 9 6 8 3 4 3 9 9 9 9 8 or 9
Cancer 10 2 2 3 2 2 4 2 2 2 2 2 2 2 2
Pima 10 2 2 3 7 2 6 2 3 2 2 2 2 2 2

(a) X30 (b) Bensaid

(c) Bridge (d) 4over

(e) 4noise (f) Diamond+

Fig. 2. The artificial data sets.

TABLE IV
ARTIFICIAL AND REAL DATA SETS USED IN THE EXPERIMENTS.

Data set Cluster properties c?

X30 [24] well separated 3
Bensaid [18] different dispersions and cardinalities 3

Bridge connected 4
4over overlapping and noisy points 4
4noise overlapping and noisy points 4

Diamond+ touching and one outlier 2
Iris overlapping 2 or 3

Wine well separated 3
Starfield [17] chain-like structure 8 or 9
Breast Cancer overlapping 2

Pima overlapping 2

B. Results

Table V summarizes the local optimal number of clusters obtained
with the tested CVIs on artificial and real data sets. The c? column
gives the expected number of clusters which is either the physical
number of clusters given by an expert (real data sets) or the (most)
visually perceptive one (synthetic data sets). The structure of the X30
data set is easy to recover, so most of the presented indices including
the proposed one correctly identify three clusters, except for FS, SC
and K. For the Bensaid data set, only NPC, XB, K and OSI⊥
find the correct number of clusters, while the others have a tendency
to overestimate the number of clusters, e.g. six and seven, by dividing
the central cluster in order to obtain clusters with a similar number of
points. The same problem arises with the linking points of the Bridge
data set for most of the indices, except for NPC, PBM , K and
OSI⊥. For the 4over data set, indices NPE, XB, SC and K fail by
merging the two overlapping clusters while the others succeed. Only
FHV , PBM and OSI⊥=S,H10,D2 identify the correct number of
clusters for the 4noise data set. The claimed ability of WY to deal
well with noisy points is not true in all cases. However, it performs
well in the presence of outliers, as shown for data set Diamond+,
as well as NPC and the proposed OSI⊥. Since it is generally
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accepted that the right number of clusters for the Iris data set is two
or three, it is not surprising that all indices find it except FS. More
surprising is the inability of NPE, XB, FS and SC to recover
the structure of the Wine data set whose clusters are known to be
linearly separable. The low number of examples compared to the high
number of poorly separated clusters of the Starfield data set makes
the problem of finding the number of clusters difficult. The proposed
OSI⊥, FHV and SC are the only indices that give an acceptable
number of clusters. Almost all indices identify the right number of
clusters for the Cancer data set. The two groups of the Pima data set
present an overlap which makes FS, FHV , PBM and SC indices
fail in correctly recognizing the true number of clusters. None of the
previous existing indices correctly recognizes the expected number
c? for all the data sets. Some of them are very robust to outliers, e.g.
WY , others are less adapted to a structure where clusters strongly
overlap, e.g. PBM , but fail when faced with another case or with
mixed ones. The new proposed index performs well, whatever the
structure, for most of the norm couples. It only fails for the algebraic
one for the 4noise and Diamond+ data sets. This is due to the high
compensatory behavior of the t-norm (product) which particularly
arises in presence of isolated points. For illustration purpose, Figure
3 shows the OSI⊥S (U, c) plot for c in the specified range for all
the considered data sets. Let us focus on the respective results of
OSI versus NPC and NPE, which are all based only on the fuzzy
partition matrix U . First of all, NPE has a very strong tendency to
select two clusters, making it fail most often when c? > 2 whenever
the clusters are well separated, e.g. Bensaid data set. Although NPC
outperforms NPE, it fails in presence of noisy points or outliers
(e.g. 4noise, Diamond+). The main reason is that the information
measure provided by the squared membership degrees is not adapted
to combined situations, whereas the OSI index permits balancing of
the presence of isolated and/or ambiguous points. Moreover, when
the data set consist of a high number of poorly separated clusters,
e.g. Starfield, OSI still succeeds while NPC fails because of its
higher monotonic tendency in spite of the normalization factor. More
generally, NPC and NPE are outperformed because they do not
exploit the relationship between membership degrees. Both compute a
measure of uncertainty where each value uik is multiplied with itself
or a function of itself, respectively uik × uik and uik × log(uik).
The indices then sum up these individual measures over the data set.
In contrast, OSI evaluates the underlying uncertainty by combining
different degrees uik and ujk where i 6= j. Therefore, the relationship
between degrees is taken into account if any, hence the data structure
is better reflected.

C. Sensitivity to fuzzifier m

As mentioned in section I, the fuzzy c-partition matrix U resulting
from the FCM algorithm depends on the fuzzy exponent m. A CVI
should be robust in the presence of changes in this user-defined
parameter. Since it has been shown in [24] that FCM provides best
results for m lying in [1.5, 2.5], we test the different CVIs in this
range of values. The 4over data set and even more the 4noise one
are chosen because two close clusters strongly overlap (see Figure
2-(d) and -(e)). This could make the indices favor three fuzzy clusters
instead of four as the partition matrix U becomes more fuzzy with
m. The optimal number of clusters selected by the different CVIs
on both data sets are reported in Table VI for c in the range [2, 10].
One must distinguish robust or quite robust CVIs that fail in selecting
the correct number of clusters, e.g. XB and K, and the others. The
results show that the proposed index OSI is at least as robust as
FHV , WY and PBM , and even more robust for the most cautious
norms (Standard and Dombi). It only fails for the most compensatory

TABLE VI
OPTIMAL NUMBER OF CLUSTERS SELECTED BY DIFFERENT CVIS ON
ARTIFICIAL 4over AND 4noise DATA SETS FOR VARIOUS VALUES OF m.

data set m NPE NPC FS FHV XB SC K PBM WY
OSI⊥

⊥S ⊥H10
⊥A ⊥D2

4over

1.5 3 4 4 4 3 3 3 4 4 4 4 4 4
1.7 3 4 4 4 3 3 3 4 4 4 4 4 4
1.9 3 4 4 4 3 3 3 4 4 4 4 4 4
2.1 3 4 4 4 3 3 3 4 4 4 4 4 4
2.3 3 4 4 4 3 7 3 4 4 4 4 4 4
2.5 3 4 5 4 3 7 3 4 4 4 4 4 4

4noise

1.5 2 4 6 4 3 7 3 5 4 4 4 4 4
1.7 2 4 5 4 3 8 3 5 3 4 4 4 4
1.9 2 3 5 4 2 8 3 4 3 4 4 4 4
2.1 2 3 5 4 3 10 3 4 4 4 4 4 4
2.3 2 3 5 3 3 5 3 4 4 4 3 3 4
2.5 2 3 4 3 3 7 3 3 4 4 3 3 4

norms (Algebraic and Hamacher) for high values of m (2.3 and 2.5)
because the induced clusters’ boundaries are less crisp. As compared
to the other CVIs that only use U , NPC is more sensitive to m than
OSI , while NPE is less but does not provide the correct number
of clusters for both data sets despite m lying in a favorable range.

V. CONCLUSION

A new family of CVIs for the fuzzy c-means algorithm has
been proposed in this paper. It is simply defined by the average
value of two new overlap and separation measures that do not use
clusters’ centroids but only the membership degrees. Both measures
are defined for each point of the data set to be clustered through
combinations of triangular norms applied to its membership degrees
so that the relative importance of the degrees is taken into account
in spite of the fuzzy context that makes their sum constant. A low
value of the overlap measure for a given point means that it does not
belong to an overlapping part of the most probable cluster, while a
high separation measure implies that it is located near the cluster’s
prototype. An extensive comparison to the most frequently referred to
indices in the literature and more recent CVIs, when determined for
a number of artificial and real data sets, shows that the new indices
outperform the existing ones. It is worth noting that the proposed
family of indices behaves well when faced with particularly difficult
(mixed) data properties such as overlapping clusters, bridges, outliers
and additional noisy points. This is all the more noticeable since
indices that only use membership values are generally unable to
handle such difficult structures.

The selection of triangular norm couples is not an easy task and
remains an open problem from a theoretical point of view. It requires
further study on how their properties make the induced index behave
with respect to the number of clusters (monotonic tendency) and to
membership values for a given clustering situation. For instance, we
observed that t-norms having a high compensative property, e.g. the
algebraic ones, are not well suited to very noisy environments. Other
combinations of overlap-separation measures than the simple taking
of the average are possible to define new CVIs, e.g.: median, OWA
or fuzzy integrals.
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(a) X30 (b) Bensaid

(c) Bridge (d) 4over

(e) 4noise (f) Diamond+

(g) Iris (h) Wine

(i) Starfield (j) Cancer

(k) Pima

Fig. 3. OSI⊥S (U, c) curves for the different data sets, c in the specified
range.


