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Divergence-free Wavelets and High Order Regularization

S. Kadri-Harouna · P. Dérian · P. Héas · E. Mémin

Abstract Expanding on a wavelet basis the solution of
an inverse problem provides several advantages. Wavelet
bases yield a natural and efficient multiresolution analy-
sis. The continuous representation of the solution with
wavelets enables analytical calculation of regularization in-
tegrals over the spatial domain. By choosing differentiable
wavelets, high-order derivative regularizers can be designed,
either taking advantage of the wavelet differentiation prop-
erties or via the basis’s mass and stiffness matrices. More-
over, differential constraints on vector solutions, such as the
divergence-free constraint in physics, can be handled with
biorthogonal wavelet bases. This paper illustrates these ad-
vantages in the particular case of fluid flows motion estima-
tion. Numerical results on synthetic and real images of in-
compressible turbulence show that divergence-free wavelets
and high-order regularizers are particularly relevant in this
context.

Keywords Divergence-free wavelets · High order deriva-
tives regularization · optic-flow estimation

1 Introduction

Prior models used to solve ill-posed inverse problems such
as images restoration, surface reconstruction or optic-flow
estimation often involve differential constraints or high-
order derivative regularization. In particular in the context of
optic-flow estimation, numerous regularization models [12,
20] involving penalization of first or second order deriva-
tives of the estimated velocity have been proposed in or-
der to make this estimation problem well-defined, beginning
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with the original work of Horn and Schunck [12]. However,
although estimation of optical flow is an old and well-known
problem, it still remains very challenging in the context of
fluid flows [11]. Indeed, optical flow standards are in general
not designed to describe the physics of complex motions oc-
curring at small scales. Several attempts have been carried
out in order to introduce some physical constraints, such
as incompressibility [8,23] for solutions of Navier-Stokes
equations. Those equations describe a great variety of fluid
phenomena, from oceanic streams to turbulence in the wake
of airplanes. Since it is difficult to design stable discretiza-
tion schemes for high-order regularizers or for differential
operators such as the divergence, state of the art derivatives
are limited to the second-order and very few algorithms have
managed to successfully impose divergence-free constraints
[23].

In addition, inverse problems often involve non-linear
models. Dealing with non-linearities and the multi-scale
structure of motion is particularly challenging in the optic-
flow context. Gaussian multiresolution frameworks [1] or
combined integrated/variational formulations [10,19] have
been proposed to circumvent non-linearity and achieve long
range displacement estimation. However, the former solu-
tions suffer from a weak mathematical formulation impact-
ing estimation accuracy, while the latter provide poor results
for non-textured images such as continuous scalar flows.
Even worth, as these optic-flow multiresolution schemes
work only at very few distinct scales without any explicit
connection between scales, estimation of large scale motion
is often prone to errors.

Nevertheless, on the one hand, a multiresolution optical
flow scheme based on the wavelet expansion of the motion
field has been introduced by Wu et al. [22] to avoid the
common drawbacks of the Gaussian pyramidal multireso-
lution procedure and hence, to take into account large dis-
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placements. An extension of this work reducing the algo-
rithm complexity has recently been proposed [4]. On the
other hand, divergence-free wavelets define natural bases
for the solutions of the incompressible Navier-Stokes equa-
tions. By the localization of basis functions both in scale and
space and by their implicit representation of divergence-free
motions, these wavelets perfectly describe the vortex struc-
tures appearing at various scales of the incompressible flow.
These bases have been used extensively in the simulations of
the Navier-Stokes equations and the analyses of incompress-
ible fluid flows, with good results [5,6,21]. Additionally,
expanding the solution on “regular” wavelet bases enables
the easy computation of high-order derivatives and regular-
ization integrals.

This paper introduces high-order regularization and dif-
ferential constraints for inverse problems, with a special fo-
cus on the optic-flow estimation problem. It extends the ap-
proaches of [4,22] by introducing divergence-free wavelet
bases for the estimation of an incompressible flow from
two images. The differential constraint, characterizing the
physics of fluid flows, is imposed by directly estimating co-
efficients of the optical flow projection onto a divergence-
free wavelet basis. The methodology takes also benefits
of the wavelet continuous formulation to approach or com-
pute exactly high-order regularization integrals, and avoid
unstable discrete approximations of the derivatives. In addi-
tion, in order to lower algorithm complexity, efficient quasi-
Newton optimization techniques based on wavelets filter
banks and the tensor structure of the separable bases are pro-
posed.

The reminder of the paper is as follows. In section 2,
we recall the basic ingredients of optic-flow computation.
In section 3, we perform the biorthogonal wavelet expan-
sion of the motion field which, as we shall see, is necessary
to constrain the solution to live in the divergence-free vec-
torial space. Two approaches for wavelet-based high-order
regularization are then introduced in section 4. Numerical
results performed on synthetic and real images of 2D and
3D turbulent flows are finally presented in section 5.

2 Basic Principles of Optical Flow Techniques

This section describes briefly the motion estimation prob-
lem, and in particular how it is solved on the canonical basis
or on a truncated wavelet basis. The purpose here is not to
compare the various approaches proposed so far.

2.1 Problem formulation

Given two images denoted I1(x) and I0(x), motion estima-
tion aims as finding a velocity field u = (u1,u2)T minimiz-
ing the Displaced Frame Difference (DFD) equation1:

I1(x+ u(x))− I0(x) = 0. (1)

Most often, the solution is obtained by minimizing an
energy functional (cost function):

Fd(u) =
1

2

∫
R2

ρ (I1(x+ u(x))− I0(x)) dx, (2)

where ρ may be a robust penalty function. However, for the
clarity of the presentation, we will consider in the following
a quadratic cost. The functional to be minimized is not con-
vex because of the non-linearity of the image function I1. It
is in addition ill-posed as it relies on a scalar constraint for
a 2D vector field unknown. This so-called aperture problem
is solved by either reducing the dimension of the solution
or by regularizing the solution with some appropriate prior
model.

We present hereafter strategies to deal with cases that
depart significantly from a linear assumption, i.e large dis-
placements. This problem occurs particularly within the
context of turbulent fluid flows, where large velocity fluctua-
tions may be observed under condition of low time-sampling
frequency.

2.2 Estimation on standard basis

Incremental multiresolution strategy is a very common tech-
nique in optical flow estimation [1]. This approach con-
sists in building a multiresolution pyramidal representation
of the image sequence by successive low-pass filtering and
sub-sampling. An incremental estimation based on Gauss-
Newton scheme is then achieved by solving a sequence of
large systems related to linearization of model (1) around the
current motion estimate. A severe drawback of the method
is that the incremental estimation is driven independently at
each resolution level, relying on non-imbricated linearized
motion-compensated models.

2.3 Estimation on truncated wavelet basis

The wavelet-based optical flow approach first introduced
by Wu et al. [22] provides a natural and mathematically

1 In the following, we will restrict ourselves to the study of DFD
equation, but the approach remains valid for any other integrated data
model. Indeed, for other configurations, many other brightness evo-
lution models have been proposed in the literature to link the image
intensity function to the sought velocity field [16].
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consistent multiresolution estimation framework which does
not face theoretically the previous limitations. This ap-
proach performs the joint estimation of the coefficients of
each scalar component of optical flow u decomposed on a
wavelet basis. This decomposition is coherent with the idea
used in standard optical flow multiresolution strategy: the
inner products with scaling functions are somehow analo-
gous to the low-pass filtering, the different projections of
the image onto the scaling functions multiresolution spaces
form a pyramidal representation.
The main drawback of the method described in [22] is its
higher computational cost, caused by the necessity to ex-
plicitly evaluate the functional Hessian.

Recently, a new wavelet-based method that overcomes
this computational burden was proposed by Dérian et al.
[4]. This method consists in searching the components of
the motion u in terms of their wavelet coefficients:

u(x) = Φ(x)d (3)

where Φ(x) denotes the used 2D wavelet basis and d the
vector of coefficients of the two sought motion components.
Incorporating (3) in the (DFD) equation, the argument of Fd
becomes d. Setting I1(x,d) = I1(x+Φ(x)d), the gradient
of Fd according to this new argument reads:

∇Fd(d) =

∫
[I1(x,d)− I0(x)]∇I1(x,d) · Φ(x)dx. (4)

As a consequence, components of the gradient ∇Fd(d) of
the functional are simply given by the coefficients of the
wavelet decomposition of the two components of gradient:

[I1(x,d)− I0(x)]∇I1(x,d), (5)

on the considered wavelet basis. They are easily computed
using a 2D fast wavelet transform [17] with the filter bank
associated to Φ. It is easy to see that the proposed coarse-
to-fine estimation strategy enables to capture large displace-
ments: at large scales, the decomposition of (5) is obtained
by convolutions with the atoms of the wavelet basis having
the largest support. Note that conversely to the algorithm
proposed in [22], the low-complexity of gradient computa-
tion via fast wavelet transform does not restrict motion esti-
mation to large scales and/or images of small size. A gradi-
ent descent method is used then to minimize efficiently the
functional Fd. The aperture problem can be here jointly ad-
dressed by reducing the problem dimension with a simple
basis truncation: coefficients associated to smallest scales
are not estimated, so that the number of unknowns is small
enough to close the inverse problem.

3 Divergence-Free Fluid Flow Estimation

Because of their localization in both space and frequency,
wavelet bases constitute interesting tools for continuous
fluid flows analysis. Moreover, wavelet bases can be de-
signed to implicitly represent divergence-free motions [5].
In this section, we recall some generalities on biorthogo-
nal wavelet bases which, as we shall see in the follow-
ing, are necessary to construct divergence-free basis for mo-
tion. Then, we briefly present the construction of anisotropic
divergence-free wavelet bases in (L2(R2))2.

3.1 Biorthogonal wavelet bases on real line

In this section we recall some definitions and properties of
biorthogonal multiresolution analysis (BMRA) and wavelet
bases that will be used in the following.

Let (ϕ, ϕ̃) be a pair of scaling functions of L2(R) that
satisfy the two-scale (or refinement) relations [3]:

ϕ(x) =
∑
k∈Z

hk
√

2ϕ(2x− k), (6)

ϕ̃(x) =
∑
k∈Z

h̃k
√

2ϕ̃(2x− k) (7)

with hk, h̃k ∈ R. The masks {hk}k∈Z and {h̃k}k∈Z are
called scaling function filters, they are used to implement
fast-wavelet transform algorithms associated to ϕ and ϕ̃, see
[17]. Moreover, one can prove that the supports of {hk}k∈Z
and {h̃k}k∈Z coincide with the supports of scaling functions
ϕ and ϕ̃ respectively [3].

Setting for j, k ∈ Z, ϕj,k = 2j/2ϕ(2jx− k) and ϕ̃j,k =

2j/2ϕ̃(2jx − k), we say that ϕ and ϕ̃ form a biorthogonal
pair if

〈ϕj,k, ϕ̃j,k′〉 = δk,k′ , ∀j, k, k′ ∈ Z (8)

where δk,k′ denotes the Kronecker symbol and < ., . > the
L2(R) inner product:

〈ϕj,k, ϕ̃j,k′〉 :=

∫
R
ϕj,k(x)ϕ̃j,k′(x)dx. (9)

In the sequel, for easy reading we will only give details on
the primal setting corresponding to ϕ. The dual construction
corresponding to ϕ̃ follows by analogy.
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Thus, for j ∈ Z, defining the spaces Vj as

Vj = span{ϕj,k : k ∈ Z}, (10)

the refinability of scaling function defined in (6) is known to
imply that the spaces Vj form a multiresolution analysis of
L2(R):

Vj ⊂ Vj+1, ∩j∈ZVj = {0}, ∪j∈ZVj = L2(R). (11)

Moreover, if ϕj,k is compactly supported it is easy to show
that the family {ϕj,k : k ∈ Z} is a Riesz basis for Vj . Then,
for any {ck : k ∈ Z} ∈ `2(Z), there exists strictly positive
constants C and C ′ such as:

C ′‖ck‖`2(Z) ≤ ‖
∑
k∈Z

ck ϕj,k‖L2(R) ≤ C‖ck‖`2(Z). (12)

Equation (12) implies the uniform stability of the family
{ϕj,k : j, k ∈ Z} in the sens of L2(R) norm.

The concept of primal wavelet consists in finding com-
plement space Wj of Vj in Vj+1 satisfying

Vj+1 = Vj ⊕Wj , Wj = Vj+1 ∩ (Ṽj)
⊥. (13)

These spaces are called "details" spaces. They gather the
missing details of the approximation spaces Vj . It is known
that such spaces Wj are generated by the dilates and trans-
lates of the wavelet function ψ [3]:

ψ(x) =
∑
k∈Z

gk
√

2ϕ(2x− k), with gk = (−1)kh̃1−k (14)

which satisfies

< ϕ̃j,k, ψj′,k′ >= 0, for j, j′, k, k′ ∈ Z. (15)

Further, the family of wavelet {ψj,k : k ∈ Z} is an un-
conditional basis of details space Wj . For any function
f ∈ L2(R), the following decomposition formula holds:

f =
∑
j∈Z
Qj(f), Qj(f) = Pj+1(f)− Pj(f), (16)

with

Pj(f) :=
∑
k∈Z

f̃kϕj,k and f̃k = 〈ϕ̃j,k, f〉. (17)

The advantage of wavelet bases is their ability to offer sparse
representation of a signal. Note that if ϕ̃ is exact of order
r̃ ∈ N:

xk =
∑
k∈Z

< ϕk, x
k > ϕ̃k(x), 0 ≤ k ≤ r̃ − 1 (18)

one infers from (13) and (15) that the wavelet ψ has r̃ van-
ishing moments:∫

R
xkψ(x)dx = 0, 0 ≤ k ≤ r̃ − 1. (19)

This construction of biorthogonal wavelet bases can be
extended easily to L2(Rd) (d > 1) in higher dimension us-
ing tensor product of the one-dimensional basis, see [17] for
more explanations.

3.2 Divergence-free wavelet bases

Compactly supported divergence-free wavelet bases have
been introduced first by Lemarié-Rieusset [15]. These bases
are biorthogonal and their construction is based on the exis-
tence of one-dimensional biorthogonal wavelet bases linked
by differentiation / integration (for details see [3,15,17]). In
particular, the main ingredients needed for such a construc-
tion are the following results proved by Lemarié-Rieusset
[15]:

Proposition 1
Let (V 1

j , Ṽ
1
j ) be a "regular" biorthogonal multiresolu-

tion analysis (BMRA) of L2(R), associated respectively to
biorthogonal scaling functions (ϕ1, ϕ̃1) and biorthogonal
wavelets (ψ1, ψ̃1). Then there exists another BMRA denoted
(V 0
j , Ṽ

0
j ), associated respectively to biorthogonal scaling

functions (ϕ0, ϕ̃0) and biorthogonal wavelets (ψ0, ψ̃0), sat-
isfying:

d

dx
ϕ1(x) = ϕ0(x) − ϕ0(x−1), ψ1(x) = 4

∫ x

−∞
ψ0 (20)

and

d

dx
ϕ̃0(x) = ϕ̃1(x+ 1) − ϕ̃1(x), ψ̃0(x) = −4

∫ x

−∞
ψ̃1

(21)

From relations (20) and (21), one can derive two interesting
properties of BMRAs (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ) [15]:

Corollary 1
Let (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ) be two BMRAs of L2(R) that

satisfy proposition 1, then we have:

(i)
d

dx
V 1
j = V 0

j Ṽ 0
j =

∫ x

−∞
Ṽ 1
j (22)

and

(ii)
d

dx
P1
j (f) = P0

j (
d

dx
f),

d

dx
P̃0
j (f) = P̃1

j (
d

dx
f) (23)

for f ∈ H1(R) 2.

2 H1(R) denotes the classical Sobolev space:

‖f‖2H1(R) =

∫
R
(1 + |ξ|2)|f̂(ξ)|2dξ
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(b) Wavelet ψ̃1.
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(c) Scaling function ϕ1.
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(d) Wavelet ψ1.
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(e) Function d
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ϕ1.
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(f) Wavelet d
dx
ψ1 = 4ψ0.

Fig. 1: Example of biorthogonal generators and primal derivatives:
case of B-Spline generators (ϕ1, ϕ̃1) with 3 vanishing moments.

The interest of relations (22) and (23) appears in the numer-
ical implementation of fast divergence-free wavelet trans-
form. These relations allow to build a multiresolution analy-
sis of (L2(R2))2 that preserves the divergence-free property.
More explanations will be given in the following. In prac-
tice, there are two types of divergence-free wavelet construc-
tions: the isotropic construction [15] and the anisotropic
one [5]. The isotropic divergence-free wavelet construc-
tion on Rd uses (d− 1)(2d − 1) types of wavelet generators
with one parameter of dilatation and d parameters of trans-
lation, while the anisotropic one uses only (d − 1) types of
wavelet generators with d parameters of dilation and transla-
tion. Thus, for d = 2, we have one divergence-free wavelet
generator in the anisotropic construction.

The objective here is to build an anisotropic wavelet ba-
sis for the divergence-free functions spaceHdiv(R2) defined
by:

Hdiv(R2) = {u ∈ (L2(R2))2 : ∇ · u = 0}. (24)

where f̂(ξ) corresponds to the Fourier transform of f :

f̂(ξ) =

∫
R
f(x)e−iξ·xdx

The space Hdiv(R2) can also be seen as the curl3 vector
potential space [7]:

Hdiv(R2) = {u = curl(χ) : χ ∈ H1(R2)}. (25)

Now, to construct a wavelet basis of Hdiv(R2), it is natural
to take the curl of a "regular" scalar multiresolution analysis
of H1(R2).

At this stage, one may want to use any multiresolu-
tion analysis of H1(R2). However, let consider a "regu-
lar" scalar multiresolution analysis of H1(R2) generated by
spaces V aj ⊗ V bj , with V aj 6= V bj . Taking the curl of a such
multiresolution analysis, we get:

curl[V aj ⊗ V bj ] =

∣∣∣∣∣∣
V aj ⊗ (V bj )

′

−(V aj )
′ ⊗ V bj

(26)

Then, to deal with the divergence-free wavelets contained
in curl[V aj ⊗ V bj ], we have to manipulate four different
types of biorthogonal wavelet filter banks associated respec-
tively to the one-dimensional BMRAs that appear in (26):
V aj , (V aj )′, V bj and (V bj )′. To overcome this problem, the
two-dimensional scalar multiresolution analysis that we will
consider is generated by

Vj = V 1
j ⊗ V 1

j . (27)

Using Lemarié-Rieusset’s results (20) and (21), one can
easily prove that:

curl(Vj) ⊂
(
V 1
j ⊗ V 0

j

)
×
(
V 0
j ⊗ V 1

j

)
=
−→
Vj . (28)

Moreover,
−→
Vj preserves the divergence-free condition:

∀ u ∈ Hdiv(R2), ∇ ·
−→
P j(u) = P0

j (∇ · u) = 0, (29)

with
−→
P j =

(
P1
j ⊗ P0

j

)
×
(
P0
j ⊗ P1

j

)
, P0

j = P0
j ⊗ P0

j .

Accordingly, the divergence-free scaling functions
spaces are defined by

Vdivj = span < Φdivj,k ; k ∈ Z2, j ∈ Z >, (30)

where

Φdivj,k = curl[ϕ1
j,k1 ⊗ ϕ

1
j,k2 ] =

∣∣∣∣∣∣∣
ϕ1
j,k1
⊗ (ϕ1

j,k2
)
′

−(ϕ1
j,k1

)
′ ⊗ ϕ1

j,k2

Similarly, for j, k ∈ Z2, the associated anisotropic
divergence-free wavelet spaces are defined by

Wdiv
j,k = span < Ψdivj,k ; j, k ∈ Z2 >, (31)

3 curl(χ) = (∂yχ,−∂xχ).
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with

Ψdivj,k = curl[ψ1
j1,k1 ⊗ ψ

1
j1,k2 ] =

∣∣∣∣∣∣
2j2+2ψ1

j1,k1
⊗ ψ0

j2,k2

−2j1+2ψ0
j1,k1

⊗ ψ1
j2,k2

These wavelets are biorthogonal [5] and every vector field
u ∈ Hdiv(R2) can be decomposed uniquely as:

u =
∑

j, k ∈ Z2

〈u/Ψ̃divj,k 〉Ψdivj,k =
∑

j, k ∈ Z2

dj,kΨ
div
j,k , (32)

where 〈./.〉 denotes the (L2(R2))2-inner product between
two vector functions. Since u belongs to the multiresolution
analysis formed by spaces

−→
Vj , its components u1 and u2

can be expanded on the two scalar wavelet bases spanned
respectively by the families:

{ψ1
j1,k1 ⊗ ψ

0
j2,k2 ; ψ0

j1,k1 ⊗ ψ
1
j2,k2}, j1, j2, k1, k2 ∈ Z.

Through an easy calculation, one shows that a renormaliza-
tion of the coefficients dj,k yields to the coefficients of the
two scalar expansions and, by identification, one can prove
that the coefficients dj,k can be written as a linear combi-
nation of coefficients weighting the two scalar expansions
[5]:

u1 =
∑

j,k∈Z2

d1
j,k ψ1

j1,k1 ⊗ ψ
0
j2,k2 , (33)

u2 =
∑

j,k∈Z2

d2
j,k ψ0

j1,k1 ⊗ ψ
1
j2,k2 , (34)

thus

dj,k =
2j2+2

4j1+2 + 4j2+2
d1

j,k −
2j1+2

4j1+2 + 4j2+2
d2

j,k, (35)

and

d1
j,k = 2j2+2dj,k, d2

j,k = −2j1+2dj,k. (36)

Therefore, decomposition and reconstruction associated to
divergence-free wavelets is simply performed using scalar
wavelet filter banks. Finally, the algorithm is of low com-
plexity and its structure remains identical to the scalar case.

We now turn to the use of such bases for fluid motion
estimation issue.

(a) Generator curl (ϕ1 ⊗
ϕ1)

(b) Generator curl (ψ1⊗ψ1)

(c) Vorticity of curl (ϕ1 ⊗
ϕ1)

(d) Vorticity of curl (ψ1 ⊗
ψ1)

Fig. 2: Vector fields of divergence-free scaling functions and wavelets
generators constructed from Coifflet ϕ1 and ψ1 with r = 10.

3.3 Divergence-free wavelet-based method

The estimation method developed in this section provides
a solution to the optical flow estimation problem subject to
a divergence-free constraint. The proposed approach falls
within the context of wavelet-based multiresolution meth-
ods [4] sketched in the previous section. Then, the velocity
field u is searched in terms of its divergence-free wavelet
projection (32)

u(x) =
∑

j,k∈Z2

dj,kΨ
div
j,k (x), (37)

and its estimation is reduced to the estimation of its
divergence-free wavelet coefficients. Let us adopt the no-
tation:

Ĩ1(x,d) = I1(x+
∑
j,k

dj,kΨ
div
j,k (x)).

The coefficients are hence defined as the minimizers of the
objective function:

Fd(d) =
1

2

∫
R2

[
Ĩ1(x,d)− I0(x)

]2
dx, (38)

where d is now defined as the set of the divergence-free
wavelets coefficients {dj,k}. Optimization is carried out by
a quasi-Newton method (LBFGS), where a BFGS approxi-
mation of the Hessian relying solely on the current gradient
is handled. The optimal gradient step is in addition given
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in the sense of the strong Wolf conditions [18]. Obviously,
besides the evaluation of the functional Fd, the descent opti-
mization algorithm requires the computation of its gradient
at each iteration step. These computations also are facili-
tated by the wavelet formulation. As a matter of fact, we get
immediately:

∂dj,k
Fd(d) =

∫
R2

[Ĩ1(x,d)− I0(x)]∇Ĩ1(x,d) ·Ψdivj,k (x)dx

where

∇Ĩ1(x,d) · Ψdivj,k (x) = 2j2+2∂x1 Ĩ1(x,d)ψ1
j1,k1 ⊗ ψ

0
j2,k2

− 2j1+2∂x2 Ĩ1(x,d)ψ0
j1,k1 ⊗ ψ

1
j2,k2

The computation of ∂dj,k
Fd(d) thus reduces to a simple

linear combination of two sets of scalar coefficients ob-
tained by fast wavelet transforms [17]: the scalar wavelet
coefficients of [Ĩ1(x,d) − I0(x)]∂x1

Ĩ1(x,d), in the ba-
sis generated by ψ1

j1,k1
⊗ ψ0

j2,k2
, and those of [Ĩ1(x,d) −

I0(x)]∂x2
Ĩ1(x,d), in the basis generated by ψ0

j1,k1
⊗ψ1

j2,k2
.

Remark 1
The coefficients used in the computation of ∂dj,k

Fd(d) cor-

respond to the dual scalar wavelet bases. To be more precise,
according to (17), coefficients∫
R2

[Ĩ1(x,d)− I0(x)]∂x1 Ĩ1(x,d)ψ1
j1,k1 ⊗ ψ

0
j2,k2dx (39)

correspond to the decomposition of

[Ĩ1(x,d)− I0(x)]∂x1
Ĩ1(x,d) (40)

on the scalar basis {ψ̃1
j1,k1

⊗ ψ̃0
j2,k2
} and∫

R2

[Ĩ1(x,d)− I0(x)]∂x2
Ĩ1(x,d)ψ0

j1,k1 ⊗ ψ
1
j2,k2dx (41)

correspond to the decomposition of

[Ĩ1(x,d)− I0(x)]∂x2
Ĩ1(x,d) (42)

on the scalar basis {ψ̃0
j1,k1

⊗ ψ̃1
j2,k2
}.

4 High-Order Regularization

As mentioned earlier equation (1) is a scalar constraint in-
volving two unknowns u1 and u2 which makes the mini-
mization of the objective function (38) an ill-conditionned
problem. Truncating at small scales the wavelet expansion
of u is a simple and direct approach yielding to interest-
ing coarse scale polynomial approximations of the solution
[4]. Nevertheless, in the context of fluid flows, the accu-
rate estimation of small scale motion constitutes a crucial is-
sue. A common approach is to introduce some prior knowl-
edge on the solution regularity [12,23]. The objective of the

present section is to investigate this technique in the con-
text of standard wavelet-based method and divergence-free
wavelet-based method.

To make well-conditioned the problem of optimization
with the functional defined in (2), one adds a convex regu-
larization term Fr. The objective function Fd given by (2)

is then replaced by the following:

F (u) = Fd(u) + γFr(u) (43)

with the parameter γ > 0 that balances data and regulariza-
tion terms.

In the following, we focus on three different high-order
regularizers terms Fr(u). Some of them have proven to be
particularly adapted to fluid flows [11]. They are all based
on the quadratic penalization of high-order derivatives.
A first possibility is to penalize discrepancies of the velocity
field in each direction from a polynomial of degree n (i.e
penalize derivative of order n ∈ N∗):

Fr(u) =

∫
R2

∑
1≤i≤2
1≤`≤2

∣∣∂nxi
u`(x)

∣∣2 dx. (44)

Other approaches consist in favoring coherent vortex blobs
by a second-order curl regularization:

Fr(u) =

∫
R2

|∇(∂x2
u1(x)− ∂x1

u2(x))|2 dx, (45)

or approaching solutions of the heat equation:

Fr(u) =

∫
R2

∑
1≤`≤2

|∆u`(x)|2 dx. (46)

One can notice that regularizers (45) and (46) become iden-
tical in the case of divergence-free flows. Indeed, according
to [7], there exist stream function χ such as:

u = curl χ, with χ ∈ H1(R2) (47)

From the definition of "curl" operator in 2D, one can prove
that:

−∆χ = curl (u) (48)

and this implies:

|∇curl (u)|2 = |−∇∆χ|2 = |∂x1∆χ|
2

+ |∂x2∆χ|
2 (49)

Using again equation (47), we obtain:

|∆(u)|2 = |∆(curl χ)|2 = |∂x1
∆χ|2 + |∂x2

∆χ|2 (50)

In most cases, the operators of differentiation that appear
in the previous regularizers are evaluated using finite dif-
ferences methods. This creates numerical instability due to
lack of precision.
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The wavelet context offers an ideal setting to make such
computation accurately with less effort. In the following
we present two different wavelet-based schemes for high-
order regularization of inverse problems. Both regulariza-
tion schemes do not rely on any discrete approximation of
spatial derivatives. The first approach, which is described
in section 4.1, is a discrete approximation of regularization
integrals. It presents the advantage to be intrinsically very
simple since regularization is achieved by penalization of a
subset of wavelet coefficients. The second scheme, which
is described in section 4.2, constitutes a very interesting ap-
proach since it enables the exact computation of continuous
regularization integrals without much more effort.

4.1 Discrete operator approximation method

In this section we describe the discrete approximation of
the high-order regularization integral (44) we proposed. We
show in the following that regularization can be simply ex-
pressed as the penalization of a finite set of wavelet coeffi-
cients of the motion field components.

The method is based upon differentiation properties of
wavelets, deriving from the following result [17].

Proposition 2
A wavelet ψ ∈ L2(R) with a fast decay has r vanishing
moments if and only if there exists θ with a fast decay such
that:

ψ(x) = (−1)n
drθ(x)

dxr
. (51)

As a consequence

〈f(x), ψj,k(x)〉 = (2−j)n
dr

dxr
(f ? θ̄j)(x) , (52)

with θ̄j(x) = 1
(2−j)1/2

θ( −t2−j ) and where ? denotes the con-
volution operator. Moreover, ψ has no more than n vanish-
ing moments if and only if K =

∫
θ(x)dx 6= 0.

From this proposition, one can derive some interesting prop-
erties relating small scale coefficients to the function deriva-
tives.

Corollary 2
Given a signal f ∈ Cn, small scale coefficients resulting
from an n-vanishing moment wavelet decomposition are re-
lated to its nth derivative in the neighborhood of x:

lim
j→∞

〈f(x), ψj,k(x)〉
2−j(n+

1
2 )

= lim
j→∞

dnf(x)

dxn
?

1

2−j/2
θ̄j(x)

= K
dnf(x)

dxn
. (53)

This result can be extended to the case of 2D signals.

The penalization of small scale coefficients’ amplitude
thus enables to control the amplitude of the derivative of the
estimated signal. Therefore, considering a finite subset Ω ⊂
R2 defined by the set of points of a uniform grid of mesh size
δx, the continuous integral defined in (44) is approximated
by:

Fr(u) ≈ δx2
∑
x∈Ω

∑
1≤i≤2
1≤`≤2

∣∣∂nxi
u`(x)

∣∣2 +O(δx2) (54)

Considering now isotropic wavelet bases, we chose to con-
trol derivatives of motion components in the neighborhood
of points in Ω, which is defined as the set of translation at
the finest scale of the dyadic discrete wavelet decomposi-
tion. Approaching the limit in (53) by the smallest scale of
the decomposition, we obtain:

Fr(d) ∝ dTΛjmax
d, (55)

where Λjmax
is a diagonal matrix, whose diagonal has either

zero or unitary entries in order to select coefficients d which
are relevant of small horizontal or vertical scales.

However, due to the dyadic nature of the decomposi-
tion, only a "piecewise" control of derivatives is possible
in the neighborhood of the center of translated wavelet sup-
ports. In order to control the derivative at junctions of those
dyadic blocks, we redefine the set Ω, by adding points of a
grid shifted by half of the smallest scale dyadic translation.
To evaluate (54), we now need to compute an interpolation
uj+1 of the velocity field u at points of this shifted grid.
A multiscale interpolation scheme is used for that purpose.
This operation is defined as the projection of a signal f de-
fined at a given resolution 2j onto the next finer approxima-
tion space Vj+1:

P̌j+1f(2x+ 1) =

+∞∑
k=−∞

f(2k)Iϕj+1
(x− k + 1/2) (56)

In the case of orthogonal wavelet basis, interpolation func-
tion is defined as the autocorrelation of the scaling function
ϕ:

Iϕj+1 = ϕj+1 ? ϕ̄j+1 (57)

where symbol .̄ denotes the time reversed operator: ϕ̄(x) =

ϕ(−x).

It can be shown that, this autocorrelation function in-
terpolates exactly polynomials of order n if and only if
the wavelet associated to scaling function φ has n + 1

vanishing moments [17]. This linear interpolation opera-
tor P̌j+1 is implemented with filter banks using filter ȟ,
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where ȟk =
(
h ? h̄

)
2k+1

and h is defined in (6). "Inter-
polated coefficients" ď are expressed as a linear combina-
tion of d through wavelet decomposition (resp. reconstruc-
tion) operator noted Φ (resp. Φ−1 = Φ̃) and interpolation:
ď =

(
Φ̃ ◦ P̌j+1 ◦ Φ

)
d.

To control derivatives on dyadic blocks (and resp. at
their junctions), small horizontal or vertical scale coeffi-
cients {dj,k} (resp. {ďj,k}) given by the decomposition of
u (resp. ǔ) are both penalized. We finally get the regularizer

Fr(d) ∝ (d + ď)TΛjmax(d + ď), (58)

and its gradient is null excepted for j = jmax:

∂dj,k
Fr(d) =

djmax,k +
(
Φ̃ ◦ P̌j+1 ◦ Φ

)T
Λjmax

(
Φ̃ ◦ P̌j+1 ◦ Φ

)
d,

0 for j < jmax.

(59)

The gradient in (59) is a linear form which can be effi-
ciently computed using recursive filter banks. The addition
of the regularization term (59) therefore does not increase
significantly the computational burden.

4.2 Continuous operator approximation method

The great advantage brought by the continuous optical flow
representation with a finite set of coefficients of sufficiently
"regular" wavelets, is that computation is done on the basis
functions. More precisely, it enables the exact calculation
of continuous spatial derivatives appearing in Fr, and the
exact computation of the integrals and their gradients. This
becomes possible since one knows how to compute exactly
the elements of mass and stiffness matrices of compactly
supported wavelet basis. To this end, we use the following
results proved by Beylkin [2]:

Proposition 3
Let ϕ ∈ L2(R) be a scaling function. The function Iϕ of its
autocorrelation at a point x defined by:

Iϕ(x) =

∫
R
ϕ(y)ϕ(y − x)dy (60)

satisfies a two scales relation:

Iϕ(x) =
∑
k∈Z

ikIϕ(2x− k) (61)

where

ik =
∑
`∈Z

h`h`−k (62)

Similarly, the function Jϕ of the correlation of ϕ and its
derivative of order n at a point x, defined by:

Jϕ(x) =

∫
R
ϕ(y)ϕ(n)(y − x)dy (63)

also satisfies a two scales relation:

Jϕ(x) =
∑
k∈Z

jkJϕ(2x− k), with jk = 2nik (64)

Moreover, values of Jϕ on integer points verify:∑
`∈Z

`nJϕ(`) = (−1)nn!. (65)

By proposition 3, the inner products of the form <

ϕj,k, ϕj,k′ > and < ϕ
(n)
j,k , ϕ

(n)
j,k′ > are eigenvectors of the

matrices of terms ik and jk respectively. In practice, these
terms are computed by solving an eigenvalue problem if
the scaling function ϕ ∈ L2(R) is compactly supported
[14]. To get the wavelet inner products < ψj,k, ψj,k′ >

or < ψ
(n)
j,k , ψ

(n)
j,k′ >, it suffices to use the two scales relation

satisfied by the wavelet ψ to return to the scaling function
basis.

Once we can compute the mass matrix and stiffness ma-
trix of a wavelet basis, the computation of the regularization
term Fr becomes easy. In order to clarify these points, let us
explicit the computation of the term

∫
R2

∣∣∂nx1
u1

∣∣2 dx in the
case of anisotropic divergence-free wavelet-based method,
the other terms being treated similarly. From the definition
of the divergence-free wavelets, we obtain:

u1 =
∑

j,k∈Z2

2j2+2dj,kψ
1
j1,k1 ⊗ ψ

0
j2,k2 (66)

Thus

∂nx1
u1 =

∑
j,k∈Z2

2j2+2dj,k∂
n
x1
ψ1
j1,k1 ⊗ ψ

0
j2,k2 (67)

and∫
R2

∣∣∂nx1
u1

∣∣2 dx =

∫
R2

∂nx1
u1 · ∂nx1

u1dx (68)

=
∑

dj,kdj′,k′R
j1,j
′
1

k1,k′1
M

j2,j
′
2

k2,k′2
(69)

where M and R are respectively the one dimensional mass
and stiffness matrices of the basis {ψ0

j,k} and {ψ1
j,k}. Ac-

cordingly, their coefficients are given by:

M
j2,j
′
2

k2,k′2
= 2j2+j

′
2+4〈ψ0

j2,k2 , ψ
0
j′2,k

′
2
〉

R
j1,j
′
1

k1,k′1
= 〈∂nxψ1

j1,k1 , ∂
n
xψ

1
j′1,k

′
1
〉
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As (68) is a quadratic form, its gradient is simply given by:

∂dj,k

∫
R2

∣∣∂nx1
u1

∣∣2 dx =
∑

j′,k′∈Z2

dj′,k′R
j1,j
′
1

k1,k′1
M

j2,j
′
2

k2,k′2

(70)

To compute the regularization term, we use the tensor struc-
ture of the basis, unlike [22] where the two-dimensional ba-
sis functions are used. This allows us avoiding the calcula-
tion and storage of a large matrix, hence reducing the com-
plexity of the algorithm:

[∂dj,k

∫
R2

∣∣∂nx1
u1

∣∣2 dx] = R[dj,k]M

In addition, the computation of these matrices is done once
for all on the scaling functions basis. To come back to the
wavelet basis it suffices to use one-dimensional fast wavelet
transform (FWT) on each row and column. The complexity
of this transformation is O(N) [17], where N = 2j and
j ∈ N∗ denoting the maximal one dimensional resolution.
Thus the theoretical complexity of this gradient computation
is at most O(N3), which is much lower than the O(N6)

complexity of [22].

5 Numerical Results

5.1 Synthetic Images of Turbulence

In this section, the quality of optical flow estimation is eval-
uated on two different synthetic image sequences: Parti-
cle Imagery Velocimetry (PIV) images and images of an
advected and diffused passive scalar. Both sequences de-
pict the same bi-dimensional incompressible turbulent flow.
The dynamic of the fluid flow is given by numerical sim-
ulation of 2D incompressible Navier-Stokes equations at
Re = 3000, using the vorticity conservation equation and
the Lagrangian equation for non-heavy particles transported
by the flow (simulation details can be found in [9]). Since
this simulated flow is divergence-free by construction, we
can evaluate the efficiency of introducing this constraint in
the wavelet bases. Image size is 256 × 256 pixels and the
pixel grey levels have been normalized; examples of input
images I0(x) from PIV and scalar sequences are displayed
in Fig. 4, together with their associated ground truth motion
vorticity. Estimated velocity fields are evaluated based on
the Root Mean Squared end-point Error (RMSE). We will
also compare and focus on vorticity fields computed from
estimated motions: they exhibit the subtile differences be-
tween two different velocity estimates, and the quality of the
reconstruction of this quantity is of important matter when
dealing with fluid motion.

On Fig.3, we show the plot of a time-sequence of RMSE
obtained by some state-of-the-art estimators, and compare it
to the proposed methods:

– estimation on a truncated wavelet basis [4], using stan-
dard (i) or divergence-free (ii) wavelets;

– estimation on a divergence-free wavelet basis, using dis-
crete (iii) or continous (iv) regularization.

The divergence-free wavelet generator ψ1 (cases ii, iii, iv)
was the Coiflet [17] with 10 vanishing moments. Since the
derivative of a Coiflet is no longer an interpolating function,
interpolating property for divergence-free wavelet bases is
preserved in one direction by component. This same Coiflet-
10 was used for the standard estimation on truncated basis
(case i) for comparison. The use of 10 vanishing moments
also leads to n = 10 order derivatives regularization (case
iii) approximated by the discrete operator of section 4.1,
with γ = 5.107 for the PIV images sequence and γ = 1.106

for the scalar images sequence. The Laplacian regulariza-
tion (45)4, approximated with the continuous operators as in
section 4.2 was used in case (iv). The regularization param-
eters are γ = 2.10−7 for the PIV images and γ = 10−6 for
the scalar images. Regarding PIV imagery, Fig. 3(a)) shows
that the use of a divergence-free wavelet basis yields a sig-
nificant improvement, compared to standard wavelet basis
or other state-of-the-art estimators. The addition of, either
the discrete or the continuous proposed regularization, en-
ables to further outperform state-of-the-art results. Results
on scalar imagery (Fig. 3(b)) show that the combination of a
divergence-free wavelet basis and continuous operator regu-
larization is necessary, in order to obtain results comparable
to those of state-of-the-art. Let us note that the self-similar
regularization approach proposed in [8] is probably the most
accurate here since it takes advantage of an additional phys-
ical constraint. Figures 5 and 6 present vorticity fields com-
puted from estimated motions, as well as velocity end-point
error maps. On particle imagery, improvements brought by
divergence-free bases (cases i, ii) are clearly visible on er-
ror maps (Fig. 5(b) and 5(d)); only smallest structures re-
main unestimated. The use of Laplacian regularization in-
stead of derivative penalization (cases iii, iv) also leads to
better-looking vorticity structures (Fig. 5(e) and 5(g)). This
is confirmed by results on scalar imagery Fig. 6.

5.2 Experimental Turbulent Image Sequences

This section presents results obtained with real images. In
order to study quasi-2D or 3D turbulent flows, the use of
2D experimental images is very common in fluid mechanics
laboratories. However, traditional motion estimators usually
fail or exhibit strong inaccuracy at some places.

4 equivalent to gradient of curl regularization (46) in this context.
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(b) Scalar images

Fig. 3: Comparison of the RMSE between proposed methods (bold
lines) and some works of literature [12,23,8]. Top: from particle im-
ages, using truncated basis with usual (case (i), cyan) or divergence-
free (case (ii), brown) wavelets, divergence-free basis with discrete
(case (iii), olive green) or continuous (case (iv), dark blue) regular-
ization operators. Bottom: from scalar imagery, using divergence-free
basis with discrete (case (iii), cyan) or continuous (case (iv), brown)
regularization operators.

The first data set consists in images of dispersion of pas-
sive tracers in a forced 2D turbulence experiment, of size
512×512 pixels [13]. The experiments were performed with
electromagnetically-forced incompressible flows in stable
thin stratified layers of fluid . In Fig. 7 we show an im-
age of the sequence. For the divergence-free wavelet based-

(a) True vorticity, t = 0 (b) First particle image I0(x)

(c) True vorticity, t = 20 (d) First scalar image I0(x)

Fig. 4: Top: for particle imagery, reference vorticity 4(a) and first im-
age used 4(b), corresponding to instant t = 0 in sequence of Fig 3(a).
Bottom: for scalar imagery, reference vorticity 6(a) and first image
used 4(d), corresponding to instant t = 20 in sequence of Fig. 3(b).

method, the employed regularizer is the same as in the case
of synthetic images: continuous gradient of curl regular-
izer (49) (or equivalently, in this incompressible case, the
Laplacian penalization) with a factor γ = 2.5.10−8. For
the standard wavelet based-method, we used the same reg-
ularizer model and factor, followed by a projection onto the
divergence-free function space using a spectral method. Es-
timates show that the divergence-free wavelet based-method
enables to extract more vortex structures and shear layers
with better temporal continuity of the sequence; this is con-
firmed by the plot of the two consecutive vorticity on Fig.
8. The second real data set consists in 128 PIV pictures
of a planar concomitant jet flow, of size 1024 × 1024 pix-
els. The flow is 3D and shows two high-shear regions fea-
turing development of Kelvin-Helmholtz instabilities. Since
the flow is not divergent-free, motion components are esti-
mated on a standard scalar wavelet basis with the proposed
wavelet-based gradient of curl regularizer (45), using the
following settings with factor γ = 10−7. Other estimates
obtained with discrete second order regularization, with pa-
rameter γ = 107, are given for comparison. Fig. 9 presents
a PIV image of the sequence and streamlines of an esti-
mated velocity field, along with two consecutive vorticity
maps computed from estimated motions, using either dis-
crete or continuous regularization. A qualitative evaluation
of estimations shows a remarkably good agreement with the
physics of concomitant jets. A very good temporal coher-
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(a) Case (i) vorticity (b) RMSE = 0.085

(c) Case (ii) vorticity (d) RMSE = 0.064

(e) Case (iii) vorticity (f) RMSE = 0.057

(g) Case (iv) vorticity (h) RMSE = 0.051

Fig. 5: Left column: vorticity computed from velocity fields estimated
from particle imagery (Fig. 4(b)) with the 4 presented cases, to be
compared with the reference Fig. 4(a). Right column: corresponding
velocity end-point error.

ence is also observed, although no prior dynamic model is
considered (i.e successive pairs of images are processed in-
dependently). Results obtained using continuous regular-
ization however show the evolution of finer structures, i.e. a
richer dynamic.

(a) Case (iii) vorticity (b) RMSE = 0.19

(c) Case (iv) vorticity (d) RMSE = 0.16

Fig. 6: Left: vorticity computed from velocity fields estimated from
scalar imagery (Fig. 4(d)), using Div-free wavelets method and dis-
crete (top) or continuous (bottom) regularization. Right: corresponding
velocity end-point error.

Fig. 7: Experimental image of passive scalar dispersion in a 2D tur-
bulent motion, corresponding to time t = 89. This image has been
normalized so as to enhance visualization.

6 Conclusion

Based on a biorthogonal wavelet expansion of optical flow
and particularly divergence-free wavelet in the incompress-
ible case, we have proposed an algorithm dedicated to the
estimation of fluid motion. The wavelet-based algorithm is
of low-complexity and offers an intrinsic and efficient mul-
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(a) Usual basis, t = 88. (b) Usual basis, t = 89.

(c) Div.-free basis, t = 88. (d) Div.-free basis, t = 89.

Fig. 8: Details of two successive vorticity fields computed from esti-
mated velocity fields, using experimental 2D scalar image dataset at
t = 88 and t = 89 (input image Fig. 7). Both cases use continu-
ous Laplacian regularization with γ = 2.5.10−8, associated to usual
Coiflet-10 wavelet basis (top) and divergence-free basis generated from
same Coiflet-10 (bottom). Enhancement brought by the divergence-
free basis is clearly visible, with much better-defined structures as well
as a better temporal coherence on bottom row vorticity fields.

tiresolution estimation framework. Taking advantage of the
continuous representation of optical flow by a finite set of
wavelet coefficients, we have proposed a family of high-
order regularizers designed for fluid flows. They rely on the
approximation or the exact computation (without any dis-
cretization approximations in both cases) of differential op-
erators of arbitrary order. The regularizers are approached
in the first case by simply constraining small scale coef-
ficients, while in the second case it is calculated exactly
by the simple calculation of one-dimensional wavelet basis
mass and stiffness matrices. Numerical results obtained with
challenging particle and scalar image sequences of 2D and
3D turbulence show a significant performance enhancement
compared to state of the art methods.
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