

In vitro effect of some fungicides on growth and aflatoxins production by Aspergillus flavus isolated from Capsicum powder

Liliana Santos, Sonia Marín, Vicent Sanchis, Antonio Ramos Girona

▶ To cite this version:

Liliana Santos, Sonia Marín, Vicent Sanchis, Antonio Ramos Girona. In vitro effect of some fungicides on growth and aflatoxins production by Aspergillus flavus isolated from Capsicum powder. Food Additives and Contaminants, 2010, pp.1. 10.1080/19440049.2010.529622. hal-00646006

HAL Id: hal-00646006 https://hal.science/hal-00646006

Submitted on 29 Nov 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Food Additives and Contaminants

In vitro effect of some fungicides on growth and aflatoxins production by Aspergillus flavus isolated from Capsicum powder

Journal:	Food Additives and Contaminants
Manuscript ID:	TFAC-2010-230.R1
Manuscript Type:	Original Research Paper
Date Submitted by the Author:	07-Sep-2010
Complete List of Authors:	Santos, Liliana; University of Lleida, Food Technology Department Marín, Sonia; University of Lleida, Food Technology Sanchis, Vicent; University of Lleida, Food Technology Ramos Girona, Antonio; University of Lleida, Food Technology
Methods/Techniques:	Chromatography - HPLC, Mycology
Additives/Contaminants:	Aflatoxins
Food Types:	

In vitro effect of some fungicides on growth and aflatoxins production by *Aspergillus flavus* isolated from *Capsicum* powder

Running title: Effect of some fungicides on Aspergillus flavus

L. Santos, S. Marín, V. Sanchis and A.J. Ramos*.

¹Food Technology Department, University of Lleida, XaRTA-UTPV, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.

*Antonio J. Ramos, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain, telephone: +34973702811, fax: +34973702596 and e-mail address: ajramos@tecal.udl.es

1 In vitro effect of some fungicides on growth and aflatoxins production by

Aspergillus flavus isolated from Capsicum powder

Running title: Effect of some fungicides on Aspergillus flavus

L. Santos, S. Marín, V. Sanchis and A.J. Ramos*.

¹Food Technology Department, University of Lleida, XaRTA-UTPV, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.

*Antonio J. Ramos, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain, telephone: +34973702811, fax: +34973702596 and e-mail address: ajramos@tecal.udl.es

13 Abstract

The aim of this study was to determine the effect of some pre-harvest fungicides on growth and aflatoxin (AF) production of three A. flavus strains found in Capsicum powder. Each isolate, previously isolated from paprika, chilli and smoked paprika, was inoculated on Yeast Extract Sucrose agar and on a 3% paprika extract agar medium supplemented with different fungicides and incubated at 20 and 30 °C during 7 days. Growth measurements were obtained on days 3, 5 and 7, and the AF production was determined on day 7. The significance of the effects of the factors (strain, medium, temperature, time and fungicides) and their interaction over colony diameter and AF production was determined. Temperature constrained the effectiveness of fungicides in reducing growth, the fungicides being most effective at 20 °C. The efficacy of the fungicides over AF production depended on the medium used and temperature. The most effective fungicides in inhibiting growth and AF production, regardless of the strain tested or applied conditions, were tebuconazole 25% and mancozeb

Food Additives and Contaminants

80% applied at a concentration of 0.75 and 3.5 g L⁻¹, respectively. Care should thus be taken
in the choice of a suitable fungicide, because their effectiveness may depend on intra-specific
variation and temperature. Moreover, it is necessary to take into account that the most
efficient fungicide in reducing growth is not always the best choice for pre-harvest treatments,
because it may promote AF production. Thus, the best fungicide is the one which can
simultaneous prevent growth and AF production.

32 Introduction

The possible presence in food and feed of aflatoxins (AF), fungal toxic compounds to animals and man, has led to increased research aiming to prevent and detect such compounds, mainly due to their carcinogenic, mutagenic and teratogenic properties. The Aspergillus section Flavi is well known for its AF production. The more common AF-producers species are Aspergillus flavus and A. parasiticus, though A. arachidicola, A. bombycis, A. minisclerotium, A. nomius, A. parvisclerotigenus, A. pseudotamarii and A. toxicarius also have the ability to produce AF (Samson et al. 2006). The AF production may happen either in the field, during harvest and/or transportation or storage. The AFB1, AFB2, AFG1 and AFG2 are the most studied AF, being the AFB1 the most toxic.

Some species of the genus *Capsicum* are grown for their fruits, which can be consumed as dried powder, usually named paprika and chilli. A. flavus, which have the ability to produce AF, can be found in this kind of commodities (Christensen et al., 1967; Mandeel, 2005; Hashem and Alamri, 2010). A review about mycotoxin contamination of Capsicum powder indicated that out of 1027 samples, 61.4% were positive for AF (Santos et al., 2008), the contamination being in the range from limit of detection to 969 μ g kg⁻¹ (Santos et al., 2008; Bircan et al. 2008; Hierro et al. 2008; O'Riordan and Wilkinson 2008; Santos et al. 2010b). The mycotoxin contamination of spices should not be underestimated despite the small

amounts consumed, since the hazard due to mycotoxins is the repeated ingestion of small
quantities (Ehlers et al. 2006). The best way to prevent mycotoxin contamination in *Capsicum*fruits to control the conditions of harvesting and processing methods, the storage conditions
and post-harvest treatments (Reddy et al. 2001, Erdogan 2004, Heperkan and Ermis 2004,
Bircan 2005, Colak et al. 2006, Almela et al. 2007).

The use of fungicides has become an essential part of modern agriculture (Matheron and Porchas, 2008). The fungicides as pre-harvest treatment can be an efficient, cost-effective way to prevent mould growth, and consequently mycotoxins production. In the last few years, intensive studies have been carried out on the search of several chemical compounds (e.g. antioxidants, carotenoids, flavonoids, surfactants, herbicides...) which could inhibit the fungal growth. Some studies have proven that fungicides can affect growth (Olajire and Oluvemisi 2009) and AF production of A. flavus (Wheeler 1991, Reddy et al. 2009) isolated from different matrices.

In this study we have attempted to understand the effect of some pre-harvest fungicides on the
growth and AF production of some *A. flavus* found in *Capsicum* powder.

65 Material and Methods

66 Strains

Three AF-producing strains of *A. flavus* (UdLTA 3.193, UdLTA 3.215, and UdLTA 3.217) were used in the study. These moulds were previously isolated from paprika (UdLTA 3.217), chilli (UdLTA 3.193) and smoked paprika (UdLTA 3.215) and belong to the Food Technology Department Collection of the University of Lleida, Spain. In order to confirm the accuracy of morphological identification, the 3 strains were subjected to molecular analysis with specific primers for these species (Santos et al., 2010a). In order to confirm the accuracy

Page 5 of 25

Food Additives and Contaminants

of morphological identification, the 3 isolates were subjected to molecular analysis with specific primers for this species. All genomic DNAs were tested for suitability for PCR amplification using universal primers ITS1 and ITS4. Specific PCR assays were carried out using primers FLA1 and FLA2 based on ITS1-5.8SITS2 region and the protocol described elsewhere (González-Salgado et al., 2008).

78 Fungicides

The fungicides used in this work are those which are commonly used for the treatment ofpeppers and are listed in Table 1.

81 Medium

Yeast Extract Sucrose agar (YES) (yeast extract 20 g; Czapek concentrate 7.5 mL; sucrose 150 g; MgSO₄·7 H₂O 0.5 g; agar 20 g; H₂O 885 mL to 1 L) and a 3% paprika extract agar (3% paprika) were used for mould cultures. The 3% paprika medium was prepared by boiling 30 g of chilli powder in 1 L distilled water for 30 min. The resulting mixture was filtered through a double layer of muslin and the volume was made up to 1 L (Marín et al. 2009). The fungicides concentrations used were the recommended by manufacturers and are listed in Table 1.

89 Inoculation

For inocula preparation, one plate of Malt Extract Agar (MEA) (Malt Extract 15 g; peptone
0.75 g; glucose 15 g; agar 9 g; H₂O 750 mL to 1 L) per strain was inoculated and incubated
for 7 days at 25 °C. On the seventh day, suspensions of 1-5·10⁶ spores mL⁻¹ (in sterile water
plus Tween 80) for each strain were prepared and adjusted using a Thoma counting chamber.
YES and 3% paprika plates were inoculated once in the centre, with an inoculation needle.

95 Growth Conditions

96 Three replicate plates per fungicide and strain plus controls (media without fungicides) were
97 incubated in the dark at 20 and 30 °C.

98 Growth Measurements

 99 Petri plates were examined on days 3, 5 and 7 and the diameters of the growing colonies were100 measured in two directions at right angles to each other.

101 Determination of AF production

On day 7 of incubation, a high performance liquid chromatography (HPLC) method was used to determine the AF production. The extraction method was a modification of the Bragulat et al. (2001) protocol. Three plugs (diameter 5 mm) were aseptically removed from the inner, middle, and outer area of each colony. The plugs were placed into 4 mL glass vials for extraction. Extraction was done adding 1 mL of acetronitrile and vortex-mixing for 5 seconds. After 1 hour, the vials were shaken again and the solvent was filtered (Millex HV filter 0.45 mm, Millipore, Bedford, MA, USA) on a HPLC glass vial. After filtration, 300 µL of acetonitrile extract and 700 μ L water were mixed and 100 μ L of this solution was injected in the HPLC system (Waters, Milford, MA, USA) with a reverse-phase C18 silica gel column (Waters Spherisorb® 3 µm ODS2 4.6 × 150 mm, Milford, MA, USA) kept in a column oven at 40 °C. Detection was achieved by fluorescence (Waters 2475 fluorescence detector, Waters, Milford, MA, USA); excitation and emission wavelengths were set at 362 and 440 nm, respectively. An isocratic mobile phase of water-acetonitrile-methanol (60:25:15, v/v/v) was used at a flow rate of 1.0 mL min⁻¹. Post-column derivatization was achieved by using a photochemical reactor for enhanced detection (PHRED) (LCTech UVE, Dorfen, Germany). For confirmation of the presence of AF, the PHRED was switched off and the decrease of the AFB1 and AFG1 peaks was registered. For total AF (AFt), limit of detection (LD) was 0.6 ng

 g^{-1} and limit of quantification 2.5 ng g^{-1} . Retention time for the different mycotoxins was 7.3 min for AFG₂, 8.5 min for AFG₁, 9.7 min for AFB₂ and 11.6 min for AFB₁.

Statistical analysis

A multifactor analysis of variance (ANOVA) was used to test the significance of the effects of the factors (strain, medium, temperature, time and fungicides) and their interactions on the colony diameter using JMP® 8.0.1 (SAS Institute Inc, Cary, NC, USA). The Tukey HSD test was used to differentiate among levels of factors. AF concentrations detected under each condition were also evaluated with ANOVA taking strain, medium, temperature and fungicides as factors. ANOVA was also used to evaluate the effects of factors on YES and 3% paprika media (controls) over colony diameter and AF production.

Results and Discussion

This study attempts to understand the effect of some pre-harvest fungicides on A. flavus found in *Capsicum* powder. Currently, in Europe there is no registered fungicide for the specific post-harvest treatment of *Capsicum* fruits. Although the fungicides chosen for this study are usually used for the pre-harvest treatment of *Capsicum* spp. diseases caused by moulds like Botrytis, Fusarium or Alternaria, it could be possible that they may also be effective in the growth and AF production control of moulds usually found in soil or during storage, such as A. flavus.

Growth and mycotoxin production in the controls

AF production is usually affected by many abiotic parameters like temperature, water activity, pH, osmotic pressure, substrate nature and also biotic factors (Martins et al. 2000) in our case, the AF production was affected by the medium, temperature and isolate used. Many of these

parameters have been investigated separately but it must be noted that they all interact under natural conditions (Martins et al. 2000). Some strains of A. flavus are known to be non-toxigenic or to produce small quantities of AF, as the isolate UdLTA 3.215. The ability to produce AF relies on the metabolic system of each individual (Martins et al., 2000). Those A. *flavus* that produce AF, usually produce only B-type AF, however there are some strains also capable to produce G-type AF. All the isolates used in this study produced B-type and G-type AF, depending on the conditions. Like us there are other authors who also found A. flavus G-type producers (Gabal et al., 1994; Ehrlich et al., 2007). The toxigenicity of A. flavus also varies with strain, substrate and geographic origin (Klich 2007). As mentioned before, each strain derived from different a substrate.

Usually, A. flavus growth is possible in the range of 10 °C or a little higher to about 43°, being the optimal growth at temperatures slightly exceeding 30 °C (ICMSF 1996). The usual optimal temperature for AF production by A. flavus is 20-35°C and AF production decreases as temperature goes down or above these levels (Schroeder and Hein 1967, Northolt et al. 1977, Gqaleni et al. 1997, Ogundero 2007). There are some authors who have observed that A. flavus can also have an optimal temperature for AF production at 13-16 °C or 16-24 °C, depending on the strain (Northolt et al. 1977). In our study, although only two temperature levels were assaved, it was observed that A. flavus grew better and produced more AF at 30 °C.

In the controls where no fungicide was added, growth and AFt, AFB1 and AFB2 production were significantly higher in YES than in 3% paprika medium. In general, the three strains grew significantly faster and produced significantly more AF at 30°C than at 20°C in both media. Regarding the AFB2 production, the temperature only influenced the strain UdLTA

Food Additives and Contaminants

3.193, on YES. Moreover, AFG1 and AFG2 production was not influenced by either medium
or temperature. As expected, increasing colony diameters were observed with time, so all the
results described *a posteriori* were based on the results of the day 7.

In the controls when comparing strains and regardless of the medium used, it was possible to observe that the UdLTA 3.217 strain grew significantly faster (P<0.05). The UdLTA 3.193 produced significantly more AFt, AFB1 and AFB2 than the other strains, and no significant differences were found among the strains for the production of AFG1 and AFG2 (P<0.05). The ability to produce AF relies on the metabolic system of each individual strain (Martins et al. 2000). Thus, some strains of *A. flavus* are non-toxigenic or produce less quantity of AF, as the strains UdLTA 3.215 and UdLTA 3.217.

179 Growth response to fungicides

Regarding fungicide effects on growth of all strains, the fungicides were more efficient at 20 °C and on 3% paprika (P<0.05). The data from the effects of fungicides treatment over growth are showed in the Table 2. Almost all fungicides reduced significantly the growth of all strains, except F3 (copper oxychloride 50%) which never showed good results on YES, F4 (triadimenol 31.2%) and F5 (sulphur 80%) which showed a light effect, in particular for isolates UdLTA 3.215 and UdLTA 3.217, and F9 (trifloxystrobin 50%), which was not effective at 30 °C. The fungicides F6 (tebuconazole 25%) and F7 (mancozeb 80%) totally prevented growth of all isolates, regardless of medium or temperature. The fungicide F1 (cypronidil 37.5% + fludioxonil 25%) reduced growth of all strains in 95 to 100%, regardless of the temperature and medium used. The fungicide F2 (dodine 40%) reduced growth in YES over 99%, but in 3% paprika it had lower efficiency (over 20%), being lower at 30 °C (20-

191 29%). The fungicide F8 (cyproconazole 10%) inhibited growth in rates of 31 to 83%,
192 depending on medium and temperature.

193 Copper oxychloride 50% (F3) and triadimenol 31.2% (F4) were the worst fungicides for 194 growth controlling of *A. flavus* and the best ones were tebuconazole 25% (F6) and mancozeb 195 80% (F7), regardless of isolate, medium and temperature.

196 It is important to note that temperature constrained the effectiveness of fungicides in reducing 197 growth, being the fungicides more effective at 20 °C. For a proper election of the fungicides it 198 is also necessary to discern their effect on the AF production.

199 AF production response to fungicides

Since fungicides are widely used to control crop diseases, it is pertinent to consider the effects of these agents on mycotoxin production. In both laboratory studies with pure cultures of moulds and field trials with crop plants the resulting evidence concerning the effectiveness of fungicides is contradictory and in certain cases unexpected (D'Mello et al. 1998), as it is possible to observe through the results of this study.

For statistical purposes, an AF production of 0.0 ng AF/g of agar was assigned to no-growth observations. Moreover, aflatoxin results for <5 mm growth observations were omitted. Thus it was not possible to analyse the effect of the fungicides F1 (cypronidil 37.5% + fludioxonil 25%) over the AF production capacity of all strains at 30 °C, and also the effect of the fungicide F2 (dodine 40%) over the strain UdLTA 3.215 at 20 °C in 3% paprika and over the strain UdLTA 3.217 at 30 ° C in YES. The data from the effects of fungicides treatment over AF production are shown in the Tables 3, 4, 5 and 6.

Food Additives and Contaminants

The efficacy of the fungicides over AF production depended on the medium used and temperature (P<0.05). Regarding AFt production in 3% paprika the only effect observed was a significant increase of the AFt production for the strain UdLTA 3.217 at 30 °C and for the strain UdLTA 3.215 at 20 °C when using triadimenol 31.2% (F4) (P<0.05). The opposite was only observed in YES. The fungicides had a significantly inhibitory effect over the AFt production of 51 to near 100%, regardless of the strains and temperature (P < 0.05), except for strain UdLTA 3.193 at 20 °C where fungicides had no significant effect. The fungicides effect over AFB1 production was similar to the effect over AFt production. There was an absence of any significant effect in 3% paprika and a significant inhibitory effect between 51 and near 100%, on YES, regardless of strain and temperature, except at 20 °C for the UdLTA 3.193 strain in which no effect was observed (P<0.05). Regarding fungicide effect in AFB2 production, there was no significant effect in 3% paprika, while in YES the fungicides reduced significantly the AFB2 production in the range 39-100% for the strain UdLTA 3.217, regardless of the temperature level and for the strain UdLTA 3.193 at 30 °C. For AFG1 and AFG2 production, there was no significant effect, except in YES at 30 °C for the strains UdLTA 3.193 and UdLTA 3.215. However, there were some cases the presence of fungicides F1 (cypronidil 37.5% + fludioxonil 25%), F2 (dodine 40%) and F9 (trifloxystrobin 50%) promoted AF production.

In the present study, the most effective fungicides in inhibiting growth and AF production, regardless of the strain, mycotoxin or applied conditions, were tebuconazole 25% (F6) and mancozeb 80% (F7). Tebuconazole and mancozeb fungicides belong to the triazole and dithiocarbamates groups, respectively. The dithiocarbamates action has direct effect on moulds by interfering with sporulation, inhibiting some enzymatic process and disrupting the lipids metabolism (Yoneyama et al. 1978), whereas tebuconazole inhibits the biosynthesis of

ergosterol which had an effect on mycelia growth (Godwin et al. 1992). The same active ingredients of these fungicides (mancozeb and tebuconazole) proved to be effective in reducing growth and sometime in inhibiting mycotoxin production: the use of mancozeb was shown to be effective in controlling the Alternaria, Fusarium and Botrytis growth (Boughalleb et al. 2006, Nallathambi et al. 2009). Mancozeb was also capable to inhibit effectively the growth of A. niger, A. carbonarius, A. flavus, A. parasiticus and A. ochraceus, but also AFB1 and ochratoxin A production (Bellí et al. 2006, Reddy et al. 2009). The use of tebuconazole was also effective in reducing the growth of some Fusarium species (Müllenborn et al. 2008). There are also other fungicides which are capable of inhibiting growth of A. flavus, as well as the AFB1 production, such as bitertanol 25%, carbendazim 50%, carpropamid, hexaconazole 5%, propiconazole, propineb 70%, tricyclazole 75% and carbendazin + mancozeb (Reddy et al., 2009). Diodine is also effective in blocking the growth of A. flavus (Luz et al. 2007).

Some authors suggested that production of some mycotoxins is not associated with rapid growth of the mould; rather, higher growth rates seem to restrict mycotoxin production (Häggblom 1982). Although this was observed in paprika medium, in YES the strain UdLTA 3.193 grew well and also produced high levels of AF. Moreover, in presence of sulphur 80% (F5) it grew well and AF production was further promoted.

The use of fungicides can be very attractive in reducing mycotoxigenic fungal load, but we must be aware that in some cases it may reduce fungal growth and also stimulate the mycotoxin production (Medina et al. 2007). In our study this fact occurred in the presence of

dodine 40% (F2) in 3% paprika at 20 °C for the isolate UdLTA 3.193, which reduced 79% of
growth but promoted a high level of AF production.

Finally, care should be taken in the choice of a suitable fungicide, because its effectiveness depends on the strain, temperature and substrate used. It is also necessary to note that results obtained *in vitro* are unlikely to be similar to those obtained in the field trials due to the influence of several factors. When choosing a fungicide it is necessary to take into account that not always the most efficient fungicides in reducing fungal growth is the best choice because it can also promote the production of AF. Also it should be remembered that even if fungal growth is not reduced, the AF production could still be promoted. Thus, the best fungicide is the one which can prevent fungal growth and AF production at the same time.

274 Acknowledgments

The authors are grateful to the Spanish (Project AGL2007-66416-C05-03) and Catalonian (XaRTA- Reference Network on Food Technology) Government for their financial support. The authors would like to thank X. Ochoa de Eribe (R&D technician of SIPCAM INAGRA) and Bayer CropScience S.L. for supplying some of the fungicide samples and also R. Miranda for the grammatical review.

References

Adegoke GO, Allamu AE, Akingbala JO, Akanni AO. 1995. Influence of sundrying on the
chemical composition, aflatoxins content and fungal counts of two pepper varieties – *Capsicum annum* and *Capsicum frutescens*. Plant Food Hum Nutr. 49: 113–117.

- - Almela L, Rabe V, Sánchez B, Torrella F, López-Pérez JP, Gabaldón JA, Guardiola L. 2007.
 - Ochratoxin A in red paprika: Relationship with the origin of raw material. Food Microbiol.
 24: 319–327.
 - Awe MJ, Schranz JL. 1981. High pressure liquid chromatographic determination of aflatoxins in spices. J Assoc Off Anal Chem 64: 1377–1382.
 - Aydin A, Erkan ME, Baskaya R, Giftcioglu G. 2007. Determination of aflatoxin B1 levels in
 powdered red pepper. Food Control. 18: 1015–1018.
 - 292 Bellí S, Marín S, Sanchis V, Ramos AJ., 2006. Impact of fungicides on Aspergillus
 - *carbonarius* growth and ochratoxin A production synthetic grape-like medium and on grapes.
 - ⁴ 294 Food Addit Contam A. 23: 1021-1029.
 - ⁷ 295 Bircan C. 2005. The determination of aflatoxins in spices by immunoaffinity column
 ⁹ 296 extraction using HPLC. Int J Food Sci Tech. 40: 929–934.
 - 297 Bircan C, Barringer SA, Ulken U, Pehlivan R. 2008. Aflatoxin levels in dried figs, nuts and
 298 paprika for export from Turkey. Int J Food Sci Tech. 43: 1492–1498.
 - Boughalleb N, Tarchoun N, Dallagi W. 2006. Effect of fungicides on *in vitro* infestation level
 of radish, carrot and pepper seeds. Plant Pathology J. 5: 388-392.
 - Bragulat, M.R., Abarca, M.L., Cabañes, F.J., 2001. An easy screening method for fungi
 producing ochratoxin A in pure culture. Int J Food Microbiol. 71: 139–144.
 - ⁴⁶ 303 Christensen, C.M., Fanse, H.A., Nelson, G.H., Bates F., Mirocha C.J.,1967. Microflora of
 - ⁸ 304 black and red pepper. Appl Microbiol 3: 622–626.
 - 305 Colak H, Bingol EB, Hampikyan H, Nazli, B. 2006. Determination of aflatoxin contamination
 - in red-scaled, red and black pepper by ELISA and HPLC. J Food Drug Anal. 14: 292–296.
 - ²⁵ 307 D'Mello JPF, Macdonald AMC, Postel D, Dijksma WTP, Dujardin A, Placinta CM. 1998.
- 308 Pesticide use and mycotoxin production in *Fusarium* and *Aspergillus* phytopathogens. Eur J
- 60 309 Plant Pathol. 104: 741-751.

Food Additives and Contaminants

Ehlers D, Czech E, Quirin K, Weber R. 2006. Distribution of aflatoxins between extract and
extraction residue of paprika using supercritical carbon dioxide. Phytochem Analysis. 17:
114–120.

- 313 Ehrlich, KC, Kobbeman, K, Montalbano, BG, Cotty, PJ. 2007. Aflatoxin-producin
 314 Aspergillus species from Thailand. Int. J. Food. Microbiol. 114, 153-159.
- 5 315 Erdogan A. 2004. The aflatoxin contamination of some pepper types sold in Turkey.
 6 316 Chemosphere. 56: 321-325.
- 0 317 Fazekas B, Tar A, Kovács M. 2005. Aflatoxin and ochratoxin A content of spices in Hungary.
- ² 318 Food Addit Contam. 22: 856-863.
- Finoli C, Ferrari M. 1994. Aflatossine in spezie ed erbe aromatiche. Ind Aliment Italy
 XXXIII. 732–736.
- 321 Gabal, MA, Hegazi, SA, Hassanin, N. 1994. Aflatoxin production by *Aspergillus flavus* fields
 322 isolates. Vet. Hum. Toxicol. 36, 519-521.
- Garner RC, Whattam MM, Taylor PJL, Stow MW. 1993. Analysis of United Kingdom purchased spices for aflatoxins using an immunoaffinity column clean-up procedure followed by high-performance liquid chromatographic analysis and post-colum derivatisation with pyridinium bromide perbromide. J Chromatograph. 648: 485–490.
- Godwin JR, Anthony VM, Clough JM, Godfrey CRA. 1992. A novel, broad spectrum
 systemic β-methoxyacrylate fungicide. Papper presented at: Proceedings of the Brighton Crop
 Protection Conference—Pests and Diseases, Farnham, Surrey, UK.
- 330 González-Salgado A, González-Jaén MT, Vázquez C, Patiño, B. 2008. Highly sensitive
 331 PCR-based detection method specific for Aspergillus flavus in wheat flour. Food Addit.
 332 Contam. 25: 758-764.

Gqaleni N, Smith JE, Lacey J, Gettinby G. 1997. Effects of temperature, water activity, and
incubation time on production of aflatoxins and cyclopiazonic acid by an isolate of *Aspergillus flavus* in surface agar culture. Appl Environ Microb. 63: 1048-1053.

Häggblom P. 1982. Production of ochratoxin A in barley by Aspergillus ochraceus and

Penicillium viridicatum: effect of fungal growth, time, temperature, and inoculums size. Appl
338 Environ Microb. 43: 1205-1207.

Hashem, M., Alamri, S., 2010. Contamination of common spice in Saudi Arabia markets with
potential mycotoxin-producing fungi. Saudi J Biol Sci 17, 167-175.

341 Heperkan D, Ermis ÖC. 2004. Meeting the Mycotoxin Menace. Wageningen: Wageningen
342 Academic Publishers. Mycotoxins in spices: red pepper. p. 197–219.

- 8 343 Hierro JMH, Garcia-Villanova J, Torreno PR, Fonseca IMT. 2008. Aflatoxins and ochratoxin
- A in red paprika for retail sale in Spain: Occurrence and evaluation of a simultaneous analytical method. J Agr Food Chem. 56: 751-756.
- 5 346 International Commission on Microbiological Specifications for Foods (ICMSF). 1996.
- 347 Microorganisms in foods 5: Microbiological specifications of food pathogens. London, UK:
- Blackie Academic and Professional. Toxigenic fungi: Aspergilus. p. 347-381.
- 2 349 Klich MA. 2007. Environmental and development factors influencing aflatoxins production
- ⁴ 350 by *Aspergillus flavus* and *Aspergillus parasiticus*. Mycoscience. 48: 71-80.

Klieber A. 2001. Aflatoxin contamination and its management in chilli and paprika products
 in Australia. Food Aust. 53: 90–92.

- Luz C, Netto MCB, Rocha LFN. 2007. *In vitro* susceptibility to fungicides by invertebrate-
- 54 354 pathogenic and saprobic fungi. Mycopathologia. 164: 39-47.
- ⁵⁶ 355 Macdonald S, Castle L. 1995. A UK retail survey of aflatoxins in herbs and spices and their
- 56 fate during cooking. Food Addit Contam. 13: 121–128.

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
2U 04	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
24	
34	
35	
36	
37	
38	
39	
40	
<u>Δ1</u>	
40	
42	
43	
44	
45	
46	
47	
48	
⊿0	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

60

357 Mandeel, Q.A., 2005. Fungal contamination of some imported spices. Mycopathologia 159:
358 291–298.

Marín S, Colom C, Sanchis V, Ramos AJ. 2009. Modelling of growth of aflatoxigenic A.
 flavus isolates from red chilli powder as a function of water availability. Int J Food Microbiol.
 128: 491-496.

Martins ML, Martins HM, Bernardo F. 2000. Interaction of strains of non-toxigenic *Aspergillus flavus* with *Aspergillus parasiticus* on aflatoxin production. Braz J Vet Res An Sci. 37: 439-443.

365 Martins ML, Martins HM, Bernardo F, 2001. Aflatoxins in spices marketed in Portugal. Food
366 Addit Contam. 18: 315–319.

Matheron, ME, Porchas, M. 2008. Efficacy of New Fungicides as Potential Management Tools for Phytophthora Crown and Root Rot on Pepper Plants. Vegetable Report (P-152): 14-16.

Medina A, Mateo R, Valle-Algarra FM, Mateo E, Jiménez M. 2007. Effect of carbendazim and physicochemical factors on the growth and ochratoxin A production of *Aspergillus carbonarius* isolated from grapes. Int J Food Microbiol. 119: 230-235.

Mòricz AM, Fatér Z, Otta KH, Tyihák E, Mincsovics E. 2007. Overpressured layer chromatographic determination of aflatoxin B1, B2, G1 and G2 in red paprika. Microchem J. 56 375 85: 140–144.

Müllenborn C, Steiner U, Ludwig M, Oerke E. 2008. Effect of fungicides on the complex *Fusarium* species and saprophytic colonizing wheat kernels. Eur J Plant Pathol. 120: 157-166.
Nallathambi P, Umamaheswari C, Thakore BBL, More TA. 2009. Post-harvest management
of ber (*Ziziphus mauritiana* Lamk) fruit rot (*Alternaria alternata* Fr. Keissler) using *Trichoderma* species, fungicides and their combinations. Crop Prot. 28: 525-532.

381 Northolt MD, Egmond HP, Paulsch WE. 1977. Differences between *Aspergillus flavus* strains
382 in growth and aflatoxins B1 production in relation to water activity and temperature. J Food
383 Prot. 40: 778-781.

O'Riordan M.J, Wilkinson MG. 2008. A survey of the incidence and level of aflatoxin contamination in a range of imported spice preparations on the Irish retail market. Food Chem. 107: 1429–1435.

387 Ogundero VW. 2007. Temperature and aflatoxins production by *Aspergillus flavus* and *A*.
 388 *parasiticus* strains from Nigeria groundnuts. J Basic Microb. 27: 511-514.

389 Olajire DF, Oluyemisi F. 2009. In vitro effects of some pesticides on pathogenic fungi 390 associated with legume. Aust J Crop Sci. 3: 173-177.

Patel S, Hazel CM, Winterton AGM, Mortby E. 1996. Survey of ethnic foods for mycotoxins.
 Food Addit Contam. 13: 833–841.

Reddy SV, Mayi DK, Reddy MU, Thirumala-Devi K, Reddy DVR. 2001. Aflatoxins B1 in
 different grades of chillies (*Capsicum annum* L.) in India as determined by indirect
 competitive-ELISA. Food Addit Contam. 18: 553-558.

Reddy KRN, Reddy CS, Muralidharan K. 2009. Efficacy of certain agrochemicals on
 Aspergillus spp. and subsequent aflatoxins production in rice. Pestic Biochem Phys. 93: 53 398 57.

Samson RA, Hong S, Frisvad JC. 2006. Old and new concepts of species differentiation in
 Aspergillus. Med Mycol. 44: 133 – 148.

401 Santos, L., Marín, S.; Sanchis, V.; Ramos, A.J. 2008. *Capsicum* and Mycotoxin 33 402 Contamination: State of the Art in a Global Context. Food Sci Technol Int 14: 5-20.

403 Santos L, Kasper R, Sardiñas N, Marín S, Sanchis V, Ramos AJ. 2010a. Effect of *Capsicum*404 carotenoids on growth and aflatoxins production by *Aspergillus flavus* isolated from paprika

and chilli. Food Microbiol. *In press*.

Food Additives and Contaminants

406 Santos L, Marín S, Sanchis V, Ramos AJ. 2010b. Co-occurrence of aflatoxins, ochratoxin A

- 407 and zearalenone in *Capsicum* powder samples available on the Spanish market. Food Chem.
 408 122 (3): 826-830.
- 409 Schroeder HW, Hein H. 1967. Aflatoxins: production of the toxin in vitro in relation to 2 2 410 temperature. Appl Microbiol. 15: 441-445.
- 411 Scott PM, Kennedy BPC. 1973. Analysis and survey of ground black, white, and *Capsicum*412 peppers for aflatoxins. J Assoc Off Anal Chem. 56: 1452–1457.
- 413 Shamsuddin ZA, Khan MA, Khan BA, Ahmad MA, Ahmed A. 1995. Contamination of red
 414 chilli with aflatoxin B1 in Pakistan. Mycotoxin Res. 11: 21–24.
- 415 Tabata S, Kamimura H, Ibe A, Hashimoto H, Iida M, Tamura Y, Nishima, T. 1993. Aflatoxin
 416 contamination in foods and foodstuffs in Tokio: 1986–1990. J Assoc Off Anal Chem. 76: 32–
 417 35.
 - Wheeler MH. 1991. Effects of chlobenthiazone on aflatoxins biosynthesis in *Aspergillus parasiticus* and *A. flavus*. Pestic Biochem Phys. 41: 190-197.
- 420 Yoneyama K, Sekido S, Misato T. 1978 Studies on the fungicidal action of dithiocarbamates
- 421 3. Effect of sodium dimethyldithiocarbamate on the fatty acid synthesis of *Xanthomonas*422 *oryzae*. Annu Phytopathol Soc Japan. 44: 313-320.
- 423 Zinedine A, Brera C, Elakhdari S, Catano C, Debegnach F, Angelini S, Santis B, Faid M,
- 424 Benlemlih M, Minardi V, Miraglia M. 2006. Natural occurrence of mycotoxins in cereals and
- 425 spices commercialized in Morocco. Food Control. 17: 868–874.

Fungicide code	Commercial name	Active substance	Recommended/Used dose
F1	Switch	Cypronidil 37.5% + Fludioxonil 25%	1 g L ⁻¹
F2	Syllit®flow	Dodine 40%	1.6 g L^{-1}
F3	Copper fungicide	Copper oxychloride 50%	3 g L^{-1}
F4	Bayfidan SC312	Triadimenol 31.2%	0.4 mL L^{-1}
F5	Sufrevit	Sulfur 80%	5 mL L^{-1}
F6	Folicur 25WG	Tebuconazole 25%	0.75 g L^{-1}
F7	Micene ® WP	Mancozeb 80%	3.5 g L^{-1}
F8	Caddy 10	Cyproconazole 10%	0.20 g L ⁻¹
F9	Flint	Trifloxystrobin 50%	0.25 g L^{-1}

Table 1 – List of fungicides used and their concentrations.

Table 2 - Effects of fungicide treatments (Cypronidil 37.5% + Fludioxonil 25% (F1), Dodine 40% (F2), Copper oxychloride 50% (F3), Triadimenol 31.2% (F4), Sulfur 80% (F5), Tebuconazole 25% (F6), Mancozeb 80% (F7), Cyproconazole 10% (F8), and Trifloxystrobin 50% (F9)) over growth (mm) of A. flavus isolates (n=3, means followed by different letters are significantly different, *P*<0.05, according toTukey HSD test).

3 % paprika										
	20 °C	•		30 °C						
UdLTA 3.193	UdLTA 3.215	UdLTA 3.217	UdLTA 3.193	UdLTA 3.215	UdLTA 3.217					
30.8 A	30.5 A	32.0 AB	74.7 A	71.2 A	76.2 A					
0.0 E	0.0 E	0.0 E	2.8 F	2.2 DE	3.2 D					
6.3 D	2.7 DE	0.0 E	58.0 C	56.8 AB	54.0 B					
13.3 C	9.3 CDE	13.8 D	19.0 E	15.2 CDE	26.3 C					
22.0 В	20.2 AB	30.0 B	49.5 D	31.8 BCD	50.2 B					
23.8 B	11.2 BCD	34.7 A	66.3 B	38.7 BC	70.8 A					
0.0 E	0.0 E	0.0 E	0.0 F	0.0 E	0.0 D					
0.0 E	0.0 E	0.0 E	0.0 F	0.0 E	0.0 D					
15.3 C	13.7 BC	19.2 C	47.0 D	37.3 BC	52.5 B					
3.0 DE	6.3 CDE	11.7 D	47.3 D	39.3 BC	49.8 B					
		YI	ES							
	20 °C			30 °C						
UdLTA 3.193	UdLTA 3.215	UdLTA 3.217	UdLTA 3.193	UdLTA 3.215	UdLTA 3.217					
57.0 A	52.3 A	53.3 A	84.0 A	85.0 A	85.0 A					
0.0 C	0.0 D	0.0 E	2.7 E	4.0 E	3.0 C					
00.0 C	0.0 D	0.0 E	0.0 E	0.0 E	0.7 C					
49.3 A	46.7 B	50.0 A	85.0 A	85.0 A	85.0 A					
28.5 B	11.5 C	21.8 C	50.7 C	30.7 D	48.5 B					
32.5 B	0.0 D	41.3 B	69.5 B	0.0 E	83.7 A					
0.0 C	0.0 D	0.0 E	0.0 E	0.0 E	0.0 C					
0.0 C	0.0 D	0.0 E	0.0 F	0.0 E	0.0 C					
9.7 C	11.2 C	14.2 D	43.2 D	37.2 C	48.0 B					
5.2 C	1.3 D	13.2 D	81.2 A	70.8 B	85.0 A					
	UdLTA 3.193 30.8 A 0.0 E 6.3 D 13.3 C 22.0 B 23.8 B 0.0 E 15.3 C 3.0 DE UdLTA 3.193 57.0 A 0.0 C 00.0 C 49.3 A 28.5 B 32.5 B 0.0 C 0.0 C 9.7 C 5.2 C	20 °C UdLTA 3.193 UdLTA 3.215 30.8 A 30.5 A 0.0 E 0.0 E 6.3 D 2.7 DE 13.3 C 9.3 CDE 22.0 B 20.2 AB 23.8 B 11.2 BCD 0.0 E 0.0 E 0.0 E 0.0 E 0.0 E 0.0 E 15.3 C 13.7 BC 3.0 DE 6.3 CDE 20 °C UdLTA 3.193 UdLTA 3.215 57.0 A 52.3 A 0.0 C 0.0 D	20 °C UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 30.8 A 30.5 A 32.0 AB 0.0 E 0.0 E 0.0 E 6.3 D 2.7 DE 0.0 E 13.3 C 9.3 CDE 13.8 D 22.0 B 20.2 AB 30.0 B 23.8 B 11.2 BCD 34.7 A 0.0 E 0.0 E 0.0 E 15.3 C 13.7 BC 19.2 C 3.0 DE 6.3 CDE 11.7 D YI QUC C QUC C <th colspa<="" td=""><td>3 % payrika 20 °C VdLTA 3.193 UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 30.8 A 30.5 A 32.0 AB 74.7 A 0.0 E 0.0 E 0.0 E 2.8 F 6.3 D 2.7 DE 0.0 E 58.0 C 13.3 C 9.3 CDE 13.8 D 19.0 E 22.0 B 20.2 AB 30.0 B 49.5 D 23.8 B 11.2 BCD 34.7 A 66.3 B 0.0 E 0.0 E 0.0 F 0.0 F 0.0 E 0.0 E 0.0 F 0.0 F 15.3 C 13.7 BC 19.2 C 47.0 D 3.0 DE 6.3 CDE 11.7 D 47.3 D Values Q0 °C Values Q0 °C Values Values Q0 °C Values Q0 °C Q1 °C Q1 °C</td><td>3 % paprika 20 °C 30 °C UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 UdLTA 3.215 30.8 A 30.5 A 32.0 AB 74.7 A 71.2 A 0.0 E 0.0 E 0.0 E 2.8 F 2.2 DE 6.3 D 2.7 DE 0.0 E 58.0 C 56.8 AB 13.3 C 9.3 CDE 13.8 D 19.0 E 15.2 CDE 22.0 B 20.2 AB 30.0 B 49.5 D 31.8 BCD 23.8 B 11.2 BCD 34.7 A 66.3 B 38.7 BC 0.0 E 0.0 E 0.0 F 0.0 E 0.0 E 0.0 E 0.0 E 0.0 F 0.0 E 0.0 E 15.3 C 13.7 BC 19.2 C 47.0 D 37.3 BC 3.0 DE 6.3 CDE 11.7 D 47.3 D 39.3 BC UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 UdLTA 3.215 C C 3.0 °C UdLTA 3.216 O.0 E 0.0 E 0.0 E <!--</td--></td></th>	<td>3 % payrika 20 °C VdLTA 3.193 UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 30.8 A 30.5 A 32.0 AB 74.7 A 0.0 E 0.0 E 0.0 E 2.8 F 6.3 D 2.7 DE 0.0 E 58.0 C 13.3 C 9.3 CDE 13.8 D 19.0 E 22.0 B 20.2 AB 30.0 B 49.5 D 23.8 B 11.2 BCD 34.7 A 66.3 B 0.0 E 0.0 E 0.0 F 0.0 F 0.0 E 0.0 E 0.0 F 0.0 F 15.3 C 13.7 BC 19.2 C 47.0 D 3.0 DE 6.3 CDE 11.7 D 47.3 D Values Q0 °C Values Q0 °C Values Values Q0 °C Values Q0 °C Q1 °C Q1 °C</td> <td>3 % paprika 20 °C 30 °C UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 UdLTA 3.215 30.8 A 30.5 A 32.0 AB 74.7 A 71.2 A 0.0 E 0.0 E 0.0 E 2.8 F 2.2 DE 6.3 D 2.7 DE 0.0 E 58.0 C 56.8 AB 13.3 C 9.3 CDE 13.8 D 19.0 E 15.2 CDE 22.0 B 20.2 AB 30.0 B 49.5 D 31.8 BCD 23.8 B 11.2 BCD 34.7 A 66.3 B 38.7 BC 0.0 E 0.0 E 0.0 F 0.0 E 0.0 E 0.0 E 0.0 E 0.0 F 0.0 E 0.0 E 15.3 C 13.7 BC 19.2 C 47.0 D 37.3 BC 3.0 DE 6.3 CDE 11.7 D 47.3 D 39.3 BC UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 UdLTA 3.215 C C 3.0 °C UdLTA 3.216 O.0 E 0.0 E 0.0 E <!--</td--></td>	3 % payrika 20 °C VdLTA 3.193 UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 30.8 A 30.5 A 32.0 AB 74.7 A 0.0 E 0.0 E 0.0 E 2.8 F 6.3 D 2.7 DE 0.0 E 58.0 C 13.3 C 9.3 CDE 13.8 D 19.0 E 22.0 B 20.2 AB 30.0 B 49.5 D 23.8 B 11.2 BCD 34.7 A 66.3 B 0.0 E 0.0 E 0.0 F 0.0 F 0.0 E 0.0 E 0.0 F 0.0 F 15.3 C 13.7 BC 19.2 C 47.0 D 3.0 DE 6.3 CDE 11.7 D 47.3 D Values Q0 °C Values Q0 °C Values Values Q0 °C Values Q0 °C Q1 °C Q1 °C	3 % paprika 20 °C 30 °C UdLTA 3.193 UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 UdLTA 3.215 30.8 A 30.5 A 32.0 AB 74.7 A 71.2 A 0.0 E 0.0 E 0.0 E 2.8 F 2.2 DE 6.3 D 2.7 DE 0.0 E 58.0 C 56.8 AB 13.3 C 9.3 CDE 13.8 D 19.0 E 15.2 CDE 22.0 B 20.2 AB 30.0 B 49.5 D 31.8 BCD 23.8 B 11.2 BCD 34.7 A 66.3 B 38.7 BC 0.0 E 0.0 E 0.0 F 0.0 E 0.0 E 0.0 E 0.0 E 0.0 F 0.0 E 0.0 E 15.3 C 13.7 BC 19.2 C 47.0 D 37.3 BC 3.0 DE 6.3 CDE 11.7 D 47.3 D 39.3 BC UdLTA 3.215 UdLTA 3.217 UdLTA 3.193 UdLTA 3.215 C C 3.0 °C UdLTA 3.216 O.0 E 0.0 E 0.0 E </td				

Food Additives and Contaminants

Table 3 - Effects of fungicide treatments (Cypronidil 37.5% + Fludioxonil 25% (F1), Dodine 40% (F2), Copper oxychloride 50% (F3), Triadimenol 31.2% (F4), Sulfur 80% (F5), Tebuconazole 25% (F6), Mancozeb 80% (F7), Cyproconazole 10% (F8), and Trifloxystrobin 50% (F9)) over AF production (ng AF g of agar⁻¹) of *A. flavus* (UdLTA 3.193) (n=3, means followed by different letters are significantly different, *P*<0.05, according toTukey HSD test).

	3 % paprika															
Fungicides				20	°C							30	°C			
	AFB1 AFB2		AFG1 AFG2			AFB1		AFB2		AFG1	AFG2	AFG2				
Control	0.8	А	<ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td><td>43.4</td><td>AB</td><td>45.7</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td>43.4</td><td>AB</td><td>45.7</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td>43.4</td><td>AB</td><td>45.7</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<>	А	43.4	AB	45.7	А	<ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<>	В	<ld< td=""><td>BC</td></ld<>	BC
F1	0.0	А	0.0	A	0.0	В	0.0	В								
F2	240.2	А	68.2	Α	128.1	А	<ld< td=""><td>А</td><td>16.8</td><td>AB</td><td>24.8</td><td>А</td><td>1.0</td><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<>	А	16.8	AB	24.8	А	1.0	В	<ld< td=""><td>BC</td></ld<>	BC
F3	13.6	А	19.3	А	0.5	В	<ld< td=""><td>А</td><td>5.4</td><td>AB</td><td>4.8</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<>	А	5.4	AB	4.8	А	<ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<>	В	<ld< td=""><td>BC</td></ld<>	BC
F4	1.7	А	2.5	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td>3.0</td><td>AB</td><td>1.0</td><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td>3.0</td><td>AB</td><td>1.0</td><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<>	А	3.0	AB	1.0	Α	<ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<>	В	<ld< td=""><td>BC</td></ld<>	BC
F5	1,427.1	А	1,491.0	А	3.0	В	<ld< td=""><td>А</td><td>10.9</td><td>AB</td><td>5.9</td><td>А</td><td>9.6</td><td>А</td><td>0.8</td><td>В</td></ld<>	А	10.9	AB	5.9	А	9.6	А	0.8	В
F6	0.0	А	0.0	А	0.0	В	0.0	В	0.0	В	0.0	А	0.0	В	0.0	С
F7	0.0	А	0.0	А	0.0	В	0.0	В	0.0	В	0.0	А	0.0	В	0.0	С
F8	38.7	А	5.1	А	<ld< td=""><td>В</td><td><ld< td=""><td>Α</td><td>4.8</td><td>AB</td><td>1.7</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>Α</td><td>4.8</td><td>AB</td><td>1.7</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<></td></ld<>	Α	4.8	AB	1.7	А	<ld< td=""><td>В</td><td><ld< td=""><td>BC</td></ld<></td></ld<>	В	<ld< td=""><td>BC</td></ld<>	BC
F9	113.6	А	92.6	А	<ld< td=""><td>В</td><td><ld< td=""><td>Α</td><td>65.3</td><td>А</td><td>25.2</td><td>А</td><td>0.4</td><td>В</td><td>2.5</td><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>Α</td><td>65.3</td><td>А</td><td>25.2</td><td>А</td><td>0.4</td><td>В</td><td>2.5</td><td>А</td></ld<>	Α	65.3	А	25.2	А	0.4	В	2.5	А
								Y	ES							
Fungicides				20	°C				30 °C							
	AFB1		AFB2		AFG1		AFG2	AFG2		AFB1			AFG1		AFG2	
Control	389,405.4	AB	430,105.8	AB	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>1,363,823.0</td><td>A</td><td>1,067,610.0</td><td>А</td><td>276,190.9</td><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>1,363,823.0</td><td>A</td><td>1,067,610.0</td><td>А</td><td>276,190.9</td><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	1,363,823.0	A	1,067,610.0	А	276,190.9	А	<ld< td=""><td>А</td></ld<>	А
F1	0.0	В	0.0	В	0.0	А	0.0	В				•				
F2	0.0	В	0.0	В	0.0	А	0.0	В	0.0	D	0.0	D	0.0	В	0.0	В
F3	2.0	В	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.5</td><td>D</td><td><ld< td=""><td>D</td><td>38.8</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.5</td><td>D</td><td><ld< td=""><td>D</td><td>38.8</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>0.5</td><td>D</td><td><ld< td=""><td>D</td><td>38.8</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	0.5	D	<ld< td=""><td>D</td><td>38.8</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	D	38.8	В	<ld< td=""><td>А</td></ld<>	А
F4	548,931.5	А	578,392.6	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>356,676.0</td><td>BC</td><td>341,592.0</td><td>BC</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>356,676.0</td><td>BC</td><td>341,592.0</td><td>BC</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	356,676.0	BC	341,592.0	BC	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F5	12,333.5	В	8,251.3	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>136,420.0</td><td>CD</td><td>132,917.0</td><td>CD</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>136,420.0</td><td>CD</td><td>132,917.0</td><td>CD</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	136,420.0	CD	132,917.0	CD	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F6	0.0	В	0.0	В	0.0	А	0.0	В	0.0	D	0.0	D	0.0	В	0.0	В
F7	0.0	В	0.0	В	0.0	А	0.0	В	0.0	D	0.0	D	0.0	В	0.0	В
F8	50.8	В	53.5	В	6.2	А	<ld< td=""><td>А</td><td>667,932.0</td><td>В</td><td>652,526.0</td><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	667,932.0	В	652,526.0	В	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F9	17.3	В	11.1	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>1,104.0</td><td>D</td><td>1,129.0</td><td>D</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>1,104.0</td><td>D</td><td>1,129.0</td><td>D</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	1,104.0	D	1,129.0	D	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А

Note:LD (AFB1, AFB2, AFG1 and AFG2) = 0.2 ng g^{-1} ; Absence of values indicates analysis not done (growth < 5mm).

Page 23 of 25

Food Additives and Contaminants

Table 4 - Effects of fungicide treatments (Cypronidil 37.5% + Fludioxonil 25% (F1), Dodine 40% (F2), Copper oxychloride 50% (F3), Triadimenol 31.2% (F4), Sulfur 80% (F5), Tebuconazole 25% (F6), Mancozeb 80% (F7), Cyproconazole 10% (F8), and Trifloxystrobin 50% (F9)) over AF production (ng AF g of agar⁻¹) of *A. flavus* (UdLTA 3.215) (n=3, means followed by different letters are significantly different, *P*<0.05, according toTukey HSD test).

							3	% p	aprika								
Fungicides				20	°C				30 °C								
	AFB1		AFB2	AFB2		AFG1		AFG2		AFB1		AFB2		AFG1		AFG2	
Control	1.4	A	2.1	AB	<ld< th=""><th>А</th><th><ld< th=""><th>А</th><th>3.7</th><th>AB</th><th><ld< th=""><th>А</th><th><ld< th=""><th>А</th><th><ld< th=""><th>А</th></ld<></th></ld<></th></ld<></th></ld<></th></ld<>	А	<ld< th=""><th>А</th><th>3.7</th><th>AB</th><th><ld< th=""><th>А</th><th><ld< th=""><th>А</th><th><ld< th=""><th>А</th></ld<></th></ld<></th></ld<></th></ld<>	А	3.7	AB	<ld< th=""><th>А</th><th><ld< th=""><th>А</th><th><ld< th=""><th>А</th></ld<></th></ld<></th></ld<>	А	<ld< th=""><th>А</th><th><ld< th=""><th>А</th></ld<></th></ld<>	А	<ld< th=""><th>А</th></ld<>	А	
F1	0.0	А	0.0	В	0.0	А	0.0	В									
F2									11.4	А	<ld< td=""><td>А</td><td>3.2</td><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	3.2	А	<ld< td=""><td>А</td></ld<>	А	
F3	<ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	AB	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	<ld< td=""><td>А</td></ld<>	А	
F4	36.5	А	<ld< td=""><td>В</td><td>21.6</td><td>А</td><td><ld< td=""><td>А</td><td>5.4</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	В	21.6	А	<ld< td=""><td>А</td><td>5.4</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	5.4	AB	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	<ld< td=""><td>А</td></ld<>	А	
F5	10.0	А	11.8	А	<ld< td=""><td>A</td><td><ld< td=""><td>А</td><td>3.1</td><td>AB</td><td>0.5</td><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	A	<ld< td=""><td>А</td><td>3.1</td><td>AB</td><td>0.5</td><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	3.1	AB	0.5	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	<ld< td=""><td>А</td></ld<>	А	
F6	0.0	А	0.0	В	0.0	Α	0.0	В	0.0	В	0.0	А	0.0	А	0.0	В	
F7	0.0	А	0.0	В	0.0	Α	0.0	В	0.0	В	0.0	А	0.0	А	0.0	В	
F8	0.6	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>A</td><td>6.3</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td><ld< td=""><td>A</td><td>6.3</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>A</td><td>6.3</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	A	6.3	AB	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	<ld< td=""><td>А</td></ld<>	А	
F9	2.9	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>4.3</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>4.3</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>4.3</td><td>AB</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	4.3	AB	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	<ld< td=""><td>А</td></ld<>	А	
								Y	ES								
Fungicides				20	°C				30 °C								
	AFB1		AFB2		AFG1		AFG2		AFB1	AFB1 AFB2			AFG1 AI				
Control	219.5	А	1.4	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>623.1</td><td>А</td><td><ld< td=""><td>А</td><td>93.5</td><td>А</td><td>0.6</td><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>623.1</td><td>А</td><td><ld< td=""><td>А</td><td>93.5</td><td>А</td><td>0.6</td><td>А</td></ld<></td></ld<>	А	623.1	А	<ld< td=""><td>А</td><td>93.5</td><td>А</td><td>0.6</td><td>А</td></ld<>	А	93.5	А	0.6	А	
F1	0.0	В	0.0	А	0.0	А	0.0	В									
F2	0.0	В	0.0	А	0.0	А	0.0	В	0.0	В	0.0	A	0.0	В	0.0	А	
F3	<ld< td=""><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.4</td><td>В</td><td><ld< td=""><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.4</td><td>В</td><td><ld< td=""><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.4</td><td>В</td><td><ld< td=""><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>0.4</td><td>В</td><td><ld< td=""><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	0.4	В	<ld< td=""><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	Α	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А	
F4	8.7	В	5.3	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>176.8</td><td>В</td><td>0.9</td><td>A</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>176.8</td><td>В</td><td>0.9</td><td>A</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	176.8	В	0.9	A	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А	
F5	0.0	В	0.0	А	0.0	А	0.0	В	0.0	В	0.0	А	0.0	В	0.0	А	
F6	0.0	В	0.0	А	0.0	А	0.0	В	0.0	В	0.0	А	0.0	В	0.0	А	
F7	0.0	В	0.0	А	0.0	А	0.0	В	0.0	В	0.0	А	0.0	В	0.0	А	
F8	3.6	В	<ld< td=""><td>А</td><td><ld< td=""><td>Α</td><td><ld< td=""><td>A</td><td>161.1</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>Α</td><td><ld< td=""><td>A</td><td>161.1</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	Α	<ld< td=""><td>A</td><td>161.1</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	A	161.1	В	<ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А	
F9									181.0	В	<ld< td=""><td>А</td><td>11.0</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	11.0	В	<ld< td=""><td>А</td></ld<>	А	

Note: LD (AFB1, AFB2, AFG1 and AFG2) = 0.2 ng g^{-1} ; Absence of values indicates analysis not done (growth < 5mm).

Food Additives and Contaminants

Table 5 - Effects of fungicide treatments (Cypronidil 37.5% + Fludioxonil 25% (F1), Dodine 40% (F2), Copper oxychloride 50% (F3), Triadimenol 31.2% (F4), Sulfur 80% (F5), Tebuconazole 25% (F6), Mancozeb 80% (F7), Cyproconazole 10% (F8), and Trifloxystrobin 50% (F9)) over AF production (ng AF g of agar⁻¹) of *A. flavus* (UdLTA 3.217) (n=3, means followed by different letters are significantly different, *P*<0.05, according toTukey HSD test).

	3 % paprika															
Fungicides			2	0 °C					30 °C							
	AFB1		AFB2		AFG	51	AFG	2	AFB1		AFB2	AFG1		AFG2		
Control	2.6 A	4	0.4	А	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>4.5</td><td>AB</td><td>0.3</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>4.5</td><td>AB</td><td>0.3</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<>	А	4.5	AB	0.3	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	<ld< td=""><td>В</td></ld<>	В
F1	0.0 A	4	0.0	А	0.0	А	0.0	В								
F2	0.0 A	4	0.0	А	0.0	А	0.0	В	0.8	В	<ld< td=""><td>А</td><td>24.5</td><td>А</td><td>2.3</td><td>А</td></ld<>	А	24.5	А	2.3	А
F3	0.5 A	4	<ld< td=""><td>Α</td><td><ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.5</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	Α	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>0.5</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>0.5</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<>	А	0.5	В	<ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	<ld< td=""><td>В</td></ld<>	В
F4	10.0 A	4	14.0	A	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>8.0</td><td>AB</td><td>5.3</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>8.0</td><td>AB</td><td>5.3</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<>	А	8.0	AB	5.3	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	<ld< td=""><td>В</td></ld<>	В
F5	4.2 A	4	2.4	Α	<ld< td=""><td>A</td><td><ld< td=""><td>А</td><td>2.7</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	A	<ld< td=""><td>А</td><td>2.7</td><td>В</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<></td></ld<>	А	2.7	В	<ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	<ld< td=""><td>В</td></ld<>	В
F6	0.0 A	4	0.0	А	0.0	Α	0.0	В	0.0	В	0.0	А	0.0	В	0.0	В
F7	0.0 A	4	0.0	А	0.0	А	0.0	В	0.0	В	0.0	А	0.0	В	0.0	В
F8	49.7 A	4	63.8	А	0.3	А	<ld< td=""><td>A</td><td>16.8</td><td>А</td><td>3.1</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<>	A	16.8	А	3.1	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	<ld< td=""><td>В</td></ld<>	В
F9	2.5 A	4	1.3	А	0.0	А	<ld< td=""><td>A</td><td>5.1</td><td>AB</td><td>1.1</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<></td></ld<>	A	5.1	AB	1.1	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	<ld< td=""><td>В</td></ld<>	В
									YES							
Fungicides			2	0 °C					30 °C							
	AFB1		AFB2		AFG	51	AFG	2	AFB1		AFB2		AFG1		AFG2	
Control	6,264.2 A	4	5,529.2	А	0.1	А	<ld< td=""><td>А</td><td>4,175.3</td><td>Α</td><td>4,714.4</td><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	4,175.3	Α	4,714.4	А	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F1	0.0 E	3	0.0	D	0.0	А	0.0	В								
F2	0.0 E	3	0.0	D	0.0	А	0.0	В								
F3	21.1 E	3	1.0	D	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F4	1,252.8 E	3	1,761.5	В	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>24.3</td><td>В</td><td>16.3</td><td>В</td><td>3.9</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>24.3</td><td>В</td><td>16.3</td><td>В</td><td>3.9</td><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	А	24.3	В	16.3	В	3.9	В	<ld< td=""><td>А</td></ld<>	А
F5	580.1 E	3	926.8	BC	<ld< td=""><td>А</td><td><ld< td=""><td>А</td><td>5.7</td><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	А	<ld< td=""><td>А</td><td>5.7</td><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<></td></ld<>	А	5.7	В	<ld< td=""><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F6	0.0 E	3	0.0	D	0.0	А	0.0	В	0.0	В	0.0	В	0.0	В	0.0	В
F7	0.0 E	3	0.0	D	0.0	A	0.0	В	0.0	В	0.0	В	0.0	В	0.0	В
F8	14.9 E	3	17.3	D	0.3	A	<ld< td=""><td>А</td><td>19.1</td><td>В</td><td>2.6</td><td>В</td><td><ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<></td></ld<>	А	19.1	В	2.6	В	<ld< td=""><td>В</td><td><ld< td=""><td>А</td></ld<></td></ld<>	В	<ld< td=""><td>А</td></ld<>	А
F9	79.2 E	3	181.1	CD	0.0	Α	<ld< td=""><td>Α</td><td><ld< td=""><td>В</td><td><ld< td=""><td>В</td><td>1,472.2</td><td>Α</td><td><ld< td=""><td>Α</td></ld<></td></ld<></td></ld<></td></ld<>	Α	<ld< td=""><td>В</td><td><ld< td=""><td>В</td><td>1,472.2</td><td>Α</td><td><ld< td=""><td>Α</td></ld<></td></ld<></td></ld<>	В	<ld< td=""><td>В</td><td>1,472.2</td><td>Α</td><td><ld< td=""><td>Α</td></ld<></td></ld<>	В	1,472.2	Α	<ld< td=""><td>Α</td></ld<>	Α

Note: LD (AFB1, AFB2, AFG1 and AFG2) = 0.2 ng g^{-1}

Page 25 of 25

Food Additives and Contaminants

Table 6- Effects of fungicide treatments (Cypronidil 37.5% + Fludioxonil 25% (F1), Dodine 40% (F2), Copper oxychloride 50% (F3), Triadimenol 31.2% (F4), Sulfur 80% (F5), Tebuconazole 25% (F6), Mancozeb 80% (F7), Cyproconazole 10% (F8), and Trifloxystrobin 50% (F9)) over AFt production (ng AF g of agar⁻¹) of *A. flavus* isolates (n=3, means followed by different letters are significantly different, *P*<0.05, according toTukey HSD test).

	3 % paprika														
Fungicides	*		20 °C						30 °C						
	UdLTA 3.1	93	UdLTA 3.2	15	UdLTA :	3.217	UdLTA 3.1	93	UdLTA 3.2	15	UdLTA 3.217				
Control	1.1	А	3.7	В	3.2	А	89.3	А	4.0	А	5.0	BC			
F1	0.0	А	0.0	В	0.0	А									
F2	436.6	A			0.0	А	42.6	А	14.8	А	28.0	А			
F3	33.5	A	<ld< td=""><td>В</td><td>0.7</td><td>А</td><td>10.4</td><td>А</td><td><ld< td=""><td>А</td><td>08</td><td>BC</td></ld<></td></ld<>	В	0.7	А	10.4	А	<ld< td=""><td>А</td><td>08</td><td>BC</td></ld<>	А	08	BC			
F4	4.3	А	58.3	А	24.1	А	4.1	А	5.6	А	13.5	ABC			
F5	2,921.2	А	21.9	AB	6.8	А	27.2	А	3.8	А	2.9	BC			
F6	0.0	А	0.0	В	0.0	А	0.0	А	0.0	А	0.0	С			
F7	0.0	А	0.0	В	0.0	А	0.0	А	0.0	А	0.0	С			
F8	44.0	А	0.9	В	113.9	Α	6.6	А	6.6	А	20.1	AB			
F9	206.2	А	3.1	В	4.0	Α	93.5	Α	4.6	А	6.3	BC			
						Y	ES								
Fungicides			20 °C				30 °C								
	UdLTA 3.1	93	UdLTA 3.2	15	UdLTA :	3.217	UdLTA 3.1	93	UdLTA 3.2	UdLTA 3.217					
Control	819,511.0	AB	221.1	А	11,793.5	А	2,707,624.0	A	717.3	А	8,889.9	А			
F1	0.0	В	0.0	В	0.0	С									
F2	0.0	В	0.0	В	0.0	С	0.0	D	0.0	В					
F3	2.3	В	<ld< td=""><td>В</td><td>22.3</td><td>С</td><td>39.0</td><td>D</td><td>1.4</td><td>В</td><td><ld< td=""><td>В</td></ld<></td></ld<>	В	22.3	С	39.0	D	1.4	В	<ld< td=""><td>В</td></ld<>	В			
F4	1,127,324.0	А	14.2	В	3,014.4	В	698,268.0	С	177.9	В	44.6	В			
F5	20,585.0	В	0.0	В	1,507.1	BC	269,337.0	CD	0.0	В	6.0	В			
F6	0.0	В	0.0	В	0.0	С	0.0	D	0.0	В	0.0	В			
F7	0.0	В	0.0	В	0.0	С	0.0	D	0.0	В	0.0	В			
F8	111.0	В	3.9	В	32.7	С	1,320,458.0	В	161.4	В	21.8	В			
F9	28.0	В			260.5	BC	2,233.0	D	192.2	В	1,472.5	В			

Note: LD (AF) = 0.6 ng g^{-1} ; Absence of values indicates analysis not done (growth < 5mm).