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1. Introduction

Biological regulatory networks are often mathematically modeled by means of graphs which represent
the interactions between biological entities such as macromolecules or genes. Current advances in molec-
ular biology provide us with fairly complete such maps of gene interactions for an increasing number
of species. Following the success of the genomic and post-genomic area, this kind of model becomes
essential for understanding and predicting cell behaviourin a bottom-up approach.

The regulatory network of a cell, as a whole, is composed of some tens of thousands of genes (e.g.
6000 genes in the yeast genome and between 30.000 and 40.000 genes in mammalian genomes). Unfor-
tunately, rigorous models revealing the precise causal functioning of a regulatory network are currently
limited to some tens of genes. The main reason for this limitation is that such models involve a large
number of parameters which must be indirectly deduced from the cell behaviour, since they are not di-
rectly measurable, leading to many experiments in order to indirectly fi nd the parameter values. Such
very precise dynamic models are consequently focused on fewgenes selected because they cooperate to
realize a precise biological function.

Therefore, to predict biological behaviour (or phenotype)from the static knowledge of a regulatory
graph, there are two main scientifi c trends:

• studying regulatory networks in the large: probabilistic or statistical approaches can be used to
extract general predictions according to some characteristics of the interaction network [11, 16,
21]. Those characteristics can be simple local measurements such as the degree of each node or
global measurements such as the graph diameter. Qualitative or logical properties of such large
networks are less studied except for some works allowing to focus on some relevant complex
properties by simplifying some simple causal cascades [7].

• studying regulatory networks in detail: “concentration levels” are attached to each entity belonging
to the graph and the goal is to predict their possible evolution [43, 10, 8, 12]. Additional parameters
are then required in order to precisely deduce the possible trajectories in the space of possible
states. Those parameters defi ne the nature of the consideredinteractions as well as their relative
strengths. This scientifi c trend is mostly used to analyze indetail the functioning of well identifi ed
biological functions inside the cell [40, 23, 28, 22, 6, 44, 18, 32, 33, 20, 24, 1]. Lastly, Petri nets
are well studied in computer sciences since more than thirtyyears and there are also some hopes
to take benefi ts of this corpus: pioneering works in this areaare for example proposed in [5, 14].

This article belongs resolutely to the second trend. Nevertheless, we believe that it is possible to
increase the number of considered genesvia a decomposition of the graph into some kind of “modules.”
The modules should be studied independently and we should beable to deduce the global behaviour
from the knowledge of the individual behaviour of each module. The notion of module remains to be
defi ned in general and this article constitutes a fi rst step towards this general defi nition.

We adopt here the formalism of René Thomas [38, 37, 41, 39, 36, 3]. It has the advantage to be a
logical modelling approach which can benefi t from very powerful automated tools in computer science
such asmodel checking[9, 4]. This discrete modelling has been proved compatible with differential
modelling (ODE) [29, 30] and has won a following. Several theoretical results, which are deeply relevant
for biology, have been established over about thirty years (in particular, feedback circuits in the regulatory
graphs have been extensively studied [38, 30, 41, 35, 15, 29,13, 39, 33, 12, 26, 2, 25, 27, 19, 31]).
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In continuation of this school, we establish a non trivial theorem aboutembeddingsof biological
regulatory networks. Given a sub-network embedded into a larger one, we give a necessary and suffi cient
condition to ensure that its “isolated behaviour” is not affected by the embedding. Therefore, our work
constitutes a step towards a modular approach , trying to split regulatory networks into smaller parts
which can be treated independently [34].

Studied behaviour Preserved behaviour ?
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Large networkL

Small networkN

Figure 1. Embedding of a biological regulatory network

More precisely, as illustrated in Figure 1, an embedded network N communicates with the rest of
a larger networkL through two kinds of arrows:input arrows which go from a gene outside ofN to a
gene ofN (bold arrows) andoutputarrows which go from a gene ofN to the outside (grey arrows).
We demonstrate that only the input arrows can influence the behaviour of N and we give a necessary
and suffi cient condition to preserve the behaviour ofN . This condition is expressed on the parameters
associated to each input arrow. The advantage of our result is that it establishes the equivalence between:

• a global behavioural property of the network

• and a limited collection of algebraic constraints on local parameters, which is easier to verify
mechanically.

Our result offers an effective verifi cation of the behaviourpreservation without checking all the pos-
sible states of the network and without enumerating all possible dynamics. This necessary and suffi cient
condition only involves the static description of the network, which makes possible an algorithmic veri-
fi cation with reasonable CPU time.

2. Biological Regulatory Network (BRN): Static Description

The logical framework for Biological Regulatory Networks (BRN for short) of René Thomas [37] is
based on an abstract view of the interactions between objects of a biological system, mainly genes or
macromolecules. Models within this framework mainly describe the nature of the interactions (inhibi-
tion or activation) and their strength without explicitly considering the detailed underlying biochemical
reactions. They allow us to predict the dynamics of aBRN.
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Graph theory is very convenient to support this kind of description, because graphs capture the
“static” knowledge about the interactions. In the next section, we will see that graphs are also a use-
ful tool to represent possible dynamics of the biological system, deduced from the static description. In
the article, we will introduce the useful concepts on graphson a “call-by-need” basis, under the title
“Graph terminology.”

Graph terminology: A directed graphG is a setV of verticestogether with a setE of edges. An edge
(u, v) goes from a vertexu of V to another vertexv of V .
A directed graph is said to belabelled when each edge carries an information, called thelabel of the
edge. Labelled directed graphs can be drawn with a diagram asin Figure 2 whereα, β andγ are the
labels. It is also possible to put labels on vertices if necessary.

x y

β

γ

α

Figure 2. An example of labelled graph

A predecessorof a vertexv in a graphG is a vertexu of G such that there is an edge fromu to
v. The set of predecessors ofv is denoted byG−1(v). In Figure 2,x andy are the predecessors ofx:
G−1(x) = {x, y} andG−1(y) = {x}.

In the terminology of biological regulatory networks it is convenient to call “variables” the considered
biological objects. One variable can cover any useful concept such as gene, RNA, protein, as well as a
rough abstraction of those three facets of a gene, or a cluster of genes and so on. Such an abstraction is
considered adequate if it preserves the ability to associate an abstract “concentration level” or “expression
level” to a variable at any time.

If we represent variables as vertices of a directed graph then an edge(u, v) represents an action ofu

on v: the expression level ofv with respect to the expression level ofu, after a suffi cient delay foru to
act onv, is most of the time a sigmoid. let us moreover assume thatu also acts onw as in Figure 3a, then
three intervals are relevant for the expression level ofu (Figure 3b): in the interval called “0”u neither
acts onv nor onw, in the interval called “1” it acts onv only and fi nally in the interval called “2” it acts
on both variables.

In Figure 3b, the sigmoid ofv being increasing, we say thatu is anactivator of v and, the sigmoid
of w being decreasing, we say thatu is aninhibitor of w. Finally Figure 3c summarizes all these types
of information:u begins to activatev at the interval numbered 1 andu begins to inhibitw at the interval
numbered 2. This is formally expressed on the graph as: the threshold of(u, v) is “1” with the sign “+”
and the threshold of(u,w) is “2” with the sign “−”.

This idea to make a partition of the set of possible expression levels into several consecutive intervals
allows us to consider afiniteset ofdiscreteexpression levels. Considered expression levels for a variable
u will therefore be integer values 0, 1, 2, . . . up to a given boundary bu. This constitutes a valuable
discrete partitioning of a continuous global interval.

Predicting the dynamics of the expression level of the variables is of course a major issue. In the
framework of René Thomas, a variablev tends towards an expression level which depends only on the
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Figure 3. Interactions of variables and expression levels

expression level of its activators and inhibitors. More precisely, it only depends on the setω of its
“resources.” In the following defi nition, the expression level towards whichv tends is denoted byKv, ω.

Definition (Biological Regulatory Networks): A biological regulatory network(BRN for short) is a
triple N = (V,E,K) where:

• N = (V,E) is a labelled directed graph.

• Each vertexv of V is called avariableof theBRN, and is provided with a strictly positive integer
bv ∈ IN∗, called theboundaryof v.

• Each edge(u, v) of E is labelled by a couple(t, ε) wheret, calledthreshold, is an integer between
1 andbu andε, calledsign, belongs to{+,−}. Whenε = +, u is called aninducerof v. When
ε = −, u is called aninhibitor of v.

• K = { Kv, ω | v ∈ V andω ⊂ N−1(v) } is a family of integers such that0 ≤ Kv, ω ≤ bv for any
variable v and for any subsetω of the predecessors ofv in N . The familyK is called theset of
parametersof N .

In the literature [29, 30], it is often additionally required that ifω1 ⊂ ω2 thenKv, ω1 ≤ Kv, ω2 . This
restriction means that the more resources a variable owns, the more its expression level tends to grow. In
this article, all our results remain valid with or without this restriction.

In the following, when severalBRNs are considered, we noteV N the set of variables of aBRN N ,
V P the set of variables of aBRN P , etc. and similar notations apply forE andK. The exponent is
omitted when the consideredBRN is obvious from the context.

3. Dynamics of BRNs

It is generally impossible for a human to predict the behaviour of a biological system by looking at
its static description alone. One of the main advantages of the René Thomas’ approach is to offer a
qualitative representation of the system dynamics which ispredictable using a computer. This section
gives the corresponding formal defi nitions. See [4] for a more detailed presentation.
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3.1. States and Resources of a Variable

According to ourBRN framework, the state of a system is characterized by the expression level of each
variable. Thus, a state can be defi ned as a map which associates with each variable its current expression
level.

Definition (States of aBRN): Given aBRN N , a stateof N is a mappingµ : V → IN such that for
any variablev ∈ V , we have0 ≤ µ(v) ≤ bv. The integerµ(v) is then called theexpression levelof v.

So far, at a given time, each variablev has a given expression level. The evolution of this expression
level is driven by the current state of the inducers and inhibitors ofv. Figure 4 shows that:

• an inducer ofv is an actual resource ofv only when it passes its threshold

• an inhibitor plays a symmetric role; it is a resource only when it does not pass its threshold.

vv

u1 u2

u1 is not a
resource ofv

u2 is a
resource ofv

u1 is a
resource ofv

u2 is not a
resource ofv

Figure 4. Induction (resp. inhibition) ofv by u1 (resp.u2)

Definition (Resources of a Variable): Given a stateµ and a variablev of aBRN N , theset of resources
of v is the setωv(µ) containing all the variablesu of N such that:

• u is a predecessor ofv in the underlying directed graph ofN

• the edge(u, v) is labelled by(t, ε) and

i) if ε is the sign “+” then µ(u) ≥ t

ii) if ε is the sign “−” then µ(u) < t

The set of variablesωv(µ) is consequently the subset ofN−1(v) containing both the inducers ofv whose
expression level has reached the threshold and the inhibitors ofv whose expression level hasnot reached
the threshold.

3.2. State Graph

The dynamics of aBRN is defi ned by a graph that defi nes which states can be reached from any given
state.

If a variablev has an expression levelµ(v) at a given time, then this expression level is attracted
towardsKv, ωv(µ). Let us assume for instance thatKv, ωv(µ) = µ(v) + n with n > 1. The variations of
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concentration levels being continuousin vivo, the expression levelµ(v) cannot directly jump toKv, ωv(µ).
It takes the neighbor valueµ(v) + 1, as defi ned below:

Definition (κ functions): Given a stateµ and a variablev of a BRN N , κv(µ) is defined as follows:

• if µ(v) < Kv, ωv(µ) thenκv(µ) = µ(v) + 1

• if µ(v) = Kv, ωv(µ) thenκv(µ) = µ(v)

• if µ(v) > Kv, ωv(µ) thenκv(µ) = µ(v)− 1

The functionκ represents a “first step” evolution of the expression level of v from its current expression
levelµ(v) to its “target level1” Kv, ωv(µ).

Kinetics in vivo make highly improbable that two variables go through their threshold exactly at
the same time. Therefore, variables vary asynchronously, which leads to a state graph where only one
variable evolves at a time.

Definition (“Asynchronous” State Graph): Thestate graphof aBRN N is the directed graphS whose
vertices are all the possible states ofN and such that there is an edge from a stateµ to a stateµ ′ iff
there exists a variablev verifying:

• µ′(v) = κv(µ) 6= µ(v)

• for any variablev′ 6= v we haveµ′(v′) = µ(v′)

An edge of the state graph fromµ to µ′ is usually denoted as(µ→ µ′) and is calleda transition.

Figure 5 shows the underlying labelled graph of aBRN, the table of target levels according to an
arbitrarily fi xed set of parameters, and the corresponding state graph. Let us consider for instance the
state “1 0” (i.e.µ(x) = 1 andµ(y) = 0). The arrowx → x being labelled by(1,+) in Figure 5,x
is a resource of itself and the arrowy → x being labelled by(1,+), y is not a resource ofx. Thus,x
is attracted towardsKx, x. Similarly, the arrowx → y being labelled by(2,+), x is not a resource of
y and the arrowy → y being labelled by(2,−), y is a resource of itself (because it does not pass its
threshold). Thus,y is attracted towardsKy, y. So, the state “1 0” is attracted towards the target state
“2 2” (as Kx, x = 2 andKy, y = 2), which tends to increase the expression levels ofx andy. Only one
variable evolves at a time by one unit, thus two transitions start from the state “1 0” in the state graph:
(“1 0”→“2 0”) and (“1 0”→“1 1”).

Graph terminology: A pathof lengthn from a vertexx0 to a vertexxn in a directed graph is a sequence
of edges of the form(x0, x1) (x1, x2) (x2, x3) · · · (xn−1, xn). If x0 = xn then the path is called acircuit.

For example,(x, y) (y, x) is a circuit in the graph of Figure 5.

Remark: The conditionκv(µ) 6= µ(v) for asynchronous state graphs in the previous definition removes
elementary circuits of the state graph where a state points to itself. Indeed, many approaches in the
literature would add an elementary circuit on the state “2 2”in the state graph of Figure 5. In the
literature, such cases allow the user to identify stable (regular) steady states. According to our definition,
these states are identified as the ones with no outgoing transition.

1The target levelKv, ωv(µ) is also calledimagein the literature or sometimes “(local) attractor”or “focal point”
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Figure 5. Example of aBRN and its state graph

According to the regulatory network approach, thebehaviourof a cell is observed through variations
of the quantities of diverse macromolecules produced in thecell. This is expressed in René Thomas’s
approach by variations of the expression levels belonging to the state graphs. Each path in the state graph
represents a possible evolution of the biological system. Notice that twoBRNs have the same behaviour if
and only if they have the same set of paths, i.e. the same stategraphs. Therefore, studying the behaviour
of BRNs amounts to studying their state graphs.

4. Embeddings of BRNs

Studying the behaviour of the whole regulatory network of a cell would generate a combinatorial explo-
sion which is entirely outside current know how. Biologicalknowledge begins to provide us with some
fairly complete static description of gene interactions insome species (Yeast, E.coli, . . . ). However, there
is a huge gap between the static knowledge of a regulatory graph and the knowledge of the corresponding
regulatory network dynamics.

In practice, we are consequently restricted to the study of smaller regulatory networks, focusing on
sets of genes participating in targeted biological functions. These networks are therefore sub-networks
of the whole cell regulatory network and hopefully, the studied behaviour of each of them will not be
affected by its relationships with the whole network. In this article, our goal is precisely to offer rigorous
conditions to reach this hope.
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4.1. Partial BRN

According to this aim, an obvious preliminary condition is to considerall interactionsinsideeach con-
sidered sub-network. The defi nition of partialBRN below reflects this preliminary condition.

Graph terminology: Given a directed graphG, a subgraphof G is a graphG′ whose set of vertices is
included in the set of vertices ofG and whose set of edges is included in the set of edges ofG. If G ′

contains all the edges ofG which connect vertices ofG′ (i.e. for all verticesu andv of G′, the edge
(u, v) belongs toG′ iff it belongs toG), thenG′ is called apartial graphof G.

Definition (Partial BRN): A BRN P is apartialBRN of a BRN L iff:

• the underlying directed graph ofP is a partial graph of the underlying directed graph ofL

• any edge ofP has the same label inL

• for any variablev of P and for any subsetω of the predecessors ofv in P , we haveKPv, ω = KLv, ω

Notice that in this defi nition, all the parameters ofL of the formKLv, ω such thatv or any variable
of ω does not belong toP are ignored. Mainly, the object of the reminder of this article is to study the
effect of these ignored “external variables” on the behaviour of P.

4.2. Level Folding

Let us consider the example of Figure 6. The graph of Figure 5 is not directly a partial graph of Figure 6
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Parameters:
Kx=0,Kx, x=4,Kx, y=2,Kx, u=0,Kx, xy=4,Kx, xu=4,Kx, yu=4,Kx, xyu=3,
Ky=0,Ky, x=3,Ky, y=3,Ky, xy=3,
Ku=0,Ku, y=2,
Kv=0,Kv, x=0,Kv, u=0,Kv, w=0,Kv, xu=1,Kv, xw=1,Kv, uw=1,Kv, xuw=1,
Kw=0,Kw, x=1

Figure 6. ABRN which embeds theBRN of Figure 5

because the thresholds of edges(x, y), (y, x) and(y, y) differ. Nevertheless, assuming that we remove
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all the edges starting fromx or y to u, v or w, the threshold of the edge(x, y) becomes the second
threshold among the ones of edges starting fromx. Similarly, the threshold of(y, x) becomes the fi rst
threshold starting fromy and the threshold of(y, y) becomes the second one. Consequently, whenu, v

andw are removed from Figure 6, it is sensible to consider that we retrieve Figure 5. In other words, the
graph of Figure 5 is not directly a partial graph of Figure 6 but is in factembeddedin the graph of Figure
6.

This example reveals the usefulness of afolding functionin order to keep the thresholds consecutive
in the graph.

Definition (Level Folding): Let N be anyBRN and letu ∈ V be a variable ofN . The set of the
threshold values of the outgoing edges ofu can be sorted in strictly increasing order. Lett0, t1, · · · , td
be the strictly increasing sequence such thatt0 = 0, td = bu (boundary ofu) and the intermediateti are
the sorted threshold values.
Given an expression levell ∈ [0, bu] of u, there exists a uniquei such thatti ≤ l < ti+1 (or i = d if
l = bu). We define thefolding function ρu : [0, bu]→ [0, d] by ρu(l) = i.

For example, if the underlying directed graph ofN is the one of Figure 7 thenρx(0) = 0, ρx(1) =
ρx(2) = ρx(3) = 1, ρx(4) = 2, ρy(0) = ρy(1) = 0, ρy(2) = 1 andρy(3) = 2.

1
+ x y

3
–

4 +

+2

Parameters:
Kx=0,Kx, x=4,Kx, y=2,Kx, xy=4,
Ky=0,Ky, x=3,Ky, y=3,Ky, xy=3

Figure 7. Example of a non canonicalBRN

4.3. Embeddings ofBRNs

Given aBRN, it is always possible to use the folding function in order tominimize its thresholds and
parameters. The resultingBRN takes a form which can be considered as canonical.

Definition (Canonical Form): For anyBRN P , theBRN N obtained by replacing:

• the boundarybv of each variablev byρv(bv)

• each thresholds of any edge(u, v) byρu(s)

• each parameterKv, ω byρv(Kv, ω)

is calledthe canonical formof P . The function which associates to aBRN its canonical form is obviously
idempotent. ABRN which is equal to its canonical form is said to becanonical.
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According to this defi nition, Figure 5 defi nes a canonicalBRN which is the canonical form of the
BRN of Figure 7.

Definition (Embedding of BRNs): Let N andL be twoBRNs. We say thatN is embeddedin L iff
there exists a partialBRN P ofL whose canonical form is equal to the canonical form ofN .

Remark: This implies that the variables ofN belong toL (V N ⊂ V L). Moreover,N being given,P
is unique if it exists (sinceV P = V N ).

For example, theBRN defi ned in Figure 5 is embedded in theBRN of Figure 6 because theBRN of
Figure 7 is a partialBRN of the one of Figure 6 whose canonical form is equal to theBRN of Figure 5
(which is already canonical).

4.4. Preservation of Behaviour

When aBRN N is embedded in aBRN L, the preservation of the behaviour ofN means intuitively that
each variable ofL which does not belong toN cannot modify the behaviour ofN . In other words,
whatever the expression level of those variables is, it is unable to modify“noticeably” the expression
level of the variables ofN . A transition inL is “noticeable” only if it induces a state modifi cation in the
folded versionof the set of states ofN .

Definition (State Folding): Let P be anyBRN and letµ : V P → IN be a state ofP . Thefolded state
ρ(µ) is the stateµ′ : V P → IN defined byµ′(u) = ρu(µ(u)) for any variableu of P .

In order to consider all possible expression levels of a variable without modifying the state of the
other variables, we technically need the notion of state assignment.

Notation (State Assignment): Let µ be a state of aBRN L, let u be a variable ofL and let l be an
integer such that0 ≤ l ≤ bu. We noteµ[u←l] the stateµ′ such thatµ′(u) = l andµ′(u′) = µ(u′) for all
variablesu′ 6= u. We say that[u ← l] is astate assignment.

Finally, we can defi ne the preservation of behaviour as follows:

Definition (Preservation of Behaviour): An embedding of aBRN N into a BRN L preserves the
behaviourof N iff for any transition(µ → µ′) of SL such thatρ(µ|N ) 6= ρ(µ′|N ) and for any state

assignment[u ← l] such thatu does not belong toN , the transition(µ[u←l] → µ′[u←l]) also belongs
to SL.

Remark: The conditionρ(µ|N ) 6= ρ(µ′|N ) allows us to ignore the states ofN which point to themselves
as in Remark of Section 3.2 above.

Let us consider for example the embedding of theBRN of Figure 5 into theBRN of Figure 6. Figure 6
contains fi ve variables which make it diffi cult to draw its whole state graph. Fortunately, the variablesv

andw are resources neither ofx nor ofy. Consequently, only the different values of the variableu have
to be considered to detect the transitions of the form(ρ(µ|{x,y}

) → ρ(µ′|{x,y}
)) such thatρ(µ|{x,y}

) 6=

ρ(µ′|{x,y}
). Figure 8 gives the state graph of theBRN of Figure 6 restricted to{x, y} according to these

remarks. Consider, for example, the transition from(x = 3, y = 3) to (x = 4, y = 3) whenu = 0 or
u = 1. If we assign[u ← 2], this transition disappears. Consequently, the embeddingof variablesx and
y (i.e. Figure 5) into theBRN of Figure 6 doesnot preserve behaviour, asρx(3) = 1 6= ρx(4) = 2. This
is indeed the case for the four bold transitions of Figure 8.
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Figure 8. The state graph of theBRN of Figure 6 restricted to{x, y}

5. Main Results

In this section, we prove the main theorem of this article. Itestablishes that the preservation of behaviour
defi ned above is equivalent to a considerably smaller set of conditions, limited to the parameters of some
“frontier” variables ofN . State folding plays an important role and we fi rst prove (Section 5.1) that it
makes sense to fold an entire state graph; then we prove (Section 5.2) that canonical forms “commute”
with state graph foldings. Lastly, Sections 5.3 and 5.4 giveand prove the main theorem.

5.1. State Graph Folding

State folding defi ned in the previous section preserves the resources of each variable, as shown below.

Proposition: Let v be a variable of aBRN P , let µ be a state ofP and letC be the canonical form of
P . The set of resources ofv in P w.r.t. µ is equal to the set of resources ofv in C w.r.t. ρ(µ).
Formally: ωPv (µ) = ωCv (ρ(µ)) .

Proof:
Let u be any variable ofP−1(v) and lett be the threshold of(u → v). As t is a threshold,ρv is defi ned
in such a way that for any expression levell of u we have:ρv(l) ≥ ρv(t)⇔ l ≥ t. Applied tol = µ(u),
sinceρu(µ(u)) = (ρ(µ))(u), it comes(ρ(µ))(u) ≥ ρ(t) ⇔ µ(u) ≥ t. By contraposition, it comes
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(ρ(µ))(u) < ρ(t) ⇔ µ(u) < t. Thus, by defi nition ofC, u is a resource ofv in P w.r.t. µ iff it is a
resource ofv in C w.r.t. ρ(µ). ⊓⊔

This proposition makes it reasonable to introduce the following defi nition of folded state graphs.

Definition (State Graph Folding): Let N be aBRN embedded in aBRN L. Thefolded state graphof
the embedding, by notation abuseρN (SL), is defined by:

• the nodes ofρN (SL) are all the possible states of the canonical form ofN

• the edges ofρN (SL) are the transitions of the form(ρ(µ|N ) → ρ(µ′|N )) such that(µ → µ′) is a

transition ofSL and such thatρ(µ|N ) 6= ρ(µ′|N ), where “µ|N ” stands for the restriction ofµ to

V N (remind thatV N ⊂ V L).

Let us again consider the embedding of theBRN of Figure 5 into theBRN of Figure 6. Figure 9
gives the folded state graph of the embedding according to previous defi nition. In the state graph at the
left of Figure 9, the singular values (threshold) drawn withbold lines are the values whereρ(x) or ρ(y)
changes. The folded graph at the right of Figure 9 is obtainedby keeping only the transitions which cross
the bold lines. All the other transitions are ignored.

folding
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3

3 4
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ρy = 0

ρy = 1

ρy = 2
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Figure 9. Construction of the folded state graph resulting from the state graphs obtained in Figure 8

5.2. Preservation of state graph

Let N be aBRN embedded in aBRNL. Let P be the partial graph ofL corresponding to the embedding
of N . Since the behaviour ofN is reflected by its state graph, the preservation of its behaviour should
imply that the state graphSN of N is equal to the state graphSP of P. However, two questions must
be addressed before proving such a theorem:

• The expression levels ofP are not comparable with the ones ofN due to the folding stuff seen
before. Consequently, we have to compare thefoldedversions ofSN andSP .
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• When consideringN or P individually, there are two ways to get a folded view of theirbehaviour:
either one could consider the folded state graphs ofN and P or one could consider the state
graphs of their canonical forms. So, should we compare the folded state graphs ofN and P or
should we compare the state graphs of their canonical forms?

The following theorem solves both of these questions, because it has a corollary which establishes
that the folded state graph of aBRN is equal to the state graph of its canonical form (which solves the
second question according to the previous defi nition), and it proves that if an embedding preserves the
behaviour then the folded state graphs are equal.

Theorem (Preservation of State Graph): If the embedding of theBRN N into theBRN L preserves
the behaviour ofN then the folded state graphρN (SL) is equal to the state graphSC of the canonical
formC of N .

Proof:
Let P be the partialBRN of L whose canonical form isC.
SC ⊂ ρN (SL): Let (ν → ν ′) be any transition ofSC . Let us prove that there exists a transition(µ→ µ′)

of SL such thatρ(µ|N ) = ν andρ(µ′|N ) = ν ′. This means thatρ(µ|C ) = ν andρ(µ′|C ) = ν ′ becauseC
and N have the same set of variables.
Let v be the variable ofC such thatν ′(v) = κCv (ν) = ν(v) + δ (with δ = ±1). Sinceρv is surjective and
monotonic, there exists a level of expressionlv of v in L such thatρv(lv) = ν(v) andρv(lv + δ) = ν ′(v).
For the same reason, there exists a stateη of P such thatη(v) = lv andρ(η) = ν. Now let us consider the
variables ofL−1(v) which do not belong toP : it is always possible to assign them expression levels such
that they are not resources ofv in L. Let us also choose arbitrary expression levels for the other variables
of L which do not belong toP: this defi nes a stateµ of L. By construction,ωLv (µ) = ωPv (η) = ωCv (ν)
andρ(µ|C ) = ν andρ(µ[v←lv+δ]

|C ) = ν ′. Consequently, it is suffi cient to prove that(µ→ µ[v←lv+δ]) is
a transition ofSL.
This amounts to the demonstration thatκLv (µ) = lv + δ. Whenδ = 1, it means thatKL

v, ωLv (µ)
>

lv and sinceρv is an increasing function,ρv(K
L
v, ωLv (µ)

) > ρv(lv) is a suffi cient condition. We have

ρv(K
L
v, ωLv (µ)

) = ρv(K
P
v, ωPv (η)

) = KC
v, ωCv (ν)

asC is the canonical form ofP and we haveρv(lv) = ν(v).

So, the suffi cient condition becomesKC
v, ωCv (ν)

> ν(v) which precisely means that(ν → ν ′) is a transition

of SC . A similar reasoning applies ifδ = −1 and this ends this part of the proof.
ρ(SL) ⊂ SC : Let (µ → µ′) be any transition ofSL such thatρ(µ|N ) 6= ρ(µ′|N ) (i.e. ρ(µ|C ) 6= ρ(µ′|C )).

We will fi rstly prove that there exists a transition(η → η′) of SP such thatρ(µ|C ) = ρ(η) andρ(µ′|C ) =

ρ(η′), and we will secondly prove that(ρ(η)→ ρ(η ′)) belongs toSC .
Let v be the unique variable such thatµ′(v) = κLv (µ) 6= µ(v). It necessarily belongs toC asρ(µ|C ) 6=

ρ(µ′|C ). Let us make an induction on the numbern of variables inωLv (µ) which do not belong toC. If

n = 0 thenωLv (µ) = ωPv (µ|C ) and we can chooseη = µ|C andη′ = µ′|C becauseKL
v, ωLv (µ)

= KP
v, ωLv (µ)

,

thusκLv (µ) = κPv (η). If n > 0, then let us consideru, one of these variables, and let us chooselu, an
expression level ofu such thatu is not a resource ofv. Since the embedding preserves the behaviour,
(µ[u←lu] → µ′[u←lu]) also belongs toSL, it hasn− 1 variables inωLv (µ) which do not belong toC, and
ρ(µ|C ) = ρ(µ[u←lu]) andρ(µ′|C ) = ρ(µ′[u←lu]). This ends the fi rst facet of the proof.

Let (η → η′) be any transition ofSP such thatρ(η) 6= ρ(η′). Let v be the variable such thatη′(v) =
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κPv (η) = η(v) + δ with δ = ±1. Let us assume thatδ = 1. Consequently,KP
v, ωPv (η)

> η(v) and since

ρv(η
′(v)) = ρv(η(v) + 1) 6= ρv(η(v)) and sinceρv is an increasing function, we getρv(K

P
v, ωPv (η)

) >

ρv(η(v)). We know thatρv(K
P
v, ωPv (η)

) = KC
v, ωCv (ρ(η))

becauseC is the canonical form ofP . Thus, by

construction ofρv, we haveκCv (ρv(η(v))) = ρv(η(v)) + 1 = ρv(η(v) + 1) = ρv(η
′(v)). Consequently,

(ρ(η) → ρ(η′)) is a transition ofSC . Whenδ = −1, we follow a similar proof (replacing “>” by “ <”),
which ends the proof of the theorem. ⊓⊔
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State graph of Figure 8 withKx, xyu = 4 instead of3.

Figure 10. Modified state graph of theBRN of Figure 6 restricted to{x, y}

To illustrate the previous theorem, let us come back to the example of Figure 6 and let us modify only
one parameter withKx, xyu = 4 instead of3. This defi nes another embedding of theBRN of Figure 5.
Figure 10 gives the corresponding state graph (still restricted to variablesx andy). This new embedding
preserves the behaviour of theBRN of Figure 5 because the state graph restricted tox andy does not
change, whatever the values ofu, v andw are. The folded state graph is then constructed in Figure 11
and we see that, as established by our theorem, it is equal to the state graph of Figure 5.

Corollary: The canonical formC of a BRN N preserves the behaviour ofN and consequently, the
state graph ofC is equal to the folded state graph ofN .

Proof:
There is no variableu of N which does not belong toC. Consequently, the embedding ofC into N
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Figure 11. Folding of the modified state graph obtained in Figure 10

preserves the behaviour ofC and the previous theorem establishes that the folded state graphρN (SN ) is
equal to the state graphSC of C. ⊓⊔

5.3. Local Dynamics

Preservation of behaviour as defi ned in section 4.4 is based on an exhaustive knowledge of the state graph
of the globalBRN. We have shown that this defi nition reflects our intuition of behaviour preservation.
However, this defi nition is diffi cult to directly check in practice, because it involves a large number of
transitions in the complete state graph (e.g. as in Figure 10for only two variables). In order to more
easily check whether an embedding preserves the behaviour,we need to establish local criteria which
can be checked on a limited number of edges of the underlyingBRN without constructing the whole state
graph. The defi nition of local dynamics preservation below does not refer to state graphs. It only relies
on edges and parameters of the globalBRN. It requires two intermediate notions:ω-compatibility and
thesignumfunction.

Definition (ω-compatibility): LetL be aBRN, let v be a variable ofL and letω a subset ofL−1(v).
An expression levellv of v is said to becompatiblewith ω iff the following condition is satisfied:

if v ∈ L−1(v), let t be the threshold of the edge(v, v), thenv ∈ ω iff lv ≥ t.
In other words,v belongs toω iff lv actually makesv a resource of itself.

Terminology: The signumfunction is the functionsign which associate−1 to any strictly negative
number,0 to 0 and1 otherwise.

Definition (Preservation of the Local Dynamics): Let N be aBRN embedded into aBRN L and letv
be a variable ofN . An edge(u, v) ofL preserves the local dynamicsof v iff for any subsetω of L−1(v)
which does not containu, and for any expression levellv of v compatible withω, we have:

sign( ρv(K
L
v, ω∪{u}) − ρv(lv) ) = sign( ρv(K

L
v, ω) − ρv(lv) )

Intuitively, the previous formula can be explained as follows:
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• If at a given time the variablev has a certain expression levellv andv has a certain set of resources
ω, then we know that the expression level ofv will increase (resp. decrease) iffKLv, ω is greater
than (resp. less than)lv.

• The variableu thus has no impact on the behaviour ofv iff KL
v, ω∪{u} is also greater than (resp.

less than)lv. It can be expressed as:(KL
v, ω∪{u} − lv) has the same sign than(KLv, ω − lv).

• Lastly, one should not forget the folding functionρv, because we only look at the behaviour of the
embeddedBRN.

The preservation of local dynamics as defi ned in this sectionseems intuitively far less restrictive than
the preservation of behaviour of Section 4.4, especially ifit is checked only on a small subset of the edges
of L. The goal of Section 5.4 is to prove that the preservation of local dynamics, when checked on a well
chosen subset of edges ofL, is in fact equivalent to the preservation of behaviour. From an algorithmic
point of view, this result is decisive to make practicable the verifi cation of behaviour preservation.

5.4. The Main Theorem

When N is embedded intoL the influence ofL on the behaviour ofN necessarily goes through the
edges ofL entering intoN . The set of these edges is called the “input frontier.”

Definition (Input Frontier): Let N be aBRN embedded into aBRN L. Theinput frontierof N in L
is the set of edges(u, v) ofL such thatu 6∈ N andv ∈ N .

For example, the input frontier of the embedding of Figure 6 is reduced to the edge(u, x). Notice
that the outgoing edges (going fromx or y to u, v or w) are not in the input frontier. Indeed, outgoing
edges have no influence onN .

The following theorem shows that it is suffi cient to check thelocal dynamics on the input frontier.

Theorem (Main Result): Let N be aBRN embedded into aBRN L. A necessary and sufficient con-
dition to preserve the behaviour ofN in L is that all edges of the input frontier preserve the local
dynamics.

Proof:
Necessary condition:Let us assume that(u→ v) in the input frontier does not preserve the local dynam-
ics ofv for a given set of resourcesω in L. The values(ρv(K

L
v, ω∪{u})−ρv(lv)) and(ρv(K

L
v, ω)−ρv(lv))

do not share the same sign (more precisely, they are not both positive, or both negative, or both null).
Sinceρv is monotonic,(KL

v, ω∪{u}− lv) and(KLv, ω− lv) do not share the same sign. Letµ be a state such

thatωLv (µ) = ω and letlu be an expression level ofu such thatu becomes a resource ofv (µ andlu exist).
We necessarily haveκLv (µ) 6= κLv (µ[u←lu]). Let us assume for example thatκLv (µ) 6= 0 (a symmetric
reasoning applies ifκLv (µ[u←lu]) 6= 0). Then the transition(µ → µ′), whereµ′ = µ[v←κLv (µ)], belongs
to SL while (µ[u←lu] → µ′[u←lu]) does not. Thus, the embedding does not preserve the behaviour of N
in L.
Suffi cient condition:Let (µ → µ′) ∈ SL such thatρ(µ|N ) 6= ρ(µ′|N ) and let [u ← l] be a state
assignment such thatu 6∈ N . Let v be the variable such thatµ(v) 6= µ′(v) : it belongs toN be-
causeρ(µ|N ) 6= ρ(µ′|N ). It is suffi cient to prove thatκLv (µ) = κLv (µ[u←l]), because it implies that

(µ[u←l] → µ′[u←l]) also belongs toSL.
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If ωLv (µ) = ωLv (µ[u←l]) then obviouslyκLv (µ) = κLv (µ[u←l]).
If ωLv (µ) 6= ωLv (µ[u←l]) thenu belongs toL−1(v) and(u → v) belongs consequently to the input fron-
tier. We know thatρv(κ

L
v (µ)) − ρv(µ(v)) 6= 0 becauseρ(µ|N ) 6= ρ(µ′|N ). Thus, by defi nition ofκ, and

ρv being an increasing function,ρv(K
L
v, ωLv (µ)

) − ρv(µ(v)) 6= 0. The preservation of the local dynam-

ics implies that it has the same sign asρv(K
L
v, ωLv (µ[u←l])

) − ρv(µ(v)). Finally, ρv being an increasing

function,KL
v, ωLv (µ)

− µ(v) andKL
v, ωLv (µ[u←l])

− µ(v) have the same sign and are different from0. This

implies thatκLv (µ) = κLv (µ[u←l]), which ends the proof. ⊓⊔

Example: Let us consider the embedding of Figure 6. The edge(u→ x) constitutes the input frontier.

• Let us assume for example thatlx = 3. We haveKx, xy=4 andKx, xyu=3 as well asρx(1) =
ρx(2) = ρx(3) = 1 andρx(4) = 2. Thus,ρx(Kx, xy)− ρx(lx) = 1 andρx(Kx, xyu)− ρx(lx) = 0.
So, local dynamics is not preserved.

• Looking at Figure 8, one can see why the behaviour is not preserved: the bold arrows of the state
graph differ ifu = 2 (i.e. u is a resource ofx) or not.

• As a consequence, when comparing the state graph of Figure 5 with the state graph of Figure 9,
one can see that the bold arrows added by the caseu = 2 in Figure 8 have been added in Figure 9.
Thus, the global behaviour is not preserved.

Notice that becauseKx, y=2 andKx, yu=4, if lx is equal to 1, 2 or 3 thenρx(Kx, y) − ρx(lx) = 0 and
ρx(Kx, yu) − ρx(lx) = 1. Nevertheless, the local dynamics is preserved because when lx ≥ 1, x is
a resource of itself. Consequently, only the case wherelx = 0 has to be considered and then both
expressions have the same sign.

Let us consider now the same embedding except thatKx, xyu=4 instead of 3.

• Then the local dynamics is preserved because for any possible value oflx and compatibleω,
ρx(Kx, ω∪{u}) − ρx(lx) has the same sign thanρx(Kx, ω) − ρx(lx) (and remind that(u, x) is the
only edge of the input frontier).

• According to the state graph side, we see on Figure 10 that even whenu = 2, the reverse bold
arrows of Figure 8 do not occur.

• As a consequence, the state graph of Figure 11 is identical tothe one of Figure 5.

6. Suffi cient conditions to fi nd behaviour preserving subnetworks

Let us assume that we want to verify whether the embedding of asubnetworkN of L preserves its
behaviour. The main advantage of the previous theorem is to avoid building the state graphs and more
importantly, to avoid checking the impact of all possible state assignments of the variables which do not
belong toN . It is suffi cient to refer to a small number of static parameters of theBRN L (in the previous
example only one edge has to be considered, instead of a stategraph of dimension 5).

Since embeddings which preserve behaviour identify sub-regulatory networks whose dynamics can-
not be influenced by the rest of the globalBRN, those subnetworks are biologically interesting. Indeed,
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they “pilot” the whole behaviour of the globalBRN since they can influence itvia their “output frontier”
whilst they are not influencedvia their input frontier.

According to this point of view, one of the advantages of the modelling activity could be to automat-
ically fi nd those “pilot” subnetworks. Notice that this question is algorithmically far more diffi cult than
verifying a posteriori that an embedding preserves the behaviour of agivensubnetwork. Checking all
the edges for all possible input frontiers induces a combinatorial explosion.

Nevertheless, our main theorem provides us with a simple suffi cient condition. This condition can
easily be verifi ed by classical algorithms on graphs.

Corollary: If P is a partial BRN of L whose input frontier is empty then the embedding ofP into L
preserves the behaviour ofP .

Proof:
Obvious from the main theorem. ⊓⊔

In practice, this suffi cient condition already identifi es a certain number of interesting pilot subnetworks.
In the general case, it is indeed not necessary to compute allthe algebraic expressions involved in the

defi nition of the preservation of local dynamics (where one algebraic expression per possible expression
level lv of the variablev is required). Provided that the variablev has no direct influence on itself, one
can take benefi t of the following result:

Proposition: Let N be aBRN embedded into aBRN L and let(u, v) be an edge of the input frontier
such thatv has no direct influence on itself (i.e.(v, v) 6∈ EN ). Then(u, v) preserves the local dynamics
of v if and only if: for any subsetω of L−1(v) which does not containu, ρv(K

L
v, ω∪{u}) = ρv(K

L
v, ω).

Proof:
If ρv(K

L
v, ω∪{u}) = ρv(K

L
v, ω) then the preservation of the local dynamics is obvious. Conversely, if for

any expression levellv compatible withω we havesign(ρv(K
L
v, ω∪{u})− ρv(lv)) = sign(ρv(K

L
v, ω)−

ρv(lv)), then, provided thatv 6∈ L−1(v), it is always possible to chooselv = KLv, ω, which proves that
ρv(K

L
v, ω∪{u}) = ρv(K

L
v, ω). ⊓⊔

This proposition avoids generating all possible expression levels of the variablev. It is suffi cient to
test the equality of the folded values of some parameters of the BRN. When the variablev has a direct
influence on itself, it is less simple but a similar result holds:

Proposition: Let N be aBRN embedded into aBRN L and let(u, v) be an edge of the input frontier
such thatv has a direct influence on itself (i.e.(v, v) ∈ EN ) with a thresholds and a signε. Then(u, v)
preserves the local dynamics ofv if and only if for any subsetω of L−1(v) which does not containu nor
v, the four following conditions are satisfied:

1.

{

max(KL
v, ω∪{u,v},K

L
v, ω∪{v}) ≥ s

and ε = “ + ”

}

=⇒ ρv(K
L
v, ω∪{u,v}) = ρv(K

L
v, ω∪{v})

2.

{

min(KL
v, ω∪{u,v},K

L
v, ω∪{v}) < s

and ε = “− ”

}

=⇒ ρv(K
L
v, ω∪{u,v}) = ρv(K

L
v, ω∪{v})
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3.

{

min(KL
v, ω∪{u},K

L
v, ω) < s

and ε = “ + ”

}

=⇒ ρv(K
L
v, ω∪{u}) = ρv(K

L
v, ω)

4.

{

max(KL
v, ω∪{u},K

L
v, ω) ≥ s

and ε = “− ”

}

=⇒ ρv(K
L
v, ω∪{u}) = ρv(K

L
v, ω)

Proof:
Preservation of local dynamics implies condition 1: If max(KL

v, ω∪{u,v},K
L
v, ω∪{v}) ≥ s andε = “+ ”,

then choosinglv = max(KL
v, ω∪{u,v},K

L
v, ω∪{v}) is compatible with the set of resourcesω ∪ {v}. Con-

sequently, from our main theorem,sign(ρv(K
L
v, ω∪{u,v})− ρv(lv)) = sign(ρv(K

L
v, ω∪{v}− ρv(lv))) and

lv being equal to one of the two parametersKL
v, ω∪{u,v} or KL

v, ω∪{v}, both signs are null. Consequently

ρv(K
L
v, ω∪{u,v}) = ρv(K

L
v, ω∪{v}) = ρv(lv) which proves the implication.

Preservation of local dynamics implies condition 2: The same reasoning holds when choosinglv =
min(KL

v, ω∪{u,v},K
L
v, ω∪{v}).

Preservation of local dynamics implies condition 3: If min(KL
v, ω∪{u},K

L
v, ω) < s and ε = “ + ”,

then choosinglv = min(KL
v, ω∪{u},K

L
v, ω) is compatible with the set of resourcesω (which does not

containv). Consequently, our theorem proves the implication in the same way as for the condition 1.
Preservation of local dynamics implies condition 4: The same reasoning holds when choosinglv =
max(KL

v, ω∪{u},K
L
v, ω).

Conditions 1 to 4 imply the preservation of local dynamics: From our main theorem it is suffi cient to
prove that for any subsetω′ of L−1(v) which does not containu, and for any expression levellv of v

compatible withω′, we havesign( ρv(K
L
v, ω′∪{u}) − ρv(lv) ) = sign( ρv(K

L
v, ω′) − ρv(lv) ). Let us

denoteε ands respectively the sign and the threshold of the direct influence ofv on itself.
If ε = “ + ” then the four following cases can be distinguished.
Caselv ≥ s andmax(KL

v, ω′∪{u},K
L
v, ω′) ≥ s: Sincelv ≥ s, ω′ is of the formω′ = ω ∪ {v}. Conse-

quently, condition 1 implies thatρv(K
L
v, ω′∪{u}) = ρv(K

L
v, ω′), a fortiori sign( ρv(K

L
v, ω′∪{u}) − ρv(lv) )

is equal tosign( ρv(K
L
v, ω′) − ρv(lv) ).

Caselv ≥ s and max(KL
v, ω′∪{u},K

L
v, ω′) < s: ρv(K

L
v, ω′) < ρv(s) becauseKLv, ω′ < s and s

being a threshold ofN , the folding function preserves this strict inequality. For the same reason
ρv(K

L
v, ω′∪{u}) < ρv(s). Consequently,sign( ρv(K

L
v, ω′∪{u}) − ρv(lv) ) = sign( ρv(K

L
v, ω′)− ρv(lv) )

= -1, as ρv(s) ≤ ρv(lv).
Caselv < s and min(KL

v, ω′∪{u},K
L
v, ω′) ≥ s: We have the inequalitiesρv(K

L
v, ω′) ≥ ρv(s) and

ρv(K
L
v, ω′∪{u}) ≥ ρv(s) and ρv(s) > ρv(lv) for the same reasons as in the previous case. Consequently,

sign( ρv(K
L
v, ω′∪{u})− ρv(lv) ) = sign( ρv(K

L
v, ω′)− ρv(lv) ) = 1.

Caselv < s and min(KL
v, ω′∪{u},K

L
v, ω′) < s: Sincelv < s, ω′ does not containv. Consequently,

condition 3 implies thatρv(K
L
v, ω′∪{u}) = ρv(K

L
v, ω′), a fortiori sign( ρv(K

L
v, ω′∪{u}) − ρv(lv) ) =

sign( ρv(K
L
v, ω′) − ρv(lv) ).

If ε = “− ” then the same above cases are solved with the same reasoningusing conditions 2 and 4.
⊓⊔
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Example:
According to the embedding of theBRN of Figure 5 into theBRN of Figure 6, the next to last propo-

sition can be applied to the edge(u, x). We have to verify whether for any subsetω of L−1(x) which
does not containu, we haveρx(KL

x, ω∪{u}) = ρx(KLx, ω).
ω can be equal to: the empty set, the singletonsx or y, or the pairx, y. This would mean:

1. ρx(KL
x, {u}) = ρx(KLx )

2. ρx(KL
x, {x,u}) = ρx(KL

x, {x})

3. ρx(KL
x, {y,u}) = ρx(KL

x, {y})

4. ρx(KL
x, {x,y,u}) = ρx(KL

x, {x,y})

This embedding does not preserve the local dynamics becausethe false equation is not satisfi ed:KL
x, {x,y,u} =

3 andKL
x, {x,y} = 4, andρx(4) = 2 andρx(3) = 1.

On the contrary, if we modify theBRN of Figure 6 withKL
x, {x,y,u} = 4 then the four previous

equations are satisfi ed and consequently the embedding preserves the behaviour.

7. Conclusion and perspectives

The theory of René Thomas is a discrete formalism for modelling biological regulatory networks. This
formalism has the advantage to handle the precise dynamics of gene regulation while benefi ting from
automated logical tools. Our motivation is to develop a modular approach which allows the study of
large networks by splitting them into small sub-networks. Our theorem characterizes the sub-networks
which “pilot” the rest of the network since they cannot be influenced by the global network. We have
given several corollaries which facilitate the algorithmic search for these pilot sub-networks.

The main theorem established in this paper solves a strong view of modularity, since it applies to sub-
networks whose behaviour is entirely preserved by embedding. In the future, we would like to develop
theorems where the behaviour of the sub-network can be slightly modifi ed by the global network but in
a rigorously controlled way.

Several extensions of this work can be considered in the nearfuture. For example, we are interested
in sub-networks whose behaviour is preserved only for a subset of possible initial states. We are also in-
terested in sub-networks whose behaviour preserves only some given properties, such as the preservation
of the steady states (with possibly different trajectories).

So far, almost all the theoretical work related to Rene Thomas’ framework has been focused on global
properties of the network dynamics. The theoretical resultgiven here opens the way to new studies for
biological regulatory networks related to modularity issues.
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