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Abstract. The main contribution of this work is a mathematical theosghich establishes a nec-

essary and sufficient condition to preserve the behavioarggnetic regulatory network when it is
embedded into a larger network. We adopt the modelling ambrof René Thomas, which provides
a discrete representation of biological regulatory neksoiThis framework is entirely formalized

using labelled graphs with semantics defined in terms of gtaehs with transitions. Our theorem
offers the possibility to automatically verify whether a sabvork has autonomous behaviour. It
will allow biologists to better identify relevant sets of gerwhich should be studied together.
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1. Introduction

Biological regulatory networks are often mathematicallgdeled by means of graphs which represent
the interactions between biological entities such as nmackecules or genes. Current advances in molec-
ular biology provide us with fairly complete such maps of gémteractions for an increasing number
of species. Following the success of the genomic and posgirge area, this kind of model becomes
essential for understanding and predicting cell behavimarbottom-up approach.

The regulatory network of a cell, as a whole, is composed ofestens of thousands of genes (e.g.
6000 genes in the yeast genome and between 30.000 and 4@/@89ig mammalian genomes). Unfor-
tunately, rigorous models revealing the precise causalifumng of a regulatory network are currently
limited to some tens of genes. The main reason for this ltroitais that such models involve a large
number of parameters which must be indirectly deduced flwrcell behaviour, since they are not di-
rectly measurable, leading to many experiments in ordendoectly fi nd the parameter values. Such
very precise dynamic models are consequently focused ogdews selected because they cooperate to
realize a precise biological function.

Therefore, to predict biological behaviour (or phenotyfein the static knowledge of a regulatory
graph, there are two main scientifi ¢ trends:

e studying regulatory networks in the larg@robabilistic or statistical approaches can be used to
extract general predictions according to some charatitarisf the interaction network [11, 16,
21]. Those characteristics can be simple local measuranseich as the degree of each node or
global measurements such as the graph diameter. Quait@tilogical properties of such large
networks are less studied except for some works allowingptoid on some relevant complex
properties by simplifying some simple causal cascades [7].

e studying regulatory networks in detaflconcentration levels” are attached to each entity balong
to the graph and the goal is to predict their possible evaid3, 10, 8, 12]. Additional parameters
are then required in order to precisely deduce the posgigjectories in the space of possible
states. Those parameters defi ne the nature of the considézeattions as well as their relative
strengths. This scientifi ¢ trend is mostly used to analyzetail the functioning of well identifi ed
biological functions inside the cell [40, 23, 28, 22, 6, 48, 32, 33, 20, 24, 1]. Lastly, Petri nets
are well studied in computer sciences since more than thagys and there are also some hopes
to take benefi ts of this corpus: pioneering works in this areafor example proposed in [5, 14].

This article belongs resolutely to the second trend. Nbedss, we believe that it is possible to
increase the number of considered gevias decomposition of the graph into some kind of “modules.”
The modules should be studied independently and we shouétbleeto deduce the global behaviour
from the knowledge of the individual behaviour of each medurhe notion of module remains to be
defined in general and this article constitutes a fi rst stefuts this general defi nition.

We adopt here the formalism of René Thomas [38, 37, 41, 393]3Gt has the advantage to be a
logical modelling approach which can benefit from very pdulesiutomated tools in computer science
such asmodel checking9, 4]. This discrete modelling has been proved compatibté differential
modelling (ODE) [29, 30] and has won a following. Severabitetical results, which are deeply relevant
for biology, have been established over about thirty yaansgrticular, feedback circuits in the regulatory
graphs have been extensively studied [38, 30, 41, 35, 19,229, 33, 12, 26, 2, 25, 27, 19, 31)).
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In continuation of this school, we establish a non trivi@dhrem abouembedding®f biological
regulatory networks. Given a sub-network embedded intcggfane, we give a necessary and suffi cient
condition to ensure that its “isolated behaviour” is noeeféd by the embedding. Therefore, our work
constitutes a step towards a modular approach , trying o regiulatory networks into smaller parts
which can be treated independently [34].

Large networkC

embedding

Small network N/

Studied behaviour Preserved behaviour ?

Figure 1. Embedding of a biological regulatory network

More precisely, as illustrated in Figure 1, an embedded otw\" communicates with the rest of
a larger network through two kinds of arrowsinput arrows which go from a gene outside &f to a
gene of NV (bold arrows) andabutputarrows which go from a gene of/ to the outside (grey arrows).
We demonstrate that only the input arrows can influence thaweur of A" and we give a necessary
and suffi cient condition to preserve the behaviout\df This condition is expressed on the parameters
associated to each input arrow. The advantage of our reghli it establishes the equivalence between:

¢ a global behavioural property of the network

e and a limited collection of algebraic constraints on locaigmeters, which is easier to verify
mechanically.

Our result offers an effective verifi cation of the behaviptgservation without checking all the pos-
sible states of the network and without enumerating alliptesslynamics. This necessary and suffi cient
condition only involves the static description of the netiyavhich makes possible an algorithmic veri-
fi cation with reasonable CPU time.

2. Biological Regulatory Network (BRN): Static Descriptian

The logical framework for Biological Regulatory NetworksRN for short) of René Thomas [37] is

based on an abstract view of the interactions between sbjd¢a biological system, mainly genes or
macromolecules. Models within this framework mainly déseithe nature of the interactions (inhibi-
tion or activation) and their strength without explicitlgrtsidering the detailed underlying biochemical
reactions. They allow us to predict the dynamics aRRa.
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Graph theory is very convenient to support this kind of dpsion, because graphs capture the
“static” knowledge about the interactions. In the next imectwe will see that graphs are also a use-
ful tool to represent possible dynamics of the biologicateyn, deduced from the static description. In
the article, we will introduce the useful concepts on graphs “call-by-need” basis, under the title
“Graph terminology.”

Graph terminology: A directed graphG is a setl” of verticestogether with a set’ of edges An edge
(u,v) goes from a vertex of V' to another vertex of V.

A directed graph is said to Habelled when each edge carries an information, calledl#el of the
edge. Labelled directed graphs can be drawn with a diagraim igure 2 wherex, 3 and~ are the
labels. It is also possible to put labels on vertices if neans

Figure 2. An example of labelled graph

A predecessopof a vertexv in a graphG is a vertexu of G such that there is an edge fromto
v. The set of predecessors ofs denoted byG~!(v). In Figure 2,x andy are the predecessors of
G~ (z) = {z,y} andG~'(y) = {z}.

In the terminology of biological regulatory networks it isrvenient to call “variables” the considered
biological objects. One variable can cover any useful cpnsach as gene, RNA, protein, as well as a
rough abstraction of those three facets of a gene, or a clotgenes and so on. Such an abstraction is
considered adequate if it preserves the ability to assoaiatbstract “concentration level” or “expression
level” to a variable at any time.

If we represent variables as vertices of a directed graphahesdg€u, v) represents an action of
onw: the expression level af with respect to the expression levelwfafter a suffi cient delay fon to
act onv, is most of the time a sigmoid. let us moreover assumetlaégo acts onw as in Figure g, then
three intervals are relevant for the expression level (ffigure d): in the interval called “0" neither
acts onv nor onw, in the interval called “1” it acts om only and fi nally in the interval called “2” it acts
on both variables.

In Figure 3, the sigmoid ofv being increasing, we say thatis anactivator of v and, the sigmoid
of w being decreasing, we say thats aninhibitor of w. Finally Figure & summarizes all these types
of information: u begins to activate at the interval numbered 1 andbegins to inhibitw at the interval
numbered 2. This is formally expressed on the graph as: thehbld of(u, v) is “1” with the sign “+”
and the threshold dfu, w) is “2” with the sign “—".

This idea to make a partition of the set of possible expredsieels into several consecutive intervals
allows us to consider finite set ofdiscreteexpression levels. Considered expression levels for alvari
u Will therefore be integer values 0, 1, 2, ... up to a given laupb,,. This constitutes a valuable
discrete partitioning of a continuous global interval.

Predicting the dynamics of the expression level of the Wdemis of course a major issue. In the
framework of René Thomas, a variahldéends towards an expression level which depends only on the
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Figure 3. Interactions of variables and expression levels

expression level of its activators and inhibitors. Moregisely, it only depends on the set of its
“resources.” In the following defi nition, the expressiondktowards which tends is denoted b, .

Definition (Biological Regulatory Networks): A biological regulatory networksrN for short) is a
triple N = (V, E, K) where:

e N = (V,E)is alabelled directed graph.

Each vertex of V is called avariableof theBRN, and is provided with a strictly positive integer
b, € IN*, called theboundaryof v.

Each edgdu, v) of £ is labelled by a couplé€t, €) wheret, calledthreshold is an integer between
1 andb,, ande, calledsign belongs to{+, —}. Whens = +, u is called aninducerof v. When
e = —, u is called aninhibitor of v.

K={K, ,|veVandwC N!(v) }is afamily of integers such that< K, ., < b, for any
variable v and for any subset of the predecessors ofin N. The familyK is called theset of
parametersf N.

In the literature [29, 30], it is often additionally requiréhat ifw; C w thenk,, ., < K, o, . This
restriction means that the more resources a variable oiasnore its expression level tends to grow. In
this article, all our results remain valid with or withoutghestriction.

In the following, when severaRNs are considered, we noté" the set of variables of BRN A\,
VP the set of variables of BRN P, etc. and similar notations apply fd and K. The exponent is
omitted when the considera&RN is obvious from the context.

3. Dynamics of BRNs

It is generally impossible for a human to predict the behawviof a biological system by looking at
its static description alone. One of the main advantagese@René Thomas’ approach is to offer a
gualitative representation of the system dynamics whigtreslictable using a computer. This section
gives the corresponding formal defi nitions. See [4] for aemetailed presentation.
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3.1. States and Resources of a Variable

According to ourBRN framework, the state of a system is characterized by theesgun level of each
variable. Thus, a state can be defi ned as a map which assowitlteeach variable its current expression
level.

Definition (States of aBrRN): Given aBRN AN/, a stateof N is a mappingu : V' — IN such that for
any variablev € V, we have) < u(v) < b,. The integer(v) is then called thexpression levedf v.

So far, at a given time, each variabldas a given expression level. The evolution of this expoassi
level is driven by the current state of the inducers and itdni® of v. Figure 4 shows that:

e an inducer ofv is an actual resource ofonly when it passes its threshold

e an inhibitor plays a symmetric role; it is a resource only witadoes not pass its threshold.

\" : \Y;

u; is nota
resource ob

ug iS not a
resource of)

up is a
resource ob

ug is a
resource ob :

U1 U2

Figure 4. Induction (resp. inhibition) afby u; (resp.us)

Definition (Resources of a Variable): Given a statg: and a variablev of aBRN N, theset of resources
of v is the setv, (1) containing all the variables of N such that:

e u is a predecessor af in the underlying directed graph ot
e the edggqu,v) is labelled by(¢, ) and

i) if ¢ is the sign 4" then p(u) > ¢

ii) if ¢isthe sign “~"then u(u) <t
The set of variables, (1) is consequently the subset/éf ! (v) containing both the inducers ofwhose
expression level has reached the threshold and the iningbittv whose expression level hastreached
the threshold.

3.2. State Graph

The dynamics of @&RN is defined by a graph that defi nes which states can be readmadafry given
state.

If a variablev has an expression levelv) at a given time, then this expression level is attracted
towardsK, (). Let us assume for instance that, ., (,) = p(v) + n withn > 1. The variations of
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concentration levels being continudas/ivo, the expression leved(v) cannot directly jump td<,, ,,, (
It takes the neighbor valye(v) + 1, as defi ned below:

Definition (x functions): Given a state: and a variablev of aBRN N, (1) is defined as follows:

B

o if u(v) < Ky o, () thenk,(u) = p(v) +1

o if u(v) = Kv,wv(u) thenr, (1) = p(v)

o if u(v) > K,y o, () thenk,(u) = p(v) — 1

The functionx represents a “first step” evolution of the expression levfeb rom its current expression
level;u(v) to its “target level” K, , (.)-

Kinetics in vivo make highly improbable that two variables go through thleieshold exactly at
the same time. Therefore, variables vary asynchronougiichwieads to a state graph where only one
variable evolves at a time.

Definition (“Asynchronous” State Graph): Thestate graplof aBRN N is the directed graplt$ whose
vertices are all the possible states 8f and such that there is an edge from a statéo a stateyu’ iff
there exists a variable verifying:

o 1 (v) = ky(p) # p(v)
e for any variablev’ # v we havey'(v') = u(v’)

An edge of the state graph fromto 1’ is usually denoted a§: — p') and is calleda transition

Figure 5 shows the underlying labelled graph aira, the table of target levels according to an
arbitrarily fi xed set of parameters, and the correspondiatg graph. Let us consider for instance the
state “1 0” (i.e.u(z) = 1 andpu(y) = 0). The arrowr — z being labelled by(1,+) in Figure 5,z
is a resource of itself and the arraw— « being labelled by(1,+), y is not a resource of. Thus,z
is attracted toward#(, .. Similarly, the arronr — y being labelled by(2, +), « is not a resource of
y and the arrony — y being labelled by2, —), y is a resource of itself (because it does not pass its
threshold). Thusy is attracted toward#, ,. So, the state “1 0" is attracted towards the target state
22" (as K, , = 2andK, , = 2), which tends to increase the expression levels ahdy. Only one
variable evolves at a time by one unit, thus two transitidast rom the state “1 0” in the state graph:
(*10"—"*2 0" and (“1 0"—"1 17).

Graph terminology: A pathof lengthn from a vertexz to a vertexz,, in a directed graph is a sequence
of edges of the fornizg, x1) (z1, z2) (x2,23) - - - (Tp—1,xy). If o = x, then the path is calledarcuit.

For example(z,y) (y,x) is a circuit in the graph of Figure 5.

Remark: The conditions, (1) # p(v) for asynchronous state graphs in the previous definitiororess
elementary circuits of the state graph where a state pomtgself. Indeed, many approaches in the
literature would add an elementary circuit on the state “2 &i' the state graph of Figure 5. In the
literature, such cases allow the user to identify stablg\ftar) steady states. According to our definition,
these states are identified as the ones with no outgoingitiams

The target leveK, ., () is also calledmagein the literature or sometimes ‘(local) attractor” or ‘fégmint”
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2 +
1 P 2
+ X y -
\
1 +
Xy Targets E,ggt Y
00| K, K, | 02 1
01 Kx,y Ky,y 12 | ) ‘_—>
02| Ky K, | 10 i
10| Ky, Kyy | 22 1 vy ]
11 KX,Xy Ky’y 22 1 f A
12| Ky K, | 20 | |
20| Ky Kyuy| 22 0 1.
21| Kyyy Kyy| 22 X
22| Kyyy Kyy | 22 o 1 2

Figure 5. Example of arRN and its state graph

According to the regulatory network approach, biehaviourof a cell is observed through variations
of the quantities of diverse macromolecules produced ircélle This is expressed in René Thomas'’s
approach by variations of the expression levels belongirilge state graphs. Each path in the state graph
represents a possible evolution of the biological systeoticH that twosRNs have the same behaviour if
and only if they have the same set of paths, i.e. the samegstgias. Therefore, studying the behaviour
of BRNs amounts to studying their state graphs.

4. Embeddings of BRNs

Studying the behaviour of the whole regulatory network oékhwould generate a combinatorial explo-
sion which is entirely outside current know how. Biologikalowledge begins to provide us with some
fairly complete static description of gene interactionsome speciesrgastE.coli, ...). However, there
is a huge gap between the static knowledge of a regulatophgrad the knowledge of the corresponding
regulatory network dynamics.

In practice, we are consequently restricted to the studynafllser regulatory networks, focusing on
sets of genes patrticipating in targeted biological fumgioThese networks are therefore sub-networks
of the whole cell regulatory network and hopefully, the s#ddbehaviour of each of them will not be
affected by its relationships with the whole network. Irsthiticle, our goal is precisely to offer rigorous
conditions to reach this hope.
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4.1. Partial BRN

According to this aim, an obvious preliminary condition ésdonsiderall interactionsinside each con-
sidered sub-network. The defi nition of partEN below reflects this preliminary condition.

Graph terminology: Given a directed grapty, a subgraphof G is a graphG’ whose set of vertices is
included in the set of vertices @¢f and whose set of edges is included in the set of edgés df G’
contains all the edges @ which connect vertices o’ (i.e. for all verticesu andv of G’, the edge
(u,v) belongs to’ iff it belongs toG), thenG’ is called apartial graphof G.

Definition (Partial BRN): ABRN 7P is apartial BRN of aBRN L iff:
¢ the underlying directed graph dP is a partial graph of the underlying directed graph ©6f
e any edge ofP has the same label ig

¢ for any variablev of P and for any subset of the predecessors ofin P, we haval(fw = ch w

Notice that in this defi nition, all the parameters®bf the form[gffw such that or any variable
of w does not belong tdP are ignored. Mainly, the object of the reminder of this detis to study the
effect of these ignored “external variables” on the behawid P.

4.2. Level Folding
Let us consider the example of Figure 6. The graph of Figusen®i directly a partial graph of Figure 6

Parameters:

szoa Kw, 1241 Kw, y:21 Kw7 uzou Kw7 wy:4a Kw, zu:4a Kw, yu:4a Kw, zyuzsa
K,=0,K, ,=3,K, ,=3, K, +,=3,

K,=0,K,, ,=2,

KUZO, Kv, I:O, KU, u:O, KU, w:o, KU, ruzlu Kv, rw:]-a Kv, uw:]-a Kv, zuwzla
K,=0,K, =1

Figure 6. ABRN which embeds therN of Figure 5

because the thresholds of eddesy), (v, z) and(y, y) differ. Nevertheless, assuming that we remove
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all the edges starting from or y to u, v or w, the threshold of the edger,y) becomes the second
threshold among the ones of edges starting fronsimilarly, the threshold ofy, =) becomes the first
threshold starting frony and the threshold dfy, y) becomes the second one. Consequently, when
andw are removed from Figure 6, it is sensible to consider thatetreeve Figure 5. In other words, the
graph of Figure 5 is not directly a partial graph of Figure 6ibun factembeddedh the graph of Figure
6.

This example reveals the usefulness @blding functionin order to keep the thresholds consecutive
in the graph.
Definition (Level Folding): Let N be anyBRN and letu € V be a variable of /. The set of the
threshold values of the outgoing edgesuafan be sorted in strictly increasing order. Ligt t1,--- , 14
be the strictly increasing sequence such that 0, t; = b, (boundary ofu) and the intermediate; are
the sorted threshold values.
Given an expression levéle [0,b,] of u, there exists a uniquésuch thatt; < ! < t,4; (ori = d if
I = b,). We define théolding function p,, : [0,b,] — [0,d] by pu(l) = 1.

For example, if the underlying directed graph f is the one of Figure 7 thep,(0) = 0, p,(1) =
Pa(2) = pa(3) =1, pa(4) = 2, py(0) = py(1) =0, py(2) = 1 andp,(3) = 2.

4 + 3

Parameters:
K,=0,K, =4, K, =2, K, .,=4,
K,=0,K, »=3,K,, ,=3, K, +,=3

Figure 7. Example of a non canoniestnN

4.3. Embeddings oBRNS

Given aBRN, it is always possible to use the folding function in ordemrmimize its thresholds and
parameters. The resultiBRN takes a form which can be considered as canonical.

Definition (Canonical Form): For anyBRN P, theBRN A obtained by replacing:
¢ the boundary, of each variablev by p, (b,)
e each threshold: of any edgdu, v) by p,(s)
e each parametef, , by p,(K,, o)

is calledthe canonical fornef P. The function which associates t@aN its canonical form is obviously
idempotent. RN which is equal to its canonical form is said to banonical
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According to this defi nition, Figure 5 defi nes a canonigaN which is the canonical form of the
BRN of Figure 7.

Definition (Embedding of BRNs): Let A and £ be twoBRNs. We say that\ is embeddedn L iff
there exists a partiaBRN P of £ whose canonical form is equal to the canonical form/\éf

Remark: This implies that the variables of belong to£ (VN ¢ V£). Moreover, N being given, P
is unique if it exists (sinc&’” = V).

For example, th@&rN defined in Figure 5 is embedded in theN of Figure 6 because trerRN of
Figure 7 is a partiaBRN of the one of Figure 6 whose canonical form is equal toeRe of Figure 5
(which is already canonical).

4.4. Preservation of Behaviour

When aBRN N is embedded in arN £, the preservation of the behaviour &f means intuitively that
each variable ofZ which does not belong to\' cannot modify the behaviour aiV. In other words,
whatever the expression level of those variables is, it &blento modify“noticeably” the expression
level of the variables of\/. A transition inL is “noticeable” only if it induces a state maodifi cation in the
folded versiorof the set of states afV.

Definition (State Folding): Let P be anyBRN and lety : V7 — IN be a state ofP. Thefolded state
p(u) is the states’ : VP — IN defined by (u) = p,(u(u)) for any variableu of P.

In order to consider all possible expression levels of aalde without modifying the state of the
other variables, we technically need the notion of statgyasgent.

Notation (State Assignment): Let x4 be a state of 8RN L, let u be a variable ofZ and let/ be an
integer such thab < I < b,. We noteu!*—Y the stateu’ such thaty/(u) = I and i/ (u') = p(u’) for all
variablesu’ # u. We say thafu < [] is astate assignment

Finally, we can defi ne the preservation of behaviour asvialo

Definition (Preservation of Behaviour): An embedding of &RN A into a BRN £ preserves the
behaviourof A iff for any transition (u — p’) of S* such thatp(p, ) # p(uiN) and for any state

assignmenfu « [] such thatu does not belong toV, the transition(p[*<4 — /"1 also belongs
to S-.

Remark: The conditiorp(u,, ) # p(,u"N) allows us to ignore the states & which point to themselves
as in Remark of Section 3.2 above.

Let us consider for example the embedding oflrel of Figure 5 into theBRN of Figure 6. Figure 6
contains fi ve variables which make it diffi cult to draw its vidngtate graph. Fortunately, the variables
andw are resources neither ofnor of y. Consequently, only the different values of the variableave
to be considered to detect the transitions of the f@n(rm,y}) — p(,ui{z’y})) such thatp(m{myy}) #
p(u"{z y}). Figure 8 gives the state graph of theN of Figure 6 restricted tdz, y} according to these
remarks. Consider, for example, the transition from= 3,y = 3) to (z = 4,y = 3) whenu = 0 or
u = 1. If we assignu « 2], this transition disappears. Consequently, the embedufikgriablesr and
y (i.e. Figure 5) into theRN of Figure 6 doesiot preserve behaviour, as.(3) = 1 # p,(4) = 2. This
is indeed the case for the four bold transitions of Figure 8.
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Figure 8. The state graph of tlB&N of Figure 6 restricted tdz, y}

5. Main Results

In this section, we prove the main theorem of this articlestablishes that the preservation of behaviour
defi ned above is equivalent to a considerably smaller seiraditons, limited to the parameters of some
“frontier” variables of \/. State folding plays an important role and we first prove {8ec.1) that it
makes sense to fold an entire state graph; then we proved®&ce) that canonical forms “commute”
with state graph foldings. Lastly, Sections 5.3 and 5.4 givé prove the main theorem.

5.1. State Graph Folding

State folding defi ned in the previous section preservesabeurces of each variable, as shown below.

Proposition: Letwv be a variable of 8RN P, let u be a state of P and letC be the canonical form of
P. The set of resources ofin P w.r.t. i is equal to the set of resourceswoin C w.r.t. p(u).

Formally:  w (1) = w§ (p(n)) -

Proof:

Let u be any variable of~!(v) and lett be the threshold ofu — v). Ast is a thresholdp,, is defi ned
in such a way that for any expression lelef v we have:p,(l) > p,(t) < [ > t. Applied tol = p(u),
sincep, (pu(u)) = (p(p))(u), it comes(p(p))(u) > p(t) < p(u) > t. By contraposition, it comes
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(p(p)(u) < p(t) < wu(u) < t. Thus, by definition o, w is a resource ob in P w.rt. piffitis a
resource ob in C w.r.t. p(u). 0

This proposition makes it reasonable to introduce theidilg defi nition of folded state graphs.

Definition (State Graph Folding): Let A/ be aBRN embedded in @RrRN L. Thefolded state grapbf
the embedding, by notation abus& (S<), is defined by:

e the nodes opV' (S%) are all the possible states of the canonical form/6f

e the edges of’V'(S%) are the transitions of the forrp(p ) — p(u"N)) such that(u — p')is a
transition of S© and such thap (i, ) # p(MTN), where “u) " stands for the restriction of. to
VN (remind thatVN c V£).

Let us again consider the embedding of #reN of Figure 5 into theBRN of Figure 6. Figure 9
gives the folded state graph of the embedding accordingeiaqurs defi nition. In the state graph at the
left of Figure 9, the singular values (threshold) drawn viadid lines are the values whepéx) or p(y)
changes. The folded graph at the right of Figure 9 is obtayddeeping only the transitions which cross
the bold lines. All the other transitions are ignored.

y
Py = 2 3 |‘_—>' EEEY -|- ..74—7‘ y
1 vyl - 2 ‘__>::
Py = 1 2 A T |
| 1 (1
I B e e
SN E N o T
0 ' R - UL I
0 1 2 X
0 1 2 3| 4 X

Figure 9. Construction of the folded state graph resultiognfthe state graphs obtained in Figure 8

5.2. Preservation of state graph

Let A be aBRN embedded in &@RN L. Let P be the partial graph of corresponding to the embedding
of N. Since the behaviour ofV is reflected by its state graph, the preservation of its iehaghould
imply that the state graps’V of N is equal to the state grag?” of P. However, two questions must
be addressed before proving such a theorem:

e The expression levels gP are not comparable with the ones &f due to the folding stuff seen
before. Consequently, we have to compareftgedversions ofs*V andS”.
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e When consideringV/ or P individually, there are two ways to get a folded view of tHe@haviour:
either one could consider the folded state graphs\ofand P or one could consider the state
graphs of their canonical forms. So, should we compare tliedostate graphs oV and P or
should we compare the state graphs of their canonical forms?

The following theorem solves both of these questions, sx#lhas a corollary which establishes
that the folded state graph ofeRN is equal to the state graph of its canonical form (which solbhe
second question according to the previous defi nition), apdoves that if an embedding preserves the
behaviour then the folded state graphs are equal.

Theorem (Preservation of State Graph): If the embedding of thBrN N into theBRN L preserves
the behaviour of\ then the folded state graphl¥ (S<) is equal to the state grapBC of the canonical
formC of V.

Proof:

Let P be the partiaBrN of £ whose canonical form i§.

5S¢ c pN(SE): Let (v — /) be any transition oB€. Let us prove that there exists a transitign— 1./
of £ such thatp(u, ) = v andp(u"N) = v'. This means that(y,) = v andp(uic) = v/ becaus&
and A have the same set of variables.

Letwv be the variable of such that/(v) = x$(v) = v(v) + § (with § = £1). Sincep, is surjective and
monotonic, there exists a level of expressipof v in £ such thap, (l,) = v(v) andp, (I, +§) = v/(v).
For the same reason, there exists a sjatie P such that)(v) = [, andp(n) = v. Now let us consider the
variables ofZ.~!(v) which do not belong taP: it is always possible to assign them expression levels such
that they are not resourceswoin £. Let us also choose arbitrary expression levels for ther athréables
of £ which do not belong taP: this defines a state of £. By construction.f (1) = w? (n) = wf(v)
andp(p,,) = v andp(ul*—»*, ) = /. Consequently, it is suffi cient to prove that — 4"+ +?) is
a transition ofS*~.

This amounts to the demonstration thdt(u) = I, + 6. Whend = 1, it means thatva wEG)

I, and sincep, is an increasing functiory, (K- )) > p,(ly) is a sufficient condition. We have

v, Wk
pU(Ki wEw) = p”(Kf,wl’(n)) = Kg () asC is tﬁt(aucanonical form ofP and we havey, (I,) = v(v).
So, the sulffi cient condition becomﬁg’ ) v(v) which precisely means that — ') is a transition
of SC. A similar reasoning applies & = —1 and this ends this part of the proof.
p(S*) c SC: Let (u — 4/) be any transition ob* such that(,) # p(ul,) (e plue) # p(p))-

We will fi rstly prove that there exists a transition — 1f) of S such thap(p ) = p(n) andp(y"c) =

p(n"), and we will secondly prove thgp(n) — p(1’)) belongs taSC¢.
Let v be the unique variable such that(v) = x5 (1) # pu(v). It necessarily belongs ©Wasp(p.,) #
p(,u"c). Let us make an induction on the numbeof variables inw” (1) which do not belong t@. If

n = 0thenw (1) = wf (1y,) and we can choose= . andr = uf  because Wl = szﬁ(u)'

thusk%(u) = w7 (n). If n > 0, then let us considet, one of these variables, and let us chohgean
expression level of, such thatu is not a resource of. Since the embedding preserves the behaviour,
(plv—ted — /vty also belongs t&, it hasn — 1 variables invZ (1) which do not belong t¢, and
p(e) = plpl—t) andp(uf ) = p(p/lv—t) This ends the fi rst facet of the proof.

Let (n — ') be any transition of” such thato(n) # p(n’). Letv be the variable such that(v) =
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) = n(v) + 6 with 6 = £1. Let us assume that= 1. ConsequentlyK]jwf(n) > n(v) and since
pu( (V) = pu(n(v) + 1) # py(n(v)) and sincep, is an increasing function, we gpg(KZij(n)) >
pu(n(v)). We know thal;oU(KwaZ,(n)) = Kg W€ (o) because is the canonical form ofP. Thus, by
construction ofp,,, we havexS (p,(n(v))) = pu(n(v)) + 1 = py(n(v) + 1) = p, (' (v)). Consequently,
(p(n) — p(1')) is a transition ofS¢. Whend = —1, we follow a similar proof (replacing:” by “ <),

which ends the proof of the theorem. O
y when u=0 or u=1
x y |when u=0 or u=1 when u=2 _
00[K, K, [0 3[[Ks, K, [0 3| 3| 1] ' }
01K, K,y | O 3||K,, Kyy| O 3 + ‘ ‘ L |
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State graph of Figure 8 witk',. ., = 4 instead of3.

Figure 10. Modified state graph of tils&N of Figure 6 restricted tx, y}

To illustrate the previous theorem, let us come back to thexake of Figure 6 and let us modify only
one parameter witlk’,. ., = 4 instead of3. This defi nes another embedding of N of Figure 5.
Figure 10 gives the corresponding state graph (still igetlito variables: andy). This new embedding
preserves the behaviour of tB&N of Figure 5 because the state graph restricted émdy does not
change, whatever the values«@fv andw are. The folded state graph is then constructed in Figure 11
and we see that, as established by our theorem, it is equs tstdte graph of Figure 5.

Corollary: The canonical fornC of aBRN A preserves the behaviour of” and consequently, the
state graph ot is equal to the folded state graph of .

Proof:
There is no variable: of N which does not belong t6. Consequently, the embedding ®finto A/
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Figure 11. Folding of the modified state graph obtained inFadL0

preserves the behaviour 6fand the previous theorem establishes that the folded st g (SN )is
equal to the state grapgf of C. O

5.3. Local Dynamics

Preservation of behaviour as defi ned in section 4.4 is basad exhaustive knowledge of the state graph
of the globalBrN. We have shown that this defi nition reflects our intuition eh@viour preservation.
However, this defi nition is diffi cult to directly check in mtice, because it involves a large number of
transitions in the complete state graph (e.g. as in FigurledOnly two variables). In order to more
easily check whether an embedding preserves the behaweuneced to establish local criteria which
can be checked on a limited number of edges of the underbmngwithout constructing the whole state
graph. The defi nition of local dynamics preservation bel@&sinot refer to state graphs. It only relies
on edges and parameters of the globRN. It requires two intermediate notions:-compatibility and

the signumfunction.

Definition (w-compatibility): Let £ be aBRN, letv be a variable ofz and letw a subset of. ~!(v).
An expression leveé), of v is said to becompatiblewith w iff the following condition is satisfied:

if v € L71(v), lett be the threshold of the edge, v), thenv € wiff I, > ¢.
In other wordsp belongs taw iff [, actually make a resource of itself.

Terminology: The signumfunction is the functionsign which associate-1 to any strictly negative
number,0 to 0 and1 otherwise.

Definition (Preservation of the Local Dynamics): Let N be aBRN embedded into arN £ and letv
be a variable of /. An edge(u, v) of £ preserves the local dynamio$u iff for any subset of L =1 (v)
which does not contain, and for any expression levg] of v compatible withv, we have:

sign( pv(KﬁwU{u}) — pu(ly)) = sign( pv(KvL,w) = po(ly))

Intuitively, the previous formula can be explained as folo
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¢ If at a given time the variable has a certain expression levglandv has a certain set of resources
w, then we know that the expression leveloWill increase (resp. decrease) Efﬁw is greater
than (resp. less than).

e The variableu thus has no impact on the behaviouroiff KU wUfu} is also greater than (resp.

less thany,,. It can be expressed a(sKU wufuy — b ) has the same sign thﬂ(ﬁw — ly).

¢ Lastly, one should not forget the folding functipp, because we only look at the behaviour of the
embedde@dRN.

The preservation of local dynamics as defi ned in this sest@ms intuitively far less restrictive than
the preservation of behaviour of Section 4.4, especialtysfchecked only on a small subset of the edges
of L. The goal of Section 5.4 is to prove that the preservationadlldynamics, when checked on a well
chosen subset of edges ©f is in fact equivalent to the preservation of behaviour.nfriam algorithmic
point of view, this result is decisive to make practicable werifi cation of behaviour preservation.

5.4. The Main Theorem

When N is embedded int€ the influence ofZ on the behaviour ofA/ necessarily goes through the
edges ofC entering into V. The set of these edges is called the “input frontier.”

Definition (Input Frontier): Let A be aBRN embedded into &aRN L. Theinput frontierof A in £
is the set of edge@:, v) of £ such thatu ¢ A andv € N.

For example, the input frontier of the embedding of Figure Geduced to the edde:, ). Notice
that the outgoing edges (going framor y to u, v or w) are not in the input frontier. Indeed, outgoing
edges have no influence oX'.

The following theorem shows that it is suffi cient to check lbgal dynamics on the input frontier.

Theorem (Main Result): Let A/ be aBRN embedded into @RN £. A necessary and sufficient con-
dition to preserve the behaviour o¥ in £ is that all edges of the input frontier preserve the local
dynamics.

Proof:

Necessary conditior:et us assume th&t. — v) in the input frontier does not preserve the local dynam-
ics of v for a given set of resourcesin £. The valuegp, ( KL wU{u )) and(p, (K- ) —po(ly))
do not share the same srgn (more precisely, they are not ersn}hvp or both negatrve or both null).
Sincep, is monotonic (K wuu} ly) and(Kﬁw ») do not share the same sign. lebe a state such
thatw? (1) = w and letl,, be an expression level afsuch that,: becomes a resource ©f x andl,, exist).
We necessarily have’ (1) # x%(ulv—1). Let us assume for example thaf (1) # 0 (a symmetric
reasoning applies £ (ul—)) £ 0). Then the transitioriy — 1), wherey’ = plv—+Wl belongs
to S£ while (pulv—tl — p/lv—l]) does not. Thus, the embedding does not preserve the behatig
in L.

Suffi cient condition:Let (1 — () € S* such thatp(y,) # p(luiN) and letfu « I] be a state
assignment such that ¢ A. Letwv be the variable such thai(v) # u'(v) : it belongs to AV be-
causep(y,) # p(u,). Itis sufficient to prove thatf (1) = nf(u[“‘—”) because it implies that

(ple=0 — 1/le=1) also belongs t&~-.
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If w2 () = wE (=Y then obviouslysZ (1) = k2 (pv—1).

If wZ(p) # wZ(p4) thenu belongs toL ' (v) and(u — v) belongs consequently to the input fron-
tier. We know thajp,, (k5 (1)) — pu(12(v)) # 0 because (1, ) # p(,LL‘,N). Thus, by defi nition of, and
p, being an increasing functiomm(Kf’ w;?(u)) — pu(u(v)) # 0. The preservation of the local dynam-

ics implies that it has the same sign;a;{Kﬁ wﬁ(u[“‘—”)) — pu(p(v)). Finally, p, being an increasing

function,Kf W) w(v) andeﬁ Wl (=) ™ wu(v) have the same sign and are different fronihis
implies thatx? (1) = % (ul*4), which ends the proof. O

Example: Let us consider the embedding of Figure 6. The gdge- z) constitutes the input frontier.

e Let us assume for example thiat = 3. We havek, ,,=4 andK, ,,,=3 as well as,(1)
pz(2) = p2(3) = 1andp,(4) = 2. Thus,p, (K, 2y) — p2(lz) = 1 andp,(Kz, zyu) — p2(lz) =
So, local dynamics is not preserved.

0.

e Looking at Figure 8, one can see why the behaviour is not predethe bold arrows of the state
graph differ ifu = 2 (i.e. v is a resource af) or not.

¢ As a consequence, when comparing the state graph of Figuith 3he state graph of Figure 9,
one can see that the bold arrows added by the€ase in Figure 8 have been added in Figure 9.
Thus, the global behaviour is not preserved.

Notice that becaus&’, ,=2 andK, ,,=4, if [, is equal to 1, 2 or 3 thep, (K, ,) — p.(lz) = 0 and
pe (K2 yu) — pz(lz) = 1. Nevertheless, the local dynamics is preserved because Wwhe 1, z is
a resource of itself. Consequently, only the case wihgre- 0 has to be considered and then both
expressions have the same sign.
Let us consider now the same embedding exceptihat.,,,=4 instead of 3.

e Then the local dynamics is preserved because for any pesgiblie ofl, and compatiblev,
pz(Kz, wuguy) — pz(l:) has the same sign than (K, ) — p.(lz) (@nd remind thatu, z) is the
only edge of the input frontier).

e According to the state graph side, we see on Figure 10 that whenu = 2, the reverse bold
arrows of Figure 8 do not occur.

e As a consequence, the state graph of Figure 11 is identithétone of Figure 5.

6. Suffi cient conditions to fi nd behaviour preserving subneaworks

Let us assume that we want to verify whether the embedding sefbaetwork N/ of £ preserves its
behaviour. The main advantage of the previous theorem igdiol &uilding the state graphs and more
importantly, to avoid checking the impact of all possiblatstassignments of the variables which do not
belong to V. Itis suffi cient to refer to a small number of static parametd theBRN £ (in the previous
example only one edge has to be considered, instead of aysagie of dimension 5).

Since embeddings which preserve behaviour identify sghlagory networks whose dynamics can-
not be influenced by the rest of the glolzaN, those subnetworks are biologically interesting. Indeed,
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they “pilot” the whole behaviour of the globaRN since they can influencevia their “output frontier”
whilst they are not influenceda their input frontier.

According to this point of view, one of the advantages of tlagelling activity could be to automat-
ically fi nd those “pilot” subnetworks. Notice that this gties is algorithmically far more diffi cult than
verifying a posteriorithat an embedding preserves the behaviour gifzan subnetwork. Checking all
the edges for all possible input frontiers induces a conbired explosion.

Nevertheless, our main theorem provides us with a simplecseft condition. This condition can
easily be verifi ed by classical algorithms on graphs.

Corollary: If P is a partial BRN of £ whose input frontier is empty then the embeddingrointo £
preserves the behaviour @?.

Proof:
Obvious from the main theorem. O

In practice, this suffi cient condition already identifi eseatain number of interesting pilot subnetworks.

In the general case, it is indeed not necessary to computealgebraic expressions involved in the
defi nition of the preservation of local dynamics (where digelaraic expression per possible expression
level [, of the variablev is required). Provided that the variahléhas no direct influence on itself, one
can take benefi t of the following result:

Proposition: Let A be aBrRN embedded into @RN £ and let(u,v) be an edge of the input frontier
such that has no direct influence on itself (i.ev, v) ¢ E/V). Then(u,v) preserves the local dynamics
of v if and only if: for any subsev of L~ (v) which does not contain, p, (K ,,0,y) = po(KL ).

Proof:
If po(KE wu{u}) = pU(vaw) then the preservation of the local dynamics is obvious. €mely, if for

any expression levé), compatible withw we havesign (pu (K, ,y) = pu(ls)) = sign(po(K ) —

v, w

pv(1,)), then, provided that ¢ L~'(v), it is always possible to chooge = K%, which proves that

v, w?

pU(Kff:wU{u}) :pU(Kvﬁ,w) U

This proposition avoids generating all possible expres$gwels of the variable). It is sufficient to
test the equality of the folded values of some parametersedfiN. When the variable has a direct
influence on itself, it is less simple but a similar resultdsol

Proposition: Let A be aBrRN embedded into @RN £ and let(u,v) be an edge of the input frontier
such thaw has a direct influence on itself (i.év,v) € E/V) with a thresholds and a sigre. Then(u, v)
preserves the local dynamicswoif and only if for any subset of L~!(v) which does not contain nor
v, the four following conditions are satisfied:

ma;v(Kvﬁ wU{u v}’Kvﬁ wu{v}) > r r
L { and e=“4" e pv(Kv,wu{u,v}) = Pv(KU,wU{U})

and =" v

min(KS o G KE o) <
2 { , wU{u,v} , wu{v} :}pU(K[' U{u,v}) = pv(Kyﬁ,wU{v})
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Proof:
Preservation of local dynamicsimplies condition 1: If max (K~ WU} K- wu(py) = sandes = <47,
then choosind, = maxz(K~ wUlup}> K- wu{v}) is compatible with the set of resources) {v}. Con-

sequently, from our main theoremign (pu (K[ 0, 0y) = Po(lo)) = sign(po (K} 1,y — po(lu))) and

l, being equal to one of the two parameté;f§ wU{uw} O Kf wU{u} both signs are null. Consequently

po(KE wUlun)) = po(KE wu(s}) = Pu(lu) which proves the implication.
Preservation of local dynamics implies condition 2: The same reasoning holds when chooding=
min(K~

L
v, wU{u,v}’ KU, wU{v} )

Preservation of local dynamics implies condition 3: If min (K . Kf ) < s ande = “+7,
then choosing, = mz’n(Kf wu{u},vaw) is compatible with the set of resources(which does not

containv). Consequently, our theorem proves the implication in Hraesway as for the condition 1.
Preservation of local dynamics implies condition 4: The same reasoning holds when chooding=
ma;v(Ki WU} Kvﬁw)

Conditions 1 to 4 imply the preservation of local dynamics. From our main theorem it is suffi cient to
prove that for any subset’ of L~!(v) which does not contain, and for any expression leve) of v
compatible with.’, we havesign( pU(vaw,U{u}) — pully)) = sign( po(Kf ) — po(ly)). Letus
denotes ands respectively the sign and the threshold of the direct infteesfv on itself.

If e = “+ " then the four following cases can be distinguished.

Casel, > s and max (K} w,U{u},va ) > s: Sincel, > s, ' is of the formw’ = w U {v}. Conse-
quently, condition 1 implies that, (K ,,y) = pu(EK[ ), afortiori sign( po(K} i) — po(ln))
is equal tOSz'gn( PU(Ki w’) - pv(lv) )

Casel, > s and max(Kﬁw,U{u},Kﬁ o) < st po(KF ) < po(s) becauseK[ , < sands
being a threshold of\/ , the folding function preserves this strict inequality. r Fbe same reason

pv(l(’vﬁ7 w/U{u}) < pv(s)' Consequent|y$ign( pv(KUﬁ, w/U{u}) - pv(lv) ) = Sign( pU(Kyﬁ, w/) - pv(lv) )

=-1,as py(s) < py(ly).

Casel, < s and mm(wa,U{u},Kﬁw/) > s: We have the inequalitiesoU(Kﬁw,) > pu(s) and
po(KE w/u{u}) > py(s)and p,(s) > py(ly) for the same reasons as in the previous case. Consequently,

sign( Pv(Kﬁ w/u{u}) —po(ly) ) = sign( Pv(Kvﬁ, w/) —pu(ly) ) =1.
Casel, < s and mm(wa,U{u},vaw,) < s: Sincel, < s, w' does not contain. Consequently,
condition 3 implies thapU(Kvﬁw/U{u}) = po(Kf ), afortiori sign( pv(wa,U{u}) — po(ly)) =
sign( pv(Kﬁw') = pu(ly) )
If e = “—"then the same above cases are solved with the same reassimiggconditions 2 and 4.

O
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Example:

According to the embedding of tlerN of Figure 5 into theBRN of Figure 6, the next to last propo-
sition can be applied to the edge, »). We have to verify whether for any subsef L~!(x) which
does not contaim, we havep, (K7, ,r,y) = ro(K7 )

w can be equal to: the empty set, the singletems y, or the pairz, . This would mean:

1 po(KE () = palKE)

2. pa(Ky (yy) = pa(K7 ()
3. pm(Kf {y,u}) = pw(Kf {y})
4, px(Kﬁ (eyu}) = px(Kﬁ fe.u))

This embedding does not preserve the local dynamics betaitdse equation is not satisfi eﬂf (z
3andK~ ey = 4 andp,(4) = 2 andp,(3) = 1.

On tﬁe contrary, if we modify th&RN of Figure 6 WithKf sy} = 4 then the four previous
equations are satisfi ed and consequently the embeddingrypesshe behaviour.

Yur

7. Conclusion and perspectives

The theory of René Thomas is a discrete formalism for modgbiological regulatory networks. This
formalism has the advantage to handle the precise dynarhgsne regulation while benefiting from
automated logical tools. Our motivation is to develop a ntadapproach which allows the study of
large networks by splitting them into small sub-networksur @eorem characterizes the sub-networks
which “pilot” the rest of the network since they cannot beusficed by the global network. We have
given several corollaries which facilitate the algoritisrsearch for these pilot sub-networks.

The main theorem established in this paper solves a stremgofimodularity, since it applies to sub-
networks whose behaviour is entirely preserved by embgddmthe future, we would like to develop
theorems where the behaviour of the sub-network can betlgligiodifi ed by the global network but in
a rigorously controlled way.

Several extensions of this work can be considered in thefogae. For example, we are interested
in sub-networks whose behaviour is preserved only for aetudigossible initial states. We are also in-
terested in sub-networks whose behaviour preserves omlg gosen properties, such as the preservation
of the steady states (with possibly different trajectgries

So far, almost all the theoretical work related to Rene Thedifnramework has been focused on global
properties of the network dynamics. The theoretical regivétn here opens the way to new studies for
biological regulatory networks related to modularity issu
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