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The lateral–torsional stability of circular arches subjected to radial and follower distributed loading is treated herein. 
Three loading cases are studied, including the radial load with constant direction, the radial load directed towards the arch 
centre, and the follower radial load (hydrostatic load), as treated by Nikolai in 1918. For the three cases, the buckling loads 
are first obtained from a static analysis. As the case of the follower radial load (hydrostatic load) is a non-conservative 
problem, the dynamic approach is also used to calculate the instability load. The governing equations for out-of-plane 
vibrations of circular arches under radial loading are then derived, both with and without Wagner’s effect. Flutter 
instabilities may appear for sufficiently large values of opening angle, but flutter cannot occur before divergence for the 
parameters of interest (civil engineering applications). Therefore, it is concluded that the static approach necessarily leads 
to the same result as the dynamic approach, even in the non-conservative case.
1. Introduction

When an arch is loaded in its plane, the arch may buckle laterally by twisting and deflecting out of its plane,
a behaviour called lateral–torsional buckling. Lateral–torsional buckling of circular arches under uniform
compression (in-plane radial load—see Fig. 1) has been studied by many researchers (see, for instance, the
recent papers [1,2]). In most of these studies devoted to lateral–torsional buckling, the direction of the radial
load was assumed not to change, remaining in its original plane. In practice, uniform compression in a circular
arch may also be produced by motion-dependent loads: the radial load may be directed towards the arch
centre, or the radial load may follow its line of application. Nikolai [3] first investigated in detail the
lateral–torsional buckling of circular arches under constant and follower radial loading. Nikolai [3] discussed
the non-conservative behaviour of radial loading within the frame of the static criterion of stability as early as
1918 [4]. We wish to reconsider this non-conservative problem in the light of dynamics stability theory.
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Fig. 1. Lateral–torsional buckling of circular arches under uniform compression.
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Fig. 2. Definition of the three loading cases.
Three loading cases are studied in this paper, including the radial load with constant direction (case 1), the
radial load directed towards the arch centre (case 2), and the follower radial load, also called hydrostatic load
(case 3) (see Figs. 1 and 2). The first theoretical results on lateral–torsional buckling of arches under uniform
compression were by Nikolai [3], Federhofer [5], Hencky [6] and Timoshenko [7] for circular or narrow
rectangular sections. Nikolai [3] first treated the lateral–torsional buckling of circular rings and arches under
constant directional pressure (case 1) and hydrostatic load (case 3). Federhofer [5] investigated the
lateral–torsional buckling of a circular ring under centrally directed pressure (case 2), by neglecting the out-
of-plane bending stiffness. Hencky [6] completed Federhofer’s result without this last assumption (case 2).
Timoshenko [7] studied the lateral–torsional buckling of circular arches under the conservative loading of
cases 1 and 2, and then extended the previous results to the arch problem. These results can be easily
generalized to I-beams (see, for instance, Ref. [2]). As we will see, these two loading cases (cases 1 and 2) are
conservative loading, and it is then justified to use a static stability approach to determine the buckling load.
Indeed, the static and dynamic approaches lead to the same result for this conservative case. The problem is
different for the follower radial load, which leads to a non-conservative problem, as explained by Farshad [8],
Celep [9], and Challamel [10]. In this last case, a dynamic approach is needed to investigate the stability
boundary [11]. Therefore, it is not possible to disconnect the out-of-plane stability problem and the out-
of-plane vibrations problem.

The rigorous free out-of-plane vibrations of circular arches go back to the pioneering study of Michell [12]
for circular sections and by neglecting the rotary inertia. Many studies have been devoted to the out-of-plane
vibrations of circular arches [13–15]. An interesting feature of the governing equations is the mutual
independence between the in-plane and the out-of-plane linear motions [14]. Childamparam and Leissa [16]
gave a state of the art analysis of vibrations of circular arches. Research on the out-of-plane dynamics of
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arches is today oriented towards the analytical treatment of the Timoshenko arc [17–19] or the treatment of
arbitrarily varying cross sections [20,21].

Lateral–torsional buckling under non-conservative time-independent loading (autonomous system) has
been studied by many researchers, since the pioneering work of Bolotin [22] (see, for instance, Refs. [23–34]).
The dynamic approach was used in these studies of non-conservative follower loads. Lateral–torsional
buckling of straight beams under distributed follower loads was formally treated by Bolotin [22]. Migliacci [23]
studied the lateral–torsional instability of a simply supported beam under concentrated or distributed follower
loads, and showed, in particular, that instability induced by a distributed follower load along the entire beam
necessarily occurs by divergence. Ballio [25] extended these results and studied the transition from flutter to
divergence instability, depending on the distributed aspect of the follower load. Moreover, Ballio [26]
investigated the possibility of treating this non-conservative problem from an adjoint problem. Celep [28]
exhibited flutter instabilities for cantilever beams under distributed follower loads. Lateral–torsional
instability (flutter) of cantilever beams under concentrated follower forces were also investigated by Como
[24], Wohlhart [27], Hodges [31], and Detinko [32]. Lateral–torsional buckling under a non-conservative
follower moment was treated by Bolotin [22], Celep [29], Feodosiev [33], and Simitses and Hodges [34].
Detinko [30] also studied the case of a circular arch under an in-plane follower force. There have been very few
papers devoted to lateral–torsional instabilities of arches under non-conservative follower loads (dynamics
approach), except the work of Farshad [8] and Celep [9]. The study of Wasserman [35] can be also mentioned,
as this study investigated the effect of the load behaviour (case 1, case 2, and case 3) on the natural frequencies
of the out-of-plane vibrations. However, Wasserman [35] did not discuss the flutter occurrence for this non-
conservative problem, and rotary inertia was neglected. Celep [9] obtained results in the case of combined
conservative and non-conservative (follower load) distributed radial loading. Farshad [8] and Celep [9] both
neglected Wagner’s effect.

The lateral–torsional stability of a circular arch subjected to radial and distributed follower loading is
treated herein. Three loading cases are studied, including the radial load with constant direction (case 1), the
radial load directed towards the arch centre (case 2), and the follower radial load (case 3). Gravity loading
(case 1) could be compared to arch bridges with very little lateral stiffness of the bridge deck, while tilt loading
(case 2) occurs in bridges with a bridge deck with high lateral stiffness. Case 2 is typically encountered in
stabbogen arches, where the suspended structure (e.g., bridge deck) has a greater in-plane bending stiffness
than the arch rib [36]. Case 3 can be associated to a simplified model of wind load, even if it is generally
admitted that such a load varies along the arc length. The elastic stability of a pair of leaning arches submitted
to wind loads was studied, for instance, by Plaut and Hou [37]. Bradford and Pi [38] also mentioned some
possible applications of this hydrostatic load in the case of submarine structures. Experimentally, essentially
two types of loading have been tested in the literature. The gravity load (case 1 of the paper) and the radial
load directed towards the arch centre (case 2 of the paper), both conservative loading, have been investigated:
�
 gravity load (case 1): Stüssi [39] with a rectangular cross section and

�
 tilt loading (case 2): Godden [36] with a circular cross section, Tokarz [40] with rectangular cross section.

Kee [41] investigated the coupled effect of a non-follower lateral load with tilt loading to take into account
the wind load. La Poutré [42] recently made an extensive review of experimental testing of steel arches, and
performed experimental tests on circular arches under gravity or tilt loading (case 1 and case 2 of this paper).
To our knowledge, no experimental results have been published with the exact load configuration of case 3,
e.g., a single uniform hydrostatic pressure. The lack of experimental results for this last case may be eventually
connected to the experimental difficulties associated to the realization of some non-conservative systems
(see Refs. [43,44]). Some of these difficulties may be overcome at the micro scale, as recently suggested
in Ref. [45] for the implementation of follower forces in a beam-type micro-electro-mechanical systems
(MEMS) resonator.

For the three cases, the buckling loads are first obtained from a static analysis, and the results of Nikolai [3]
and Timoshenko [7], summarized by Farshad [8] and Wasserman [35], are then confirmed when Wagner’s
effect is neglected. As the case of the follower radial load (hydrostatic load—case 3) is a non-conservative
problem, the dynamic approach is also used to calculate the instability load. The dynamic approach gives both
3



the divergence and the critical flutter loads (if the existence of these critical loads is ensured); depending
on the parameters of the problem, they can be lower, higher or equal to each other. The governing
equations for out-of-plane vibrations of circular arches under radial loads are derived, with the incorporation
of Wagner’s effect. A rigorous proof that no flutter bifurcation may occur for sufficiently small values
of arch opening angle is given. Flutter instabilities may appear for larger values of the arch opening angle,
but flutter cannot occur before divergence for the parameters of interest. A simple closed-form solution
of the flutter load is given for the semi-circular arch. It is also shown that Wagner’s effect significantly affects
the flutter load in the case of flutter bifurcation. Therefore, it is concluded that the dynamic approach
necessarily leads to the same result as the static approach, even in the non-conservative case. Moreover,
one shows that Nikolai’s solution in the case of follower loads (case 3) is still valid when Wagner’s effect is
taken into account.

2. Governing equations

Consider the linearized bending-torsional equations of a circular arch of radius R with a narrow
rectangular cross section, acted on by a distributed radial load q. The deflection at the onset of
buckling is specified by (i) the cross-section rotation angle j(x) in the yz plane, and (ii) the displacement
w(x) of the beam axis in the z direction. The effects of the pre-buckling deflections are neglected (EIzbEIy).
Moreover, we implicitly use the independence property of the in-plane and out-of-plane vibrations
(see Refs. [14,35,46]).

The variation of the strain energy DU, from the fundamental equilibrium state, is equal to

DU ½j;w� ¼
1

2

Z L

0

EIy w00 þ
j
R

� �2
þ GJ j0 �

w0

R

� �2

þN w02 þ r20 j0 �
w0

R

� �2
! !

ds with N ¼ �qR, (1)

where GJ is the beam torsional stiffness and EIy is the beam bending stiffness in the xz plane. The arch has an
opening angle a and a length denoted by L (L ¼ Ra).

It is worth mentioning that the term

1

2

Z L

0

Nr20 j�
w0

R

� �2

ds (2)

is associated with the so-called Wagner’s effect [47], which is responsible for the torsional buckling of doubly
symmetric columns under an axial compressive load (see also Refs. [48,49]). r0 is the cross-sectional mass
radius of gyration. Wagner’s effect was neglected in the previous studies dealing with the dynamics of circular
arches under follower loads [8,9].

The variation of the kinetic energy is equal to

DT ½j;w� ¼
1

2

Z L

0

m _w2 þ mr20 _j
2

� �
ds, (3)

where m is the mass per unit length. The variation of the virtual work done by the distributed radial load is
assumed to have the general form:

dDW e ¼ �x1

Z L

0

q

R
wdwds� x2

Z L

0

qjdwds. (4)

The three cases presented in the introduction are covered by such an expression (see also Ref. [8]). Case 1 is
obtained with x1 ¼ 0 and x2 ¼ 0 (radial load with constant direction). Case 2 is obtained with x1 ¼ 1 and
x2 ¼ 0 (radial load directed towards the arch centre). Finally, Case 3 is obtained with x1 ¼ 0 and x2 ¼ 1
(follower radial load or hydrostatic load). The first term of Eq. (4) derives from a potential, whereas the
second term of Eq. (4) cannot derive from a potential, as detailed in Ref. [10]. As a consequence, the
conservativeness criterion is simply reduced to

x2 ¼ 03conservative problem: (5)
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The dynamic equations are obtained via the Hamilton principle:Z t2

t1

ðdDU � dDT � dDW eÞdt ¼ 0. (6)

The partial differential equations are finally

m €wþ EIy wð4Þ þ
j00

R

� �
þ

GJ�qRr2
0

R
j00 �

w00

R

� �
þ qRw00 þ x1

q

R
wþ x2qj ¼ 0;

mr20 €jþ
EIy

R
w00 þ

j
R

� �
� ðGJ � qRr20Þ j00 �

w00

R

� �
¼ 0:

���������
(7)

A solution is sought in the form:

w ¼ RweOt and j ¼ feOt. (8)

The four dimensionless parameters may be introduced as

p ¼
qR3

EIy

; l ¼
EIy

GJ
; r ¼

r0

R
and L2 ¼

R4mO2

EIy

. (9)

Moreover, the spatial derivative with respect to s is expressed in terms of the polar coordinate y, leading to
the new dimensionless differential equations:

lwð4Þ þ ðpl� 1þ plr2Þw00 þ wðlL2 þ x1plÞ þ ðlþ 1� plr2Þf00 þ lx2pf ¼ 0;

ðlþ 1� plr2Þw 00 � ð1� plr2Þf00 þ fðlþ lL2r2Þ ¼ 0:

����� (10)

The second equation of Eq. (10) leads to

w00 ¼
1� plr2

1þ l� plr2
f00 �

l
1þ l� plr2

ð1þ L2r2Þf. (11)

Inserting Eq. (11) into the first equation of Eq. (10) leads to the sixth-order linear differential equation of
one variable f:

ð1� plr2Þfð6Þ þ ½ðpþ 2Þð1� plr2Þ � lL2r2�fð4Þ þ ½ð1þ L2r2Þð1� plr2 � lpÞ

þ ðL2 þ x1pÞð1� plr2Þ þ x2pð1� plr2 þ lÞ�f00 � lð1þ L2r2ÞðL2 þ x1pÞf ¼ 0. (12)

Some particular cases can be deduced from Eq. (12). First, it can be useful to derive this differential
equation when Wagner’s effect is neglected (as already considered in Refs. [8,9,35]):

fð6Þ þ ðpþ 2� lL2r2Þf 4ð Þ
þ ½ð1þ L2r2Þð1� lpÞ þ L2 þ x1pþ x2pð1þ lÞ�f00 � lð1þ L2r2ÞðL2 þ x1pÞf ¼ 0.

(13)

Free vibrations are obtained by setting p ¼ 0 and o2
¼ �L2:

fð6Þ þ ð2þ lo2r2Þfð4Þ þ ½1� o2ð1þ r2Þ�f00 þ lo2ð1� o2r2Þf ¼ 0. (14)

This sixth-order differential equation was given, for instance, by Lee and Chao [21]. The particular case with
r ¼ 0 leads to the much simpler case (see Ref. [14]):

fð6Þ þ 2fð4Þ þ ð1� o2Þf00 þ lo2f ¼ 0. (15)

Solution of the general linear differential equation (Eq. (12)) is written as

fðyÞ ¼
X6
i¼1

Cie
biy, (16)
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where bi are assumed to be the simple roots of the characteristic equation, obtained from the introduction of
Eq. (16) into Eq. (12):

ð1� plr2Þb6 þ ½ðpþ 2Þð1� plr2Þ � lL2r2�b4 þ ½ð1þ L2r2Þð1� plr2 � lpÞ

þ ðL2 þ x1pÞð1� plr2Þ þ x2pð1� plr2 þ lÞ�b2 � lð1þ L2r2ÞðL2 þ x1pÞ ¼ 0. (17)

It can be useful to introduce the change of variable g ¼ b2, in order to convert the characteristic equation
into a third-order polynomial expression:

ð1� plr2Þg3 þ ½ðpþ 2Þð1� plr2Þ � lL2r2�g2 þ ½ð1þ L2r2Þð1� plr2 � lpÞ

þ ðL2 þ x1pÞð1� plr2Þ þ x2pð1� plr2 þ lÞ�g� lð1þ L2r2ÞðL2 þ x1pÞ ¼ 0. (18)

As described by Hencky [6] and Howson and Jemah [18], the solution of such equations can be achieved by
reduction of Cardan’s form.
3. Static approach—conservative problem—Wagner’s effect neglected

The static approach leads to the exact buckling load (in the stability sense of Lyapunov) for conservative
systems. Indeed, this approach can be rigorously applied to the case x2 ¼ 0. For the static approach, the
parameter L is assumed to vanish. When Wagner’s effect is neglected, the characteristic equation (Eq. (18)) is
then converted into

g3 þ ðpþ 2Þg2 þ ð1� lpþ x1pÞg� lx1p ¼ 0. (19)

Simple closed-form solutions can be obtained for case 1 and case 2. Case 2 is first treated (x1 ¼ 1).
The characteristic equation (Eq. (19)) can be rewritten in the following form:

ðgþ 1Þðg2 þ ðpþ 1Þg� plÞ ¼ 0. (20)

The third real solutions of this factorized equation are finally obtained:

ðg1; g2; g3Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 1Þ2 þ 4pl

q
þ pþ 1

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 1Þ2 þ 4pl

q
� ðpþ 1Þ

2
;�1

0
@

1
A. (21)

The solution of Eq. (13) is then written as

fðyÞ ¼ C1 cosð
ffiffiffiffiffiffiffiffi
�g1
p

yÞ þ C2 sinð
ffiffiffiffiffiffiffiffi
�g1
p

yÞ þ C3 coshð
ffiffiffiffiffi
g2
p

yÞ þ C4 sinhð
ffiffiffiffiffi
g2
p

yÞ þ C5 cos yþ C6 sin y, (22)

where (Ci) are real constants. To proceed further, one may consider the boundary conditions of the pin-ended
arch, the ends of which are restrained against lateral displacement ðw ¼ 0Þ, against rotation (f ¼ 0), and with
bending moment My vanishing (and then w 00 ¼ 0). The 6 boundary conditions associated with the eigenmode
of the laterally pin-ended arch are:

fðyÞ ¼ 0 for y ¼ 0; a; f00ðyÞ ¼ 0 for y ¼ 0; a; fð4ÞðyÞ ¼ 0 for y ¼ 0; a. (23)

Introducing the boundary conditions (Eq. (23)) into the eigenmode formulation (Eq. (22)) leads to the
eigenvalue equation:

sin
ffiffiffiffiffiffiffiffi
�g1
p

a
� �

sinh
ffiffiffiffiffi
g2
p

a
� �

sin a ¼ 0)
a ¼ np;ffiffiffiffiffiffiffiffi
�g1
p

a ¼ np:

����� (24)

The first mode is the rigid mode associated with the semi-circular arch, whereas the second family of
buckling loads is written as

pn ¼ ðnpÞ
2 ðnpÞ2 � a2

a2ððnpÞ2 þ la2Þ
. (25)
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Case 1 is now analysed (x1 ¼ 0). In this case, the sixth-order differential equation (Eq. (13)) can be reduced
to a fourth-order differential equation from the boundary conditions (Eq. (23)):

fð4Þ þ ðpþ 2Þf00 þ ð1� lpÞf ¼ 0. (26)

One recognizes the fourth-order differential equation given by Timoshenko [7]. The characteristic equation
is then written as

g2 þ ðpþ 2Þgþ ð1� lpÞ ¼ 0 (27)

with the two real solutions detailed as

ðg1; g2Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 2Þ2 þ 4pl� 4

q
þ pþ 2

2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ 2Þ2 þ 4pl� 4

q
� ðpþ 2Þ

2

0
@

1
A. (28)

Two types of solutions must be distinguished, depending on the sign of g2. First, it is assumed that pX1/l
(g2X0). The solution of Eq. (26) is then written as

fðyÞ ¼ C1 cos
ffiffiffiffiffiffiffiffi
�g1
p

y
� �

þ C2 sin
ffiffiffiffiffiffiffiffi
�g1
p

y
� �

þ C3 cosh
ffiffiffiffiffi
g2
p

y
� �

þ C4 sinh
ffiffiffiffiffi
g2
p

y
� �

. (29)

Introducing the boundary conditions (Eq. (23)) into the eigenmode formulation (Eq. (29)) leads to the
eigenvalue equation:

sin
ffiffiffiffiffiffiffiffi
�g1
p

a
� �

sinh
ffiffiffiffiffi
g2
p

a
� �

¼ 0)
ffiffiffiffiffiffiffiffi
�g1
p

a ¼ np. (30)

The second case of Timoshenko’s problem is based on pp1/l (g2p0). It is worth mentioning that this case
was not treated by Timoshenko [7]. The solution of Eq. (26) is then written as

fðyÞ ¼ C1 cos
ffiffiffiffiffiffiffiffi
�g1
p

y
� �

þ C2 sin
ffiffiffiffiffiffiffiffi
�g1
p

y
� �

þ C3 cos
ffiffiffiffiffiffiffiffi
�g2
p

y
� �

þ C4 sin
ffiffiffiffiffiffiffiffi
�g2
p

y
� �

. (31)

Introducing the boundary conditions (Eq. (23)) into the eigenmode formulation (Eq. (31)) leads to the
eigenvalue equation:

sin
ffiffiffiffiffiffiffiffi
�g1
p

a
� �

sin
ffiffiffiffiffiffiffiffi
�g2
p

a
� �

¼ 0)

ffiffiffiffiffiffiffiffi
�g1
p

a ¼ np;ffiffiffiffiffiffiffiffi
�g2
p

a ¼ np;

����� with
ffiffiffiffiffiffiffiffi
�g1
p

X
ffiffiffiffiffiffiffiffi
�g2
p

. (32)

Eq. (32) leads to the same family of buckling loads (see Eq. (30)):

pn ¼
ððnpÞ2 � a2Þ2

a2ððnpÞ2 þ la2Þ
. (33)
4. Non-conservative problem—static approach—Wagner’s effect neglected

As for case 2 (Timoshenko’s problem), the sixth-order differential equation of case 3 (hydrostatic load)
(x1 ¼ 0, x2 ¼ 1) can be reduced to a fourth-order differential equation:

fð4Þ þ ðpþ 2Þf00 þ ð1þ pÞf ¼ 0. (34)

The characteristic equation is then written as

g2 þ ðpþ 2Þgþ ð1þ pÞ ¼ 0. (35)

with the two real solutions detailed as

ðg1; g2Þ ¼ ð�1� p;�1Þ. (36)

The solution of Eq. (34) is then obtained as

fðyÞ ¼ C1 cosð
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
yÞ þ C2 sinð

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
yÞ þ C3 cosðyÞ þ C4 sinðyÞ. (37)
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Introducing the boundary conditions (Eq. (23)) into the eigenmode formulation (Eq. (37)) leads to the
eigenvalue equation:

sinð
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
aÞ sinðaÞ ¼ 0)

a ¼ np;ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

a ¼ np:

����� (38)

The first mode is the rigid mode associated with the semi-circular arch, whereas the second family of
‘‘static’’ buckling loads is written as

pn ¼
np
a

� �2
� 1. (39)

It is remarkable that this value is exactly the buckling value of the fundamental in-plane buckling for n ¼ 2
(see, for instance, Refs. [34,46]). Therefore, it appears that the follower load problem leads to the coincidence
of the fundamental in-plane buckling problem and the second buckling value of the out-of-plane buckling
problem (n ¼ 2).

The dimensionless fundamental buckling load p ¼ p1ða=pÞ
2 can be introduced. The three cases

can be summarized as follows (see also Nikolai [3], Timoshenko [7], and more recently Farshad [8] and
Wasserman [35]):

ðx1; x2Þ ¼ ð0; 0Þ ) p ¼
ðp2 � a2Þ2

p2ðp2 þ la2Þ
;

ðx1; x2Þ ¼ ð1; 0Þ ) p ¼
p2 � a2

p2 þ la2
;

ðx1; x2Þ ¼ ð0; 1Þ ) p ¼ 1�
a2

p2

�������������
(40)

with l ¼ (1+u)/2 for thin rectangular beam and u is the Poisson’s ratio.
The buckling solutions for x2 ¼ 0 (case 1 and case 2 are conservative cases) are the rigorous bifurcation

solutions (the static approach is equivalent to the dynamic approach), whereas the last solution, corresponding
to the non-conservative Nikolai’s problem (case 3), is only obtained from a static point of view (divergence
load). The proof of the loss of stability must be completed by a dynamic approach in order to study the
occurrence of flutter. The evolution of p versus a is shown in Fig. 3. It is remarkable that Nikolai’s solution
1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

�
�

p

Case 1 Case 2 Case 3

Fig. 3. Comparison of the dimensionless buckling load p versus the opening angle a; l ¼ 0.65 (thin rectangular section with u ¼ 0.3);

aA[0;p].
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does not depend on l (and, as a consequence, on Poisson’s ratio u). As remarked by Wasserman [35], and more
recently by Pi et al. [2], the buckling load of case 3 is the highest, while the buckling load of case 1 is the lowest.
Moreover, buckling is controlled by the second mode (n ¼ 2) of the arch for a greater than 3p/2 in case 1
(as described by Celep [9]). For case 2 and case 3, a jump appears at a equal to p (abrupt transition from the
fundamental buckling mode to the second mode).
5. Dynamic approach—non-conservative problem—Wagner’s effect neglected

It is assumed that the solution of Eq. (13) is written as

f ¼ f0 sin np
y
a

� �
. (41)

It is easily checked that this solution verifies the boundary conditions (Eq. (23)). Inserting Eq. (41) into
Eq. (13) leads to

lr2L4 þ lr2
np
a

� �4
þ r2ð1� lpÞ

np
a

� �2
þ

np
a

� �2
þ lþ lr2x1p


 �
L2

þ
np
a

� �6
� ð2þ pÞ

np
a

� �4
þ ð1� lpÞ

np
a

� �2
þ ðx1pþ x2pð1þ lÞÞ

np
a

� �2
þ lx1p


 �
¼ 0. (42)

The free vibration modes (o2
¼ �L2) are obtained from Eq. (42), and were given by Michell [12] for a semi-

circular arch when the rotary is neglected (see also Ref. [50]):

r ¼ 0 and p ¼ 0) o2
n ¼

np
a

� �2 ððnp=aÞ2 � 1Þ2

ðnp=aÞ2 þ l
. (43)

For the non-conservative case (x1, x2) ¼ (0, 1), Eq. (42) can formally be written as

aL4 þ bL2 þ c ¼ 0 with

a ¼ lr2;

b ¼ lr2
np
a

� �4
þ r2ð1� lpÞ

np
a

� �2
þ

np
a

� �2
þ l;

c ¼
np
a

� �6
� ð2þ pÞ

np
a

� �4
þ ð1þ pÞ

np
a

� �2
:

����������
(44)

The flutter bifurcation is reached for

D ¼ b2
� 4ac ¼ 0. (45)

Application of criterion (Eq. (45)) leads to the polynomial expression:

p2 l2r4
np
a

� �4
 �
þ p �2lr2

np
a

� �2
lr2

np
a

� �4
þ r2

np
a

� �2
�

np
a

� �2
þ lþ 2

� �
 �

þ lr2
np
a

� �4
þ r2

np
a

� �2
þ

np
a

� �2
þ l

� �2

� 4lr2
np
a

� �2 np
a

� �2
� 1

� �2
" #

¼ 0. (46)

The fundamental question related to the appearance of the flutter phenomenon concerns the existence of a
real positive root to this second-order polynomial equation. Eq. (46) is a second-order polynomial expression
of p, whose discriminant d can be calculated from

d ¼ 4l2r4
np
a

� �4
lr2

np
a

� �4
þ r2

np
a

� �2
�

np
a

� �2
þ lþ 2


 �2
� 4l2r4

np
a

� �4

� lr2
np
a

� �4
þ r2

np
a

� �2
þ

np
a

� �2
þ l

� �2

� 4lr2
np
a

� �2 np
a

� �2
� 1

� �2
" #

. (47)
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The discriminant d can be simplified as

d ¼ 16l2r4
np
a

� �4
1�

np
a

� �2� �
1þ lð Þ 1þ r2

np
a

� �2� �
. (48)

As a consequence,

aop) do0. (49)

This means that Eq. (46) has no real solution of the dimensionless load parameter p for aop, and thus the
flutter phenomenon cannot occur for aop. It appears that the flutter phenomenon cannot occur for this
system, and the bifurcation criterion c ¼ 0 leads to a divergence type of instability. Eq. (39) is found again, and
the dynamic and the static criteria lead to the same boundary of the stability load. Although this problem is
intrinsically a non-conservative problem, it can be classified by Leipholz as a conservative system of the second
kind. This problem is analogous to the one of Pflüger’s rod, a non-conservative problem under a distributed
follower load, whose stability boundary is also ruled by a static approach [51–53]. A special case is obtained
for a semi-circular arch with n equal to 1:

a ¼ p) d ¼ 0 for n ¼ 1. (50)

In this case, the flutter load obtained from Eq. (46) is equal to

a ¼ p) p1 ¼
ðlþ 1Þðr2 þ 1Þ

lr2
. (51)

This flutter load depends also on the rotary inertia, and approaches an infinite value when the rotary inertia
tends towards zero. In fact, flutter cannot occur when the rotary inertia is neglected ðr ¼ 0Þ, as considered, for
instance, by Wasserman [35]. The possibility of flutter for a semi-circular arch under follower loads was first
recognized by Farshad [8], although the value of the bifurcation load presented herein is different from the one
of Farshad [8] (except for r2 ¼ 2). Our values agree with those of Celep [9] when Wagner’s effect is neglected,
even if Celep did not propose a closed-form solution for a ¼ p. This flutter bifurcation is more clearly
highlighted for large values of opening angle a 2 p; 2p½ �:

a 2 ½p; 2p� ) p1;2 ¼
lr2ðp=aÞ4 þ r2ðp=aÞ2 � ðp=aÞ2 þ lþ 2� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp=aÞ2

q ffiffiffiffiffiffiffiffiffiffiffi
1þ l
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2ðp=aÞ2
q

lr2ðp=aÞ2
. (52)
2
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Fig. 4. Comparison of the dimensionless buckling load p versus the opening angle a; l ¼ 0.65 (thin rectangular section with u ¼ 0.3);

aA[0;2p].
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Fig. 5. Flutter load versus the opening angle a; l ¼ 0.65 (thin rectangular section with u ¼ 0.3) and r ¼ 0:1; aA[0;2p]; case 3 (hydrostatic

load)–nonconservative case.
However, it can be shown that these flutter loads (and in particular the smallest one) are much larger than
the buckling loads obtained from the static approach, even for aA[p; 2p] (see Fig. 4). Fig. 5 shows the
evolution of the flutter load versus the opening angle, and the typical turning point for the semi-circular arch
problem (a ¼ p).
6. Incorporation of Wagner’s effect

The previous results may easily be extended to the case when Wagner’s effect is taken into account
(see Eq. (12)). For the two conservative cases (case 1 and case 2), the static approach leads to a second-order
polynomial expression, detailed below for case 1 (x1, x2) ¼ (0, 0):

lr2p2 þ �lr2
np
a

� �2
1�

a
np

� �2� �2

� 1þ l
a

np

� �2� �" #
pþ

np
a

� �2
1�

a
np

� �2� �2

¼ 0. (53)

For case 2 (x1, x2) ¼ (1, 0), the second-order polynomial expression is given by

lr2p2 þ lr2 1�
np
a

� �2� �
� 1þ l

a
np

� �2� �
 �
pþ

np
a

� �2
� 1 ¼ 0. (54)

Finally, for case 3 (x1, x2) ¼ (0, 1), the second-order polynomial expression can be factorized by

ðlpr2 � 1Þ p�
np
a

� �2
� 1


 �� �
¼ 0. (55)

These three expressions were obtained by Pi et al. [2]. Eq. (40) is a particular case of Eqs. (53)–(55) when r is
sufficiently small. It is worth mentioning that the incorporation of Wagner’s term is imperceptible for thin
rectangular beams, and the result summarized in Eq. (40) is more readable for engineering applications.
Moreover, the static approach associated with case 3 (x1, x2) ¼ (0, 1), the non-conservative case, exactly leads
to Eq. (39). A second uncoupled torsional mode is obtained for p equal to 1=ðlr2Þ, that is N equal to �GJ/r0

2,
but the associated buckling value associated with this mode is generally much larger than the other one.
Therefore, Wagner’s effect does not affect this instability load (instability by divergence). In this case, the
buckling load is that derived by Nikolai [3], and is independent of both l and r (even if Wagner’s term is
explicitly introduced in the governing equations).
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The dynamics approach must also be corrected to evaluate the flutter boundary in this last case. Inserting
the postulated form of f (Eq. (41)) into the differential equation (Eq. (12)) leads to the frequency equation:

aL4 þ bL2 þ c ¼ 0 with

a ¼ lr2;

b ¼ lr2
np
a

� �4
þ r2 1� lpr2 � lp

� � np
a

� �2
þ

np
a

� �2
1� lpr2
� �

þ l;

c ¼ 1� lpr2
� � np

a

� �6
� 2þ pð Þ

np
a

� �4
1� lpr2
� �

þ 1þ pð Þ
np
a

� �2
1� lpr2
� �

:

����������
(56)

The flutter criterion (Eq. (45)) leads to the polynomial expression:

p2l2r4
np
a

� �2 np
a

� �2
r2ð4þ r2Þ þ 4


 �
þ p �2lr2

np
a

� �2
lr4

np
a

� �4
þ

np
a

� �2
ðr2 3þ 4lð Þ þ r4Þ þ ð2lþ 2� lr2Þ

� �
 �

þ lr2
np
a

� �4
þ r2

np
a

� �2
þ

np
a

� �2
þ l

� �2

� 4lr2
np
a

� �2 np
a

� �2
� 1

� �2
" #

¼ 0. (57)

Moreover, the discriminant d can be simplified as

d ¼ 16l2r4
np
a

� �2
1�

np
a

� �2� �
l2r6

np
a

� �8
þ lr4ð�lr2 � 2þ lÞ

np
a

� �6
þ r2ð1� 2lÞ 1þ lr2

� � np
a

� �4


þð1þ r2lð1� 2lÞÞ
np
a

� �2
� l2

�
. (58)

Eq. (58) shows that flutter phenomenon cannot occur for aop. As previously seen in the absence of
Wagner’s effect, the discriminant d vanishes for the first mode associated with the semi-circular arch (n ¼ 1,
a ¼ p). The comparison of the flutter load with and without Wagner’s effect is shown in Figs. 5 and 6. The
typical turning point for the semi-circular arch problem (a ¼ p) is also observed. This characteristic flutter
load, incorporating Wagner’s effect, is equal to

a ¼ p) p1 ¼
ðlþ 1Þðr2 þ 1Þ

lr2ðr2 þ 2Þ
. (59)

The ratio between this value and that obtained without Wagner’s term is equal to 1=ð2þ r2Þ, and is close to
half for sufficiently small values of r. Clearly, Wagner’s phenomenon has a meaningful destabilizing effect
from the dynamics point of view. Moreover, the shape of the flutter boundary is affected by Wagner’s term,
as it actually is characterized by a closed loop (Fig. 5).
300
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without Wagner’s term

p

Fig. 6. Flutter load versus r; l ¼ 0.65 (thin rectangular section with u ¼ 0.3); a ¼ p; case 3 (hydrostatic load)–nonconservative case.
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Finally, it can be concluded that flutter cannot occur for the present case of lateral–torsional buckling of
arches under non-conservative follower loads, except in some very specific cases (for the semi-circular arch, for
instance). Even for these cases, flutter cannot occur before divergence for the parameters of interest
(those in practical civil engineering applications). This means that a static approach can be used for this
problem, even if the problem is non-conservative. Nevertheless, flutter occurrence could be predominant for
large values of r, and for large values of opening angle a, which could be encountered in micromechanical
applications (see Fig. 6).
7. Conclusions

The lateral–torsional stability of circular arches subjected to radial and follower distributed loads is treated
herein. Three load cases are studied, including the radial load with constant direction (case 1), the radial load
directed towards the arch centre (case 2), and the follower radial load (case 3). For the three cases, the
buckling loads are first obtained from a static analysis, and the results of Nikolai [3] and Timoshenko [7],
summarized by Farshad [8] and Wasserman [35], are then confirmed when Wagner’s effect is neglected. These
results are extended to the case when Wagner’s effect is taken into account, and the results of Pi et al. [2] are
confirmed.

As the case of the follower radial load (Nikolai’s problem) is a fully intrinsically non-conservative problem,
the dynamic approach is also used to calculate the instability load. The governing equations for out-of-plane
vibrations of circular arches under radial loads are then derived with the incorporation of Wagner’s effect.
A rigorous proof that no flutter bifurcation may occur for sufficiently small values of arch opening angle is
given (aop). In this case, although this problem is intrinsically a non-conservative problem, it can be classified
by Leipholz as a conservative system of the second kind [4,51]. Flutter instabilities may appear for larger
values of the arch opening angle, but flutter cannot occur before divergence for the parameters of interest
(those for practical civil engineering applications). A simple closed-form solution of the flutter load is given for
the semi-circular arch. It is also shown that Wagner’s effect significantly affects the flutter load in the case of
flutter bifurcation.

Therefore, it is concluded that the dynamic approach necessarily leads to the same result as the static
approach, even in the non-conservative case. Furthermore, Wagner’s term generally has no influence on the
buckling load (divergence load) in case 3 (non-conservative follower loading). Nikolai’s buckling load,
obtained 90 years ago, still remains valuable for this undamped non-conservative problem, even if the
introduction of damping could strongly affect these results (see, for instance, Ref. [22] and more recently,
Refs.[54,55]).
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