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Fracturing of ice under compression creep 
as revealed by a m ultifractal analysis 

J6r6me Weiss and Michel Gay 
Laboratoire de Glaciologie et G6ophysique de l'Environnement, UPR CNRS 5151, St Martin d'H•res, France 

Abstract. Fracturing of freshwater granular ice up to failure under uniaxial compression creep 
was investigated from series of interrupted creep tests and from a multifractal analysis of the 
corresponding fracture patterns. At the early stages of damage corresponding to primary and 
secondary creep, the fracturing process is dominated by the nucleation of microcracks from stress 
concentrations within the material (unlike rocks, artificial freshwater ice does not contains starter 
flaws). Because of the crack nucleation mechanisms, the microstructure of the material (e.g., the 
nonfractal grain size distribution) strongly influences the organization of fracturing which is 
therefore nonfractal. As fracturing proceeds during tertiary creep, a hierarchical (fractal) 
organization of the fracturing emerges progressively over a wider scale range. At failure, this 
fractal organization is fully developed without detectable lower or upper bound, and the role of 
the initial microstructure has completely disappeared. Similarly, cracks are preferentially oriented 
along the compression axis at the early stages of damage, but this anisotropy vanishes as failure is 
approached. The simultaneity between the onset of tertiary creep and the emergence of fractal 
organization suggests that the acceleration of the deformation during tertiary creep is due to the 
cataclasis of a material which becomes granular. An important consequence of the fractal 
organization of fracturing is that homogenization procedures, as well as damage mechanics, 
developed to study the behavior of damaged materials, cannot be used to describe tertiary creep 
and failure. 

1.Introduction 

Offshore structures located in polar regions experience important 
forces when a moving sea-ice cover or icebergs crush against them. 
This problem has given rise, in the last 15th years, to an abundant 
literature about damage, fracturing and failure of ice under 
compressive loading. The dependence of the compressive failure 
stress on temperature, strain rate or confinement has been 
established for different kinds of ice (see e.g. Schulson [1990] and 
Weiss and Schulson [1995] for granular ice or Schulson and 
Nickolayev [1995] for columnar saline ice). Note that iceberg ice 
(i.e. glacier ice) is granular, whereas sea ice is columnar. At high 
strain rates (z10 '3 s 'l) and low confinement, the failure, which 
involves the evolution of very few cracks, has been successfully 
modeled at the laboratory scale [Schulson, 1990; Weiss and 
Schulson, 1995]. At lower strain rates (10 -7-10 '3 s 'l) and higher 
confinement, the situation is more complex: purely viscoplastic 
processes (dislocation creep [see Duval et al., 1983]) and damage 
mechanisms cooperate, and failure involves a large number of 
interacting fractures. This strain rate range is of particular practical 
importance since it corresponds to the conditions of ice/structure 
interaction encountered in arctic offshore engineering and to the 
situation where the compressive strength and so the forces on the 
structure are a maximum [Schulson, 1990]. In this regime, if the 
possible crack nucleation mechanisms have been identified [Frost, 
1995], the further evolution of fracturing and the organization of 
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fracture networks leading to failure have not yet been analyzed in 
detail. This constitutes one of the aims of the present work. 

On the other hand, the fracturing processes of other geomaterials 
(i.e., essentially rocks) have been largely studied from the 
laboratory scale to the Earth's crust scale, and one major 
preoccupation was to relate large-scale features to small-scale 
(laboratory) observations. The self-similar nature of fracturing and 
faulting (i.e. the appearance of identical features at different scales) 
has been claimed both for laboratory experiments and field 
observations. This scale invariance can be expressed by power law 
distributions of fracture or fault lengths (see, e.g., Main [1996], 
Grasso and Bachelery [1995] or Cowie et al. [1995]) and by a 
fractal geometry of fracture networks (see, e.g., Davy et al. [ 1990] 
or Velde et al. [1993] for laboratory experiments and Turcotte 
[1992], Barton and Larsen [1985] or Ouillon et al. [1996a] for 
field observations). It has been recently recognized that a 
multifractal analysis is necessary to characterize completely the 
complexity of fracture or fault patterns [Ouillon et al., 1996a], and 
particularly their clustering properties. These clustering properties 
can be used as an indication of localization of damage and 
deformation. 

Models of fracturing and fragmentation of rocks have been 
proposed which involve scale-invariant mechanisms of fracturing 
[Allbgre et al., 1982; Turcotte, 1986] and lead to power law 
distributions and fractal geometry [see, e.g., Korvin, 1992]. King 
and Sammis [1992] argued that the fractal properties of rock 
fracturing result "naturally" from basic mechanical mechanisms 
such as crack nucleation from initial flaws, buckling of slabs, 
spalling, and interactions between particles of different sizes in a 
granular medium. However, they considered the evolution of 
damage and fracturing within materials which already contain a 
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fractal distribution of initial defects. These defects act as starter 

defects for further fracturing. The importance of starter flaws on 
fracturing is usually supposed for rocks which contain 
microfractures, pores, and/or joints. 

The aim of the present work was to follow step by step the 
fracturing of ice under compressive loading conditions (creep 
tests) where extensive viscoplastic deformation is associated with 
fracturing of the material. The complexity of the fracture patterns 
was analyzed with a multifractal formalism [Ouillon et al., 1996a] 
previously used to study rock fracturing. Within this context, we 
think that ice can be considered as a model material for the study of 
fracturing of other geomaterials like rocks, for three main reasons: 
(1) ice transparency and large grain sizes allow us to easily observe 
fracture patterns on thin sections of the damaged material, (2) the 
microstructure of the material (e.g., the grain size distribution) can 
be controlled during the elaboration of the material in the laboratory 
[Pld et al., 1996], and (3) unlike rock samples, artificial freshwater 
ice does not contain initial microfractures or pores. It is therefore 
interesting to follow the fracturing process of the material without 
making hypotheses on an initial distribution of flaws. 

2. Experimental Procedure 

10 mm 
Figure la. Grain boundaries map of a typical sample of granular ice 

Samples of freshwater granular ice with equiaxed, randomly 
oriented grains (so-called granular ice) were prepared from 
presieved fragments of ice, using a variation of the method 
described by Hallam et al. [1987]. A cylindrical mold was filled 
with presieved, calibrated ice particles. Then we added pure 
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WEISS AND GAY: FRACTURING OF ICE 24,007 

0.012 

0.01 

0.008 

0.006 

O.OO4 

0.002 

2.0E-04 

1.5E-04 

-1.0E-04 .•_ 

* 
."'i•'"'-•-," '•' , • I t O.OE+00 

O• 100 200 300 400 500 600 Time (s) 

Figure 2. Axial strain (thick line) and axial strain rate (thin line) versus time for an uniaxial compression creep test 
on granular ice (T- -10øC; o]= 3.1 MPa). Arrows A' to E correspond to the six interrupted tests. Arrow F 
corresponds to the failure of the sample. 

distilled water at 0øC and pumped down to 0.1 torr to remove resolution which can be estimated to be better than 0.1 mm. This 
bubbles. The mold was then cooled from the bottom to freeze the means that all fractures or branches longer than 0.1 mm have been 
mixture in about 24 hours. This allows partial control of the mapped. The fracture patterns of five interrupted tests (A to E; 
distribution of grain sizes. All the samples used in this work noted by arrows on Figure 2) on transversal and longitudinal thin 
presented the same grain size distribution (Figures la and lb) with sections are represented on Figures 3 and 4, respectively. For a 
a single maximum at d• 1-1.5 mm. This distribution can be given stage, transversal and longitudinal sections were performed 
reasonably well fitted by a Weibull distribution (see Figure lb). on the same sample. The maps of Figure 3 represent about 25% of 
This ice is an artificial model of natural iceberg ice. The grain size the entire transversal section of the specimens, around the central 
d ofagrain was determined from [Underwood, 1970] axis. Note that this method of analysis of the fracturing is 

A 
d = n -- (1) 

P 

where A and p are the grain area and grain perimeter, respectively, 
measured from image analysis of thin sections of ice under cross 
polarizer. The insert in Figure lb shows the distribution in a log-log 
plot. Scale invariance is not observed: the microstructure of the 
material is not fractal. 

Seven Uniaxial compression creep tests (constant applied stress), 
interrupted at different stages of deformation, were performed at 
-10øC with a compression stress of 3.1 MPa on cylindrical samples 
(R•35 mm; L:150 mm). A typical strain-time curve of an 
experiment extended up to failure is represented on Figure 2. Figure 
2 also shows at which points the other experiments were interrupted 
(before failure). Under such loading conditions, extensive 
viscoplastic deformation resulting from dislocation motion 
(dislocation creep [Duval et al., 1983]) is associated to the 
fracturing of the material. Qualitative and nondestructive 
observations of the sample during a test revealed that microcracking 
started after an axial strain of about 10 .4 , then densifted within the 
entire sample throughout secondary and tertiary creep. Failure 
occurred on an highly damaged sample along a "shear fault" not 
well defined and with the ejection of fragments of different sizes. 

After testing, transversal (-Ol) and longitudinal (//o]) thin 
sections (thickness of 2 mm) of damaged ice were prepared and 
observed under transmitted natural light through a binocular 
microscope in order to reveal the fracture patterns. This gives two- 
dimensional representations of the fracture networks with a 

destructive: the different stages correspond to similar but different 
samples submitted to the same compression stress. 

Before presenting a detailed analysis of these patterns, some 
general observations can be made: 

1. After an axial strain of 7.2x 10 's (stage A' on Figure 2), no 
fractures were visible on transversal nor on longitudinal thin 
section. Then fracture density, measured on the maps of Figures 3 
and 4 as the cumulative length of fracture traces per square 
millimeter, increased regularly with axial deformation (Figure 5). 

2. At the beginning of the damage process, i.e., stages A and B 
of Figures 3 and 4, which correspond to secondary creep (see 
Figure 2), fractures are isolated. In other words, we are under the 
percolation threshold (here the word "percolation" is only used in 
its geometric meaning). 

3. At stage C, which corresponds to the beginning of tertiary 
creep, the fracturing pattern becomes more complex. We are close 
to the percolation threshold. The fracture network defines isolated 
"grains" on transversal as well as longitudinal planes. Then the 
network becomes denser, but no obvious localization process can 
be observed, even at stage E, close to failure. 

4. At the same stage of damage, the fracture density is slightly, 
but systematically, lower on longitudinal thin sections than on 
transversal thin sections (Figure 5). 

3. Anisotropy of Fracture Patterns 
Owing to the uniaxial compression loading applied to the 

samples and the random orientation of the grains within granular 
ice, one expects an isotropy of fracture patterns observed on 
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Figure 3. Fracture patterns on transversal sections of five successive interrupted compression creep tests, noted by 
arrows (A to E) on Figure 2 (T = -10øC; o•= 3.1 MPa). 
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Figure 4. Fracture patterns on longitudinal sections of five successive interrupted compression creep tests, noted by 
arrows (A to E) on Figure 2 (T= - 10øC; o t-3.1 MPa). 
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Figure 5. Fracture density (cumulated length per mm 2) versus axial 
strain. Circles are transversal thin sections (Figure 3), and triangles 
are longitudinal thin sections (Figure 4). 

transversal thin sections. On the other hand, if the fracturing process 
reflects the applied boundary conditions, an anisotropy of the 
patterns on longitudinal thin sections is expected. Models of 
initiation and propagation of individual fractures under compression 
and low confinement in an elastic medium predict fractures 
preferentially aligned along the maximum principal stress axis 
[Ashby and Hallam, 1986]. Whether or not this is verified when 
significant inelastic deformation occurs and when the fracture 
pattern becomes complex and percolated was checked during this 
work. 

In order to evaluate quantitatively the level of anisotropy of a 
fracture network, each map of Figures 3 and 4 was covered by a 
grid of vertical and horizontal lines separated by 1 mm. Then the 
number of intercepts with fractures, per unit length of test line, was 
calculated for vertical lines (N•,) and horizontal lines (N•). The ratio 
R, defined as 

R - N•, 
(2) 

characterizes the level of anisotropy of the network. R=I for an 
isotropic pattern and tends toward 0 (or +**) for strongly 
anisotropic patterns. On transversal thin sections (Figure 3), 

horizontal and vertical axes were arbitrary. On longitudinal sections 
(Figure 4), the vertical axis was the compression axis. Therefore 
models developed for brittle solids [Ashby and Hallam, 1986] 
would predict small values of R (<1) on longitudinal sections for 
uniaxial compression loading. The results obtained for the maps of 
Figures 3 and 4 are summarized on Figure 6. On transversal thin 
sections, R is close to 1 whatever the axial strain. This is in 
agreement with the boundary conditions applied (uniaxial 
compression). On longitudinal thin sections, the fracture network is 
anisotropic at the early stages of damage, but this anisotropy 
decreases as fracturing proceeds. During tertiary creep (stages D 
and E), this anisotropy vanishes almost completely. 

4. Distribution of Fracture Lengths 

Power laws N(L)~L -ø have been proposed to describe the 
distribution of fracture lengths in rocks, from a millimetric to a 100 
kilometric scale [see, e.g., Main, 1996], where N(L) is the number 
of fractures with a length greater than L. Such power law 
distributions have been presented as proofs of a fractal organization 
of the fracture process [Turcotte, 1992] and related to the physical 
mechanisms of fragmentation involving scale invariance [Turcotte, 
1992]. Scale invariance is generally limited to a finite range, and the 
bounds, corresponding to breaks in slope of the power law 
distributions, can reveal internal characteristic scales or the size of 
the mechanical system [Grasso and Bachelery, 1995]. 

Figures 7a and 7b represent the cumulative distributions of the 
lengths of fracture traces at stage A on longitudinal and transversal 
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Figure 6. Evolution of the anisotropy of the fracture patterns 
(characterized by the ratio R; see text for more details) with axial 
strain. Circles are transversal thin sections (Figure 3), and triangles 
are longitudinal thin sections (Figure 4). 
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Figure 7. Cumulative distributions of fracture lengths at stage A (a) 
on longitudinal thin section (Figure 4a) and (b) on transversal thin 
section (Figure 3a). Solid squares are uncorrected distribution and 
open squares are corrected distribution (see text for more details). 
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thin sections, respectively. On Figure 7, "fractures" are defined as 
bounded clusters of fractures (using the vocabulary of percolation 
theory). At the onset of cracking, on longitudinal thin section (stage 
A, Figure 7a), despite the small number of fractures analyzed, it 
appears that all the fracture lengths are about I mm, i.e., about or 
just below the mean grain size. At the same stage on transversal thin 
section, a power law distribution is observed on a limited scale 
range. Distributions similar to that of Figure 7b are observed at 
stage B, both on longitudinal and transversal thin sections. These 
uncorrected cumulative distributions show a systematic deviation 
from power law at large scales. This is very likely due to a finite- 
smnpling effect [Pickering et al., 1995; Ouillon et al., 1996b]. This 
effect has been corrected, using the iterative procedure proposed by 
Pickering et al. [1995]. However, the corrected distributions (see 
Figure 7b) still show a lower bound to scale invariance at about 1 
mm, probably related to the unique internal scale of the 
microstructure, i.e., the mean grain size. Very few cracks are 
smaller than the mean grain size. 

Unlike rocks, artificially grown ice samples do not initially 
contain internal microfractures. In the early stages of the damage 
process under compression, microcrack nucleation occurs from 
tensile stress concentrations. Whatever the physical mechanisms 
invoked (elastic anisotropy; grain boundary sliding, or dislocation 
pile-up), they predict microcrack lengths of the order of the grain 
size [see, e.g., Frost, 1995]. Therefore the first stage of cracking 
corresponds to a nucleation stage with fracture lengths scaling with 
the mean grain size. This way, one can easily explain the 
distribution of microcrack sizes at stage A on longitudinal section 
(Figure 7a). In agreement with the present work, Cole [1986] found 
a tight relationship between the average microcrack size and the 
average grain size during the early stages of damage of granular ice 
under uniaxial compression creep at -5øC. At stage A on transversal 
thin section (Figure 7b), as well as at stage B on longitudinal and 
transversal thin sections, a scale invariance seems to emerge above 
the mean grain size. The slope a of the corrected power law 
distributions is equal to 1 for longitudinal section at stage B and to 
0.53 for transversal sections at stages A and B (Figure 7b). These 
values are similar to those reported by Main [1996] from a 
compilation of laboratory and field data (a• 1) and by Grasso and 
Bachelery [1995] for fissure length distributions on the Piton de la 
Fournaise volcano (a•0.6-0.7). The difference in the distributions 
observed at stage A between longitudinal and transversal thin 
sections could suggest that the evolution of fracturing is, to some 
extent, "delayed" when observed along the principal stress axis, in 
agreement with the slight anisotropy of damage reported above. 

This analysis of fracture length distributions indicates that the 
early stages of fracturing are influenced by the initial microstructure 
(grain size). The organization of fracturing is therefore nonfractal, 
although scale invariance seems to emerge progressively. 

homogeneously or heterogeneously. A multifractal analysis 
[Hentschel and Procaccia, 1983] is necessary to characterize 
completely the self-similar properties of objects or measures, 
including the spatial variability and clustering properties. Ouillon 
et al. [1996a] showed that natural fracturing of the Arabian plate is 
uniform at small scales (<6 km) and multifractal at larger scales. 
The multifractal analysis was used to reveal this characteristic scale. 

On the maps of Figures 3 and 4, we performed a multifractal 
analysis of the fracture networks similar to that performed by 
Ouillon et al. [1996a], in order (1) to check the self-similar 
properties of the patterns (if any), (2) if the fracture networks are 
self-similar (fractal) within a certain scale range, to reveal the 
associated bounds, and (3) to quantify the degree of concentration 
and the clustering properties of the patterns; in other words, to try 
to follow a localization of damage as approaching failure of the 
samples. The analysis was performed using the standard box- 
counting method which consists in covering a map by a regular 
array of boxes of side I. A measure p,(l) is attached to each 
nonempty box i and defined as the proportion of fracture length 
contained in the box (see Ouillon and Sornette [1996] for more 
details). Then, the moments of order q of the measure are calculated 
from: 

%(0: ø p,(o o) 

where n(l) is the number of non-empty boxes. For self-similar 
measures, Mq(l) scales as 

Mq(l) ~ l (q-1)Dq (4) 
This defines the set of generalized fractal dimensions Dq which 
characterize the self-similar properties of the fractal object or 
measure. It has been shown [Hentschel and Procaccia, 1983] that 
Do, D•. and D 2 so defined correspond respectively to the capacity, 
information, and correlation dimensions. Note that Mo(l) is simply 
the number of nonempty boxes of size ! needed to cover the 
network and D• (information dimension) is defined as the 
proportionality coefficient between 5'.i pilog(p) and log(l): 

•,(0 log(p) ~ D• log(/) i=1 Pi (5) 

but it has been shown that Dq•D• as q• 1. As q increases, the 
moments Mq are controlled by the most densely filled boxes, and 
the dimensions Dq provide information about the most clustered 
properties of the fractal set [Lei et al., 1993; Ouillon et al., 1996a]. 
The special case Do--D•=Dq characterizes a monofractal, whereas an 
increasing difference between Do and Dq> o reveals a multifractal 
and an increasingly clustered measure. This will be used in this 
work to quantify the degree of localization during the fracturing 
process (see below). In what follows, we will limit our analysis to 

Complex fracture networks, above the percolation threshold the calculation of the fractal dimensions Do to Da. The difference 
(Figures 3c to 3e and 4c to 4e) cannot be analyzed in terms of Do-D6 will be used as an estimate of the degree of localization. 
fracture length distributions because fractures are no longer The possible bias from an irregular border geometry [Ouillon et 
isolated. Others tools are needed to describe this increasing 
complexity and to confirm or infirm scale invariance of the 
fracturing process. 

5. Multifractal Analysis of Fracture Patterns 

It has been argued that fracture or fault patterns observed in 
nature [see, e.g., Korvin, 1992] or in laboratory experiments [Davy 
et al., 1990; Velde et al., 1993] have a fractal geometry, 
characterized by a fractal dimension D, at least within a certain 
range of scales. However, a monofractal analysis gives no 
information on the way the fracture density is spatially distributed, 

al., 1996a; Ouillon and Sornette, 1996] was avoided in our 
measurements by the use of rectangular maps, exactly covered by 
the sets of squares boxes. On the other hand, bias due to finite 
sampling was more difficult to evaluate and could be especially 
significant for stages A or B with low fracture densities. To check 
this, at each stage we performed a multifractal analysis on a square 
map included in the initial map and representing about 15% of the 
initial surface. The finite-sampling bias, if any, should be larger for 
these reduced maps. The analyses on the small maps gave the same 
results as the initial maps (same dimensions; same bounds). This 
suggests that the bias was small. Working on unbiased synthetic 
fracture patterns, Ouillon et al. [ 1996a] found a lower bound for the 
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the scale range of observation, the traces of the cracks are regular, 
nonfractal. This does not give information about the spatial 
distribution of the fractures. Such information would be only 
available when observing larger maps at larger scales, probably 
above the deviation observed around 4 mm. 

Starting from stage C, at the beginning of tertiary creep, the 
situation seems to change (see Figures 9a to 9c for transversal thin 
section). At small scales, the Dq are equal to 1+0.1, as previously 
observed for stages A and B (see above). Within an intermediate, 
narrow scale range (- 0.8-1.3 mm on Figures 9a to 9c), a transition 
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Figure 8. Multifractal analysis of the fracture pattern of stage A 0.1 
(transversal thin section; Figure 3a).(a) Mo (number of nonempty 
boxes) versus box size l, (b) •, pilog(p) ("M/") versus box size l, 
and (c) M2 versus box size/.The slopes of the three diagrams give • 0.01 
Do=Di=D2=l+O.05 

uncertainty on the estimation of generalized fractal dimensions of 
about 0.05. 

Figures 8a to 8c represent the relationships between Mo(l), •, 
pilog(p) ("Mi(I)") and M2(l), respectively, and the boxes' size l, for 
the fracture network of stage A on transversal thin section (Figure 
3a). A linear behavior is observed up to a box size l of about 2-4 
mm. A deviation from linearity is observed above. The dimensions 
Do to D6 calculated on the linear part are all equal to 1 +0.05. This 
situation is unchanged at stage B and on longitudinal section (stages 
A and B; graphs not represented). Dq=l simply means that within 
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Figure 9. Multifractal analysis of the fracture pattern of stage C 
(transversal thin section; Figure 3c).(a) Mo (number of nonempty 
boxes) versus box size l, (b) •i pilog(p) ("Mi") versus box size l, 
and (c) M2 versus box size/.The fracture pattern is multifractal 
(Do>Di>D2>Dq>2 , 1) above the threshold scale/c=1.3 mm. 
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Table 1. Generalized Fractal Dimensions for Scales Larger Than 
, 

STAGE Type D(, D• D2 D3 D4 Ds D6 Do-D6 

Trans. 1.99 1.95 1.92 1.89 1.88 1.86 1.85 0.14 

Longit 1.97 1.85 1.79 1.75 1.72 1.70 1.69 0.28 

Trans. 1.99 1.94 1.91 1.89 1.87 1.86 1.84 0.15 

Longit 1.87 1.77 1.73 1.70 1.68 1.66 1.64 0.23 

Trans. 2.00 1.97 1.95 1.93 1.92 

E 

Longit 2.00 1.98 1.96 1.95 1.93 

Trans., transversal thin section, and Longit'., longitudinal thin section. 

1.91 1.90 0.10 

1.92 1.91 0.09 

behavior is observed. Above a critical scale l• (1.3 mm on Figures 
9a to 9c), a fractal fracture pattern is observed, i.e., Mq scale as 
l (q-ODq with Dq½ 1. Only this "large-scale" regime gives information 
about the structure of the network. Note that l• is defined here as 
the lower bound for scale invariance, i.e., the boundary between the 
intermediate- and the large-scale regimes. For a given stage, the 
value of l, is the same whatever q. Similar results are observed for 
stages D and E as well as on longitudinal thin sections at stages C, 
D, and E (graphs not represented). The dimensions Do to D6 
calculated on transversal as well as longitudinal thin sections, for 
stages C, D, and E, are summarized on Table 1. Very similar 
spectrums of fractal dimensions Dq are observed for stages C, D, 
and E, on transversal thin sections. The slow decrease of Dq with 
q indicates that fracture networks are slightly multifractal and the 
values of Do, close to 2, show that the fracture networks are close 
to be dense in the plane. The very slight differences observed for 
Do-D6 at different stages of deformation do not reveal an increasing 
clustering of damage as fracturing proceeds. These differences are 
below the lower bound of uncertainty for the calculation of the 
dimensions (0.05 [Ouillon et al., 1996a]). On the other hand, an 
important difference exist between the stages C, D, and E: the 
critical scale l•. is decreasing with increasing axial strain, as 
fracturing proceeds (Figure 10). Since l•. is decreasing as fracturing 
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Figure 10. Evolution of the threshold scale l• with the axial strain. 
The solid circles are determined from the multifractal analysis of 
transversal thin sections. The solid triangles are determined from 
the multifractal analysis of longitudinal thin sections. For stages A 
and B the given values of l•. are low estimates (see text for details). 
The open circle corresponds to an upper bound for l•. determined 
from the distribution of fragment sizes at failure (see Figure 11). 

proceeds, this lower bound to scale invariance cannot be related to 
the resolution limit of the analysis, which is unchanged for the 
different levels of damage. The multifractal analysis performed on 
the longitudinal thin sections of the Figure 4 led to a similar 
conclusion. Compared with the transversal thin sections, the fractal 
dimensions are very similar (Table 1), although the multifractal 
character seems slightly more pronounced at stages C and D. One 
other difference appears: the critical length l•. is slightly larger on 
the longitudinal plane than on the transversal plane (see Figure 10). 
Once again, the evolution of fracturing seems delayed on the 
longitudinal plane compared to the transversal plane. 

Finally, coming back to stages A and B, one can suspect the 
deviation observed at large scales to be actually the intermediate, 
transition regime toward a large-scale regime. This last regime is 
inaccessible at these stages within the scale range explored. 
However, the deviation from linearity gives a low estimate for l•., 
which is significantly larger at these early stages of fracturing than 
later on (Figure 10). 

6. Discussion and conclusions 

The scenario of the fracturing process of ice under compression 
creep can now be reconstituted. 

Before loading, the initial material does not contain internal 
flaws, like microfractures, pores, or joints. Upon loading, the elastic 
and plastic anisotropy of the grains generates strain 
incompatibilities between neighboring grains of different 
crystallographic orientations. Consequently, internal stress 
concentrations develop within the ice (see Weiss et al., [1996] for 
elastic anisotropy and Duval et al., [1983] for plastic anisotropy) 
and are responsible for microcrack nucleation. Within the strain rate 
range of interest for the present work, the role of the plastic 
anisotropy prevails. In granular ice with randomly oriented grains, 
the peaks of the internal stress field are uniformly distributed and 
not clustered. One can therefore expect a uniform spatial 
distribution of microfractures at these early stages of deformation, 
corresponding to primary and secondary creep. Unfortunately, it 
was impossible to check this precisely at scales larger than 10 mm 
(see above). On the other hand, it was shown that fracture traces 
were regular (Dq=l), in agreement with independent nucleations 
events and therefore fractures shapes weakly influenced by the 
others fractures. The initial microstructure imposes a nonfractal 
fracture pattern (see Figure 7a) with a characteristic scale 
corresponding to the mean grain size. However, as fracturing 
proceeds during secondary creep, a hierarchical organization 
emerges progressively, as revealed by the distributions of fracture 
lengths (Figure 7b). This underlying organization suggests that 
fractures start to interact between each other through their 
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associated stress fields. Before the onset of tertiary creep, this 
organization is limited to a small-scale range with a lower bound 
corresponding to the mean grain size. At this stage, the initial 
microstructure still governs largely the fracturing process. On the 
other hand, at these early stages of damage, fracture patterns are 
slightly anisotropic (Figure 6). Fractures are preferentially oriented 
along the compression axis. This indicates that the nucleation and 
the early stages of propagation of the fractures are also partly 
influenced by the remote uniaxial stress field. 

The fracture network percolates at the onset of tertiary creep. 
Strictly speaking, at stage C, we observed a percolation of the traces 
of the fractures on a plane, both on transversal (Figure 3c) and 
longitudinal (Figure 4c) thin sections. The 3d percolation occurred 
before, between stages B and C. As stated previously, starting from 
stage C, the fracture networks define isolated "grains" on 
transversal as well as longitudinal planes. This suggests that some 
isolated fragments are already present within the damaged material. 
However, a rigorous stereological analysis is here impossible to 
perform to reconstitute the 3d network from 2d images, without 
making several simplifying hypotheses [Underwood, !970]. The 
reconstitution of 3d fracture networks would need the realization of 

a series of parallel thin sections. From stage C, the multifractal 
analysis reveals a multifractal fracture pattern above a critical scale 
lc. This fractal self-organization of the fracturing indicates that 
fractures interact between each other. The small degree of 
multifractality shows that fractures are slightly clustered. This 
situation does not change significantly up to stage E, and so one 
cannot detect an increase of the localization of damage up to this 
stage. Because of the very high level of fracturing, it was 
impossible to analyze thin sections of damaged ice after stage E. 

compression creep of ice did not revealed any significant 
localization up to an advanced stage of tertiary creep. Whether this 
difference is due to a different evaluation of the fracturing (AE 
versus direct observation), different material properties, the 
confining pressure applied during Hirata et al.'s experiments, or the 
absence of starters flaws in ice remains a question. 

At the onset of tertiary creep, the scale invariance of the fracture 
network ceases below a lower bound lc of about 1.3 mm (i.e., the 
mean grain size). The initial microstructure still influences the 
fracturing process. It is worth noting here that Kusunose et al. 
[ 1991] observed similar grain size effects on the fractal structure of 
AE hypocenters during constant loading rate compression of 
granites. As shown on Figure 10, l,. decreases as fracturing 
proceeds, which means that the fractal organization of the 
fracturing spreads over a larger scale range (toward the small 
scales). As noted above, thin section analyses were impossible to 
carry out after stage E. However, on a test loaded tip to failure, we 
collected all the ice fragments after testing, except the two main 
blocks on each part of the fault, and we determined their size 
distribution by successive sieving. This distribution is represented 
on Figure 11. A power law distribution is observed on the full scale 
range (3 orders of magnitude) without detectable lower bound 
above the resolution limit of 0.1 min. Therefore, at failure, the 
fracturing is fully self-organized, without characteristic length, and 
the role of the initial microstructure has completely disappeared. 

This scenario is valid for transversal as well as longitudinal 
planes. However, the evolution of fracturing seems delayed along 
a longitudinal plane compared to a transversal plane. Moreover, the 
slight anisotropy observed at the early stages of deformation 
decreased as fracturing proceeds and vanishes during tertiary creep. 

Axial strain at stage E represents more than 60% of the strain at The fragmentation of the material appears as isotropic, despite the 
failure. The multifractal analysis presented shows that the anisotropic boundary conditions applied. 
localization into a "shear fault" occurs later than 60% of the failure From this general scenario, the following main conclusions can 
strain. It is interesting to compare the present results to those be drawn. A hierarchical (fractal) organization develops during 
presented by Hirata et al. [1987] from acoustic emission (AE) fracturing of granular ice under compression creep. This 
measurements. They calculated the correlation dimension D2 of the organization emerges from an initial nonfractal situation imposed 
AE hypocenters during a compressire creep test on granite with by the microstructure of the material. It is therefore not necessary 
confining pressure and found a significant decrease ofD 2 from 2.75 to presuppose a fractal distribution of internal starter flaws to 
in primary creep to 2.25 in tertiary creep, arguing for a progressive explain the hierarchical organization of the fracturing in 
localization of damage as approaching failure. The present geomaterials like rocks. This is in agreement with the numerical 
multifractal analysis of fracture patterns carried out during modeling of Cowie et al. [1995], who concluded that a preexisting 
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Figure 11. Cumulative distribution of fragment sizes for a sample loaded up to failure (T= -10øC; o i= 3.1 MPa). The 
slope of the diagram gives a "fractal dimension" D=2.15 
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structure is not required to produce a fractal fault pattern. The 
loading history imposed to the ice samples in this study was pretty 
simple (constant uniaxial compression stress), and yet a fractal 
organization emerges spontaneously since the onset of tertiary 
creep. It can therefore be considered as a strong "attractor" of the 
fracturing process. Note that the influence of the anisotropy of the 
applied stress field on this organization also vanishes at failure. 

The fractal organization of fracturing indicates that scale- 
invariant processes of fragmentation take place during tertiary 
creep, similar to those guesstimated for the fragmentation of rocks 
[Korvin, 1992]. One can note here that the "fractal dimension" D of 
the fragments of ice within the fault gouge at failure, determined 
from the slope of the power law distribution N(>s)-s 4• on Figure 
11, where N(>s) is the number of fragments of size larger than s, 
is equal to 2.15, in very good agreement with values of D reported 
for fragmented granites (between 2.1 and 2.5, [Korvin, 1992]). The 
simultaneity between the onset of tertiary creep and the emergence 
of a fractal organization and of isolated fragments strongly suggests 
that the acceleration of deformation during tertiary creep is due to 
the cataclasis of a material which becomes granular. Mechanisms 
such as rolling, crushing of fragments, buckling of slabs, have been 
proposed to explain the deformation of fault gouges [King and 
Samntis, 1992], and are probably responsible, at least partially, for 
the tertiary creep of fractured ice. Note that the fracture networks 
and fragment shapes within natural fault gouges loaded under shear 
[Santntis et al., 1987] do not display anisotropy, in agreement with 
our observations for the latest stages of fracturing of ice. 

If all the fractures of the network participate in the fragmentation 
of the ice, a network with a fractal dimension D0 close to 2 in two 
dimensions, as observed here (and therefore close to 3 in three 
dimensions), should theoretically results in an exponent D close to 
3 [see, e.g., Korvin, 1992], much larger than the observed value of 
2.15. This difference could be explained as follows: only a fraction 
of the fractures observed on thin sections, possibly the more 
opened, participate in the fragmentation. Unfortunately, the opening 
of the fractures was impossible to evaluate during this work. The 
network of "significant" fractures would be less dense than the 
entire network, with possibly its own multifractal structure, 
different from the structure of the total network. 

A fractal set implies a scale invariance and the appearance of 
identical features at different scales. In real world, this scale 
invariance is generally bounded [Lei et al., 1993; Grasso and 
Bachelery, 1995]. In the present case, the lower bound lc, initially 
related to the microstructure of the material, decreased during the 
fracturing process and became undetectable at failure, i.e., below 
the resolution limit of 0. i mm. Our analysis did not reveal any 
upper bound for scale invariance, up to a scale of about 50 mm (see 
Figure 11). One can wonder over which scale range this fractal 
organization of ti'acturing holds. Matsushita [ 1985], cited by Korvin 
[1992], reported a power law distribution for the sizes of pieces of 
drift sea ice in the Okhotsk Sea with a "fractal dimension" D=-2.16, 
in remarkable agreement with the value of D obtained at failure in 
this study (D=2.15). This strongly suggests the fractal organization 
of fracturing of ice to be sustained over a much larger scale range 
than the one explored during laboratory experiments. This is also in 
agreement with the observation of very similar cracking features 
(and possibly similar cracking mechanisms), such as wing cracks, 
at the laboratory Scale and in the field [Schulson, 1997]. Columnar 
sea ice [Matsushita, 1985] and granular freshwater ice (this work) 
have very different microstructures. Yet, they present very similar 
fragmentation patterns. This confirm that a fractal organization is 
a strong attractor of the fracturing/fragmentation process. 

Finally, as already stressed by Davy et al. [1990], an important 
consequence of the fractal organization of fracturing of ice is that 

the homogenization procedures developed to study the behavior of 
damaged materials are useless during tertiary creep. These 
procedures require the definition of an elementary volume 
representative of the behavior of the full body. Because of the 
fractal geometry of the fracture networks, without characteristic 
internal scale, such an elementary volume cannot be defined. 
Similarly, damage mechanics, often applied to ice under 
compression [see, e.g., Xiao and Jordaan, 1996], and which 
suppose a uniform distribution of damage, is not valid for tertiary 
creep and failure. Instead, renormalization approaches [Alldgre et 
al:, 1982; Turcotte, 1992] would be more appropriate but need to be 
refined and completed before to be useable to predict field-scale 
data from laboratory experiments. 
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