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4 Laboratoire de Physiologie de la Perception et de l’Action, Collège de France, CNRS, Paris, France

Abstract

In this paper, we study the collaboration of perception and action representations involved in cursive letter recognition and
production. We propose a mathematical formulation for the whole perception–action loop, based on probabilistic modeling
and Bayesian inference, which we call the Bayesian Action–Perception (BAP) model. Being a model of both perception and
action processes, the purpose of this model is to study the interaction of these processes. More precisely, the model
includes a feedback loop from motor production, which implements an internal simulation of movement. Motor knowledge
can therefore be involved during perception tasks. In this paper, we formally define the BAP model and show how it solves
the following six varied cognitive tasks using Bayesian inference: i) letter recognition (purely sensory), ii) writer recognition,
iii) letter production (with different effectors), iv) copying of trajectories, v) copying of letters, and vi) letter recognition (with
internal simulation of movements). We present computer simulations of each of these cognitive tasks, and discuss
experimental predictions and theoretical developments.
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Introduction

This paper concerns the study of the cognitive processes

involved in perception and action, and, more precisely, in the tasks

of reading and writing. Although these are ubiquitous in everyday

life, there is no consensus as to the principles and processes

underlying them.

More precisely, we would argue that these dual tasks of reading

and writing have, surprisingly, seldom been studied jointly.

Although much recent evidence outlines their interaction, using

both behavioral studies [1–4] and neuroimaging studies [5,6],

most previous studies have focused on either models of movement

production or systems of handwriting recognition.

Studies of human motor control, for instance, have commonly

focused on open-loop control; that is, they have considered tasks

where perceptive feedback was suppressed, or highly controlled

[7–9]. However, even though it is intuitive that drawing a single

letter can be performed in an open-loop manner, the consequent

readability of the produced trajectory has never been taken into

account.

Purely sensory models usually describe letters in some image-

based space, which might, in turn, be difficult to use as a basis for

movement planning and production [10,11]. This is a common

and justified approach in the case of the design of industrial

systems dealing, for instance, with optical character recognition

(OCR). However, it severely limits the plausibility of these

methods as viable models of the human cognitive systems involved

in reading and writing.

We argue that most of the above approaches are hemiplegic in

nature; we thus propose studying reading and writing as parts of a

complete perception and action loop (see Fig. 1).

In this context, we develop and present a mathematical model of

this perception–action loop. It is based on a probabilistic framework.

More precisely, we apply the Bayesian Programming methodology

[12,13], in which complex models are built using probability

distributions and their combinations, and in which Bayesian inference

is systematically used to solve and simulate cognitive tasks. We call

our model the Bayesian Action–Perception (BAP) model [14].

In this model of perception and action, it is possible to study the

recognition of letters and their production, and the interaction

between perception and action. The first side of this interaction

concerns the influence that the prediction of future perceptions has on

the current choice of action: this is the classical problem of modeling

closed-loop control, which has already received a lot of attention. We

thus focus instead on the second side of this interaction, that is, we are

interested in the influence of motor knowledge on perception. To

capture this influence, the BAP model includes an internal motor

simulation loop, which may be recruited in perception tasks.

We will show that the BAP model solves a wide variety of

cognitive tasks related to reading and writing. We simulate six

cognitive tasks: i) letter recognition (purely sensory), ii) writer

recognition, iii) letter production (with different effectors), iv)
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copying of trajectories, v) copying of letters, and vi) letter

recognition (with internal simulation of movements).

As our goal is the study of the interaction of action and

perception, we restrict ourselves to the case of isolated letters to

limit lexical, semantic and other top-down effects related to the

global perception of words. Furthermore, we treat the case of

online recognition, where the presented trajectories contain both

spatial and sequence information. In other words, we consider

perception tasks where the letter is perceived as it is being traced.

The remainder of this paper is structured as follows. First, we detail

the founding hypotheses of our approach and define the overall

structure of the BAP model. We then give the corresponding

mathematical formulation, using the Bayesian Programming meth-

odology. Once the model is defined, we show how it is used to solve

our six cognitive tasks automatically using Bayesian inference.

Methods

BAP model: assumptions and model architecture
The first and main hypothesis we make is that an internal

representation CL is associated with each letter L and each writer

W . Therefore, we encode, using terms in the form P(CLjLW ),

probability distributions for the representation of letters, given the

letter and writer under consideration. Moreover, we assume that

these representations act as pivots between perception (V , for

vision) and action (P, for production). In other words, perception

and action are assumed to be independent, conditionally on the

knowledge of the representation of a letter CL. This can be seen as

the probabilistic translation of the common-coding approach to

perception and action [15]. This yields the following joint

probability distribution over this set of variables:

P(LWCLV P)

~P(L)P(W )P(CL jLW )P(V jCL)P(P jCL):
ð1Þ

This describes the overall architecture, and the heart of our model.

To detail its definition and structure further, we make four main

hypotheses.

N There are two connected internal representations of letters.

N Letters are encoded in a Cartesian workspace.

N Letters are encoded by sequences of via-points (set at cusps and

points of the trajectory where the tangent is either vertical or

horizontal).

Figure 1. General structure of the BAP model. Handwriting and reading are studied as a perception–action loop.
doi:10.1371/journal.pone.0020387.g001

Bayesian Action-Perception Computational Model
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N The motor system influences perception via internal

simulation of movements.

Two connected internal representations of letters
Should an internal representation be common to perception

and action? This has been widely studied in the cognitive science

literature, in particular in the speech perception community,

where purely auditory theories of perception have been long

debated. For instance, the motor theory of speech perception

[16,17] claims that perceiving speech amounts to identifying

vocal tract gestures rather than sound patterns. In this case, it is

assumed that there is a single internal representation, shared by

perception and action, that is purely motor in nature. On the

other hand, the Perception-for-Action-Control Theory (PACT)

[18] proposes that, instead of a single representation, which has

to be either perceptual or motor, there are two linked internal

representations. These perceptual and motor representations then

constrain each other as they are acquired together through

experience.

In the BAP model, we assume, as in PACT, that there are two

distinct representations of letters: CLV is the (visual) perceptual

representation, and CLP is the (production) motor representation

(see Fig. 2). During computations, this allows them to be activated

with different values simultaneously. However, they are encoded

in the same space and in the same manner, as in the common-

coding approach.

We thus refine the decomposition of the joint distribution as

follows:

P(LWCLV CLPV P)~P(L)P(W )P(CLV jLW )

P(CLP jLW )P(V jCLV )P(P jCLP):
ð2Þ

Letter encoding in the Cartesian workspace
If you were asked to write down your name, you would

probably consider it a mundane task. You could surely perform

it easily in a variety of circumstances, like thinking about

something else, or looking elsewhere. But what about writing

your name with your foot, in the sand or snow, for instance? It

turns out that this, too, is rather easy. The performed trace

would be somewhat distorted from your handwriting, but, even

without any training in ‘‘footwriting’’, your name would be

readable. Moreover, the characteristics of your handwriting

would also be found and be recognizable in the trajectory you

perform with your foot.

This effect is known as motor equivalence [19–21]. It has been

used as evidence that internal representations of movements

might be independent of the effector usually used to perform

them.

In the BAP model, we thus assume that the internal

representation of letters is described in the task space: i.e.,

the Cartesian space or workspace. Fig. 3 specifies the space of

each submodel. We add the effector model P(EjP) into the

model:

P(LWCLV CLPV PE)~P(L)P(W )P(CLV jLW )P(CLP jLW )

P(V jCLV )P(P jCLP)P(E jP):
ð3Þ

Letter encoding by sequences of via-points
There is a strong dichotomy in the literature between repre-

sentations of letters that are tailored for handwriting recognition and

those tailored for handwriting production. These two domains have

given rise to types of letter representations that are very different in

nature.

Firstly, consider handwriting recognition. Most approaches to

character recognition have focused on probabilistic models and

neuromimetic methods [10,11], which consider various kinds of

features of letter trajectories. These can be local features along the

trajectory (peak, loop, pen-up) or global features, taking into

account characteristics of the whole letter shape (height/width

ratio, center of mass, etc.). Such varied features can be successfully

combined using Hidden Markov Models (HMM) [22–24] or

neuromimetic methods, based on artificial neural networks [25].

The most successful methods, which usually are combinations of

these techniques, achieve low misclassification rates (between 5

and 10%).

Secondly, let us turn to handwriting production. Many models

have already been proposed to tackle the problem of handwriting

generation. For instance, in the classical mass–spring model,

handwriting arises from orthogonal oscillations in the plane of the

writing surface [7].

Another, large class of models considers trajectories to be

summarized by a small set of points in the 2D plane. These can be

outside of the trajectory, as in classical spline interpolation, and are

then usually called control points, or are restricted to being along

the trajectory, and are then usually called via-points.

For instance, trajectories can be assumed to be the concate-

nation of elementary strokes [8]. Handwritten trajectories are

then planned using simple segments, with a repertoire of four

Figure 2. The representation of letters is the pivot between
perception and action. The perception model links the internal
representation with the read trajectory. The action model links the
internal representation with the written trajectory. Variables: L letter, W
writer, CLV perceptive internal representation, CLP motor internal
representation, V read trajectory, P generated trajectory. The
corresponding joint probability distribution is defined Eq. (2).
doi:10.1371/journal.pone.0020387.g002
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segments being sufficient to produce any cursive character. Each

segment is planned with a minimum-jerk extended model, and

these are connected with via-points. In contrast to the stroke-by-

stroke trajectory generation used in the FIRM model [26,27], via-

points are set using an iterative algorithm that minimizes the

spatial discrepancy between a proposed trajectory and a goal

trajectory.

Finally, turning back to the representation of letters in BAP, we

would argue that none of the previous representations is suitable

for our purpose. Indeed, our aim is to tackle, using the same

representation, both letter recognition and letter production. We

therefore need to choose a letter representation that can be

presumed to be relevant for both processes and that thus has clear

a priori semantics.

Consider, for instance, the global features used to help character

recognition in HMM methods: these would be difficult to use as

guides during trajectory generation. Similarly, in the mass–spring

model, recovering the parameters of a mass–spring system that

generates a trajectory appears to be nontrivial, even though any

trajectory can be generated given mass and spring parameters.

Finally, although via-points were shown to be sufficient for

recognition purposes in the FIRM model, their semantics had to

be explored experimentally. Even though it appears that via-points

were mostly placed at vertical velocity zero-crossings, and also

approximately between vertical velocity zero-crossings, this is by

no means systematic (see, for instance, the bottoms of the b, d and g

of Fig. 7 of [27]).

As with this last model, we firstly assume that letters are

represented by a sequence of via-points, and we place them where

either the x derivative ( _xx) or the y derivative ( _yy), or both, is zero. In

other words, via-points lie where tangents are horizontal or

vertical, or at cusps. We also place via-points at the start and end

positions of the trajectories, where tangents can follow arbitrary

directions. Fig. 4 presents an example of via-points on a trajectory

and the corresponding velocity profile.

On the one hand, via-points can easily be used as constraints for

trajectory generation using some optimality criterion (see Section

‘‘Action model’’) because they are placed at the zeroes of the

velocities, and so they make sense from a control point of view. On

the other hand, they also correspond to points in the trajectory

having either vertical or horizontal tangents, so they are

geometrically salient and make sense perceptively. Finally, such

tangents, or at least the horizontal ones, are widely used by

schoolteachers as constraints to be followed by children when they

learn to produce letters correctly.

Of course, this makes our representation axis dependent: a letter

always observed at an angle of 30 0 would have a different

representation than if it was not slanted. However, there is

evidence from mental rotation studies that suggests that letters are

represented by humans in a canonical, upward orientation [28]. In

our model, all data exemplars are assumed to be in such a

canonical orientation before treatment.

We denote the set of via-points for a given trajectory as C0:N
L .

We set the maximum number of via-points to 16, which is quite

sufficient for all trajectories considered in the remainder of this

paper. Let n be an index in the sequence of via-points; each via-

point is four dimensional:

Cn
L~fCn

Lx,C
n
Ly,C

n
L _xx,C

n
L _yyg:

As the term P(C0:N
Lx C0:N

Ly C0:N
L _xx C0:N

L _yy jLW ) has a high dimensionality

(64 dimensions for N~15), we use conditional independence

hypotheses to decompose it into a product of smaller distributions.

The joint distribution over this set of variables is defined as:

P(C0:N
L jLW )~

P(C0
Lx jLW )P(C0

Ly jLW )

P(C0
L _xx jLW )P(C0

L _yy jLW )

 !

P n~1
N

P(Cn
Lx jC

n{1
Lx LW )P(Cn

Ly jC
n{1
Ly LW )

P(Cn
L _xx jC

n{1
L _xx LW )P(Cn

L _yy jC
n{1
L _yy LW )

 !

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

:
ð4Þ

The product of terms indicates that positions and velocities are

considered independent of each other if the letter and writer are

known. Moreover, we assume that the positions and velocities of a

via-point (index n) depend only on the positions and velocities of

the previous via-point (index n{1); i.e., it is a first-order Markov

hypothesis.

The representation of letter model is complemented by two

prior probability distributions over letters, P(L) and writers,

P(W ): both are defined using uniform probability distributions, so

that the model encodes no prior preference for any letter or writer.

Figure 3. General structure of the BAP model, including the
effector model. The input trajectory, perceptive and internal motor
representation and generated trajectory are defined in Cartesian space
(circled in blue) and the effector model is defined in joint space (circled
in green). Variables: L letter, W writer, CLV perceptive internal
representation, CLP motor internal representation, V read trajectory,
P generated trajectory, E effector. The corresponding joint probability
distribution is defined Eq. (3).
doi:10.1371/journal.pone.0020387.g003
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This probabilistic model thus encodes, for each via-point of a

letter, four probability distributions: two describe the positions

of the via-point, and two describe the velocities of passages at

that via-point. The mathematical forms for these distributions

are set according to a learning process, that computes parameter

values given a database of categorized trajectories: details are

provided in the ‘‘Experimental data and parameter fitting’’

section.

Influence of the motor system on perception via internal
simulation of movements
Experimental observations suggest that the perceptions of

performed actions are not only based on sensory cues, but also

on internal simulations of actions [29,30] when they are part of the

action repertoire of the perceiving subject [31].

In the study of handwriting, a growing body of literature

discusses the possible involvement of the motor system during the

perception of letters, from behavioral studies [1–4] to neuroim-

aging investigations [5,6].

For instance, the activation of motor areas of the brain during

writing and reading tasks has been explored [5]. The main

observation is that a part of the motor cortex is significantly

activated during both tasks. This is surprising for the reading

task: although the subjects stayed motionless, a motor area was

activated. Another class of stimuli was presented: pseudoletters,

which are as visually complex as letters, but for which the

Figure 4. Example of positions of via-points on a letter. Top: Velocity (x and y) profiles corresponding to the letter m shown below. Via-
points are placed where one of the velocities is zero (dots on the x-axis, top), which corresponds to horizontal or vertical tangents (colored arrows,
bottom).
doi:10.1371/journal.pone.0020387.g004
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subjects had no previous experience writing. When such

pseudoletters were visually presented, the same motor area was

not activated.

A widely discussed interpretation of the above (and similar)

observations is that perceiving a letter would entail a motor

simulation of movements associated with the writing of that letter.

This would, it is assumed, improve the perceptual recognition

because of some, yet unexplained, mechanism.

In the BAP model, we propose a mathematical formulation of

such a mechanism. The BAP model includes a formal model of

motor simulation during perception: we add a feedback

dependency along the production part of the model, from the

planned trajectory back to the motor internal representation of

letters (see Fig. 5, left). This dependency is a path back from

simulated written letters to the internal representation: it is a

simulated perception.

However, the feedback loop for internal simulation cannot be

translated into the Bayesian framework directly. Probabilistic

dependency structures cannot contain directed loops, otherwise

they do not correspond to valid applications of Bayes’ rule. The

classical solution consists in duplicating nodes, e.g., when temporal

filters are modeled using Dynamic Bayesian Networks [32,33]. In

that case, the semantic of node duplication is temporal: copies of

variables correspond to the same quantity, but at different points

in time.

In our case, the desired semantic is to have two nodes for

concurrently maintaining hypotheses about letters: one from

perception and one from internal simulation of movements.

Duplicating the whole production branch achieves this. This

branch, with dependencies from planned trajectories back to

internal representation of letters, corresponds to simulated

perception. Therefore, it is defined exactly like the perception

model. It encodes the same knowledge, except that, in this case,

perceptual inputs are not external stimuli but are internally

generated by the motor system: the internal representation CLS

is extracted from the simulated written letter (probabilistic

variable S). The resulting dependency structure (see Fig. 5,

right) is:

P(LWCLV CLPCLSV PES)

~P(L)P(W )

P(CLV jLW )P(CLP jLW )P(CLS jLW S)

P(V )P(P jCLP)P(E jP)P(S jP):

ð5Þ

BAP model: mathematical definition
So far, we have presented the four main hypotheses that define

the overall architecture of the BAP model (Fig. 5). We will now

detail each of these submodels in turn (perception, action, internal

simulation). However, before that, we need to address a technical

point: ‘‘Bayesian switches’’.

Bayesian switches
We introduce, in each of the three branches of perception,

production and simulated perception, and between the two

internal representations of letters, probabilistic switches in the

form of l variables. These explicitly control the part of the

model that is activated. When set (½l~1�), the submodel con-

nected to l is activated. When treated as an unknown variable,

the submodel is deactivated. Introducing l variables yields

duplications of nodes on either side of them, where necessary.

For instance, CLV is duplicated into CLV and CV (see Appendix

S1 for the complete mathematical definition of Bayesian

switches).

The final dependency structure, with the l variables, is

graphically displayed in Fig. 6, and it corresponds to the following

decomposition of the joint probability distribution:

Figure 5. General structure of the BAP model, including a feedback loop. The feedback loop is added from planned trajectories to internal
representations of letters, implementing an internal simulation of movements and simulated perception. Variables: L letter, W writer, CLV perceptive
internal representation, CLP motor internal representation, CLS simulated internal representation, V read trajectory, P generated trajectory, E
effector, S simulated generated trajectory. The corresponding joint probability distribution is defined Eq. (5).
doi:10.1371/journal.pone.0020387.g005
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P(LWCLV CV CLPCPCLSCSV PESlL lV lP lS)~

P(L)P(W )

P(CLV jLW )P(CLP jLW )P(CLS jLW )

P(CV jV )P(V )P(P jCP)P(CP)P(E jP)

P(S jP)P(CS jS)

P(lV jCLV CV )P(lP jCLPCP)P(lS jCLSCS)

P(lL jCLV CLP)

0

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

A

:
ð6Þ

Recall that each term of the form P(CLjLW ) actually stands for a

product of terms (see Eq. (4)); these are not shown here to improve

readability.

At this point, some of the terms of Eq. (6) are already

mathematically defined: P(L), P(W ), P(CLV jLW ), P(CLP jLW ),

and P(CLS jLW ) form the letter representation model,

while P(lV jCLV CV ), P(lP jCLPCP), P(lS jCLSCS) and P(lL j
CLV CLP) are the Bayesian switches. In the remainder of this section,

we complete the mathematical definition of the model by pro-

viding the perception model P(CV jV )P(V ), the action model

P(P jCP)P(CP)P(E jP) and the internal simulation model

P(S jP)P(CS jS).

Perception model
The perception model concerns the collection and treatment

of the sensory information. In our case, the stimuli are

trajectories that are presented visually. However, because retinal

projection and biologically plausible visual treatments are

beyond the scope of our studies, we restrict our vision model

to the simple task of extracting a sequence of via-points from the

trajectory.

In Eq. (6), variable V represents the visual input, which is encoded

as a sequence of positions in the plane: V~fV0:M
x ,V0:M

y g (for

instance, obtained from a digital pen tablet), with M being the

maximum number of points within the perceived trajectory. The

term P(V ) is a prior distribution, set as a uniform probability

distribution, so as not to favor any visual input. The term P(CV jV )

describes how the via-points are extracted from a trajectory. This

follows from our via-point definition: when either or both derivatives

of Vx or Vy are zero, then a new via-point is found and the position

and velocity profiles are encoded. We define the probabilistic term

using Dirac probability distributions (delta functions), centered on the

value given by our deterministic via-point extraction algorithm.

Figure 6. Global structure of the BAP model, including probabilistic switches. The probabilistic switches are represented by the l nodes.
The model is composed of four main submodels: perception (left branch, in blue), action (middle, dark blue), simulated perception (right, purple) and
letter representation (top, yellow), along with the effector model (bottom). Note that although the structure appears more complex than in Fig. 5, the
difference is due to technical issues only, and the ‘‘semantic’’ structure is the same. Variables: L letter, W writer, CLV and CV perceptive internal
representations, CLP and CP motor internal representations, CLS and CS simulated internal representations, V read trajectory, P generated
trajectory, E effector, S simulated generated trajectory, lV , lL, lP and lS probabilistic switches. The corresponding joint probability distribution is
defined Eq. (6).
doi:10.1371/journal.pone.0020387.g006
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Action model
The action model is concerned with the generation of move-

fments from the internal representations of letters. It is well known

that visual feedback during movement execution plays a role

[34,35]. However, in the case of the generation of single cursive

letters, which is a short-duration movement, we assume that such

visual feedback can be safely neglected [36], and we consider

movement generation as an open loop.

A widespread theory of movement production is optimal control

theory [37], which assumes that, out of all possible movements to

solve a task, the chosen one is optimal, in the sense that it

minimizes some cost function. This cost can be defined either in

the workspace (Cartesian) or in the articulatory joint space;

depending on the chosen cost function, a variety of methods are

obtained.

For instance, the square of the jerk (derivative of the

acceleration) of the endpoint can be used, and the resulting

trajectories are in good agreement with experimental human data

[38]. In a similar way, criterion functions can be defined in

articulatory space, such as the torque change generated by the

actuator and the variance of the final arm position [39,40]. Finally,

the cost function is not necessarily a function of the geometry of

the shape, but of the dynamics of its realization: a classical robotic

control scheme (called bang-bang control) minimizes the time to

travel from the initial configuration to the final one [41].

In the BAP model, writing movements are constrained in the

2D plane, so we assume that the cost of the control strategy is

defined in the workspace [42]. Therefore, trajectory formation is

independent of the effector used to perform the movement. This

allows the action model to be decomposed into two submodels: the

trajectory generation (or planning) model and the effector model

(see Fig. 7).

Firstly, consider trajectory generation. Recall that via-points are

defined as constraints of positions and velocities. The first free

quantity that we can aim to minimize is the next derivative, that is

to say, the acceleration. We therefore choose a minimum-

acceleration model to generate trajectories. The cost function is:

J~
1

2

ðt2

t1

d2x

dt2

� �2

z
d2y

dt2

� �2

dt: ð7Þ

We define the limit constraints:

x(0)~x0, x(T)~xf , _xx(0)~v0, _xx(T)~vf : ð8Þ

Using these constraints, we determine the following polynomial:

Vt[ ½0,T � x�(t)~a3t
3
za2t

2
za1tza0

with

a3~
2

T3
x0{xf
� �

z
1

T2
vfzv0
� �

a2~
1

T
{vf{2v0
� �

z
3

T2
xf{x0
� �

a1~v0

a0~x0:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð9Þ

Returning to the probabilistic notation, we now define the

action model. The first term is P(CP), a uniform prior distribution

over the position of via-points. The second term P(P jCP) is

concerned with general trajectory formation and is defined by

Dirac probability distributions, centered on the solution provided

by the above polynomial:

P(P0:T
X P0:T

Y jC0:N
Px C0:N

Py C0:N
P _xx C0:N

P _yy )~

P
N{1

n~0
P PKn:K(nz1)

x PKn:K(nz1)
y

Cn
PxC

n
PyC

n
P _xxC

n
P _yy

Cnz1
Px Cnz1

Py Cnz1
P _xx Cnz1

P _yy

�

�

�

�

�

 !

:
ð10Þ

The term inside the product describes the computation of K

intermediary points between an initial position (current via-point

Cn
P) and a given destination position (the next via-point Cnz1

P ).

These points are spread evenly along the trajectory generated by

the polynomial solution. In other words, Eq. (10) is a probabilistic

encapsulation of the deterministic solution to trajectory generation

of Eq. (9): this allows the BAP model to be uniformly defined in the

probabilistic formalism. A resulting practical advantage is that, as

the probabilistic inference engine is able to compute such

Figure 7. The action model is composed of two submodels: the
trajectory generation and the effector model. The effector model
is itself composed of three submodels: the inverse kinematics model
and the velocity and acceleration models.
doi:10.1371/journal.pone.0020387.g007
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deterministic portions of the model, there is no need to mix

probabilistic inference with deterministic programming.

Secondly, we turn to the model of effector control. In our

simulations, the human arm is represented by a two-joint

manipulator (Fig. 8): h1 represents the shoulder angle, and h2

represents the elbow angle. The variable E is the conjunction

of joint positions, velocities and accelerations from time 0 to T :

E~h
0:T
1 h

0:T
2

_hh
0:T

1
_hh
0:T

2
€hh
0:T

1
€hh
0:T

2 . The endpoint position is described

by its Cartesian coordinates PX and PY . Therefore, the effector

model is P(h0:T1 h
0:T
2

_hh
0:T

1
_hh
0:T

2
€hh
0:T

1
€hh
0:T

2 jP0:T
X P0:T

Y ). It is defined as a

product of three terms:

P(h0:T1 h
0:T
2

_hh
0:T

1
_hh
0:T

2
€hh
0:T

1
€hh
0:T

2 jP0:T
X P0:T

Y )~

P(h0:T1 h
0:T
2 jP0:T

X P0:T
Y )P( _hh

0:T

1
_hh
0:T

2 jh0:T1 h
0:T
2 )P(€hh

0:T

1
€hh
0:T

2 j _hh
0:T

1
_hh
0:T

2 ):

ð11Þ

The first term, P(h0:T1 h
0:T
2 jP0:T

X P0:T
Y ), is based on the inverse

kinematics transform, which translates the endpoint Cartesian

coordinates to articulatory angles. The classical inverse kinematics

solution for the two-joint manipulator gives h1,h2 as functions of

the endpoint position px,py as follows [41]:

h1~ tan{1 py

px

� �

{ tan{1 l2 sin h2

l1z(l2 cos h2)

� �

h2~ cos{1
p2xzp2y{l21{l22

2l1l2

 !

8

>

>

>

>

<

>

>

>

>

:

: ð12Þ

The probability distribution over joint angles, P(h0:T1 h
0:T
2 j

P0:T
X P0:T

Y ), is a Dirac probability distribution centered on these

values, at each point in time.

The second and third terms P( _hh
0:T

1
_hh
0:T

2 jh0:T1 h
0:T
2 )P(€hh

0:T

1
€hh
0:T

2 j
_hh
0:T

1
_hh
0:T

2 ) concern the computation of successive derivatives using a

finite difference method. More precisely, they allow probability

distributions over velocities and accelerations to be computed,

given the positions and velocities at time t and t{1.

Internal simulation model
The variables of the motor simulation loop are S, the simulated

trajectory, CLS, the simulated representation of letters, and its

duplicate (for the probabilistic switch), CS .

The term P(S jP) expresses the relationship between the

simulated trajectory (S), to be analyzed using simulated percep-

tion, and the generated trajectory (P). We define this term as an

identity model: when simulated perception is activated, it takes a

copy of the planned trajectory as an input. The term P(CS jS) in
the simulated perception is defined identically to the model of

perception P(CV jV ): via-points are extracted from the planned

trajectory using the same algorithm. Finally, the term P(CLS j
LW ) expresses the relationship between the simulated via-points,

the writer and the letter.

BAP model: simulation of cognitive tasks
The BAP model is now almost fully defined: the last step is to

give its free parameters values. The only free parameters are in the

internal representation of letters. This learning process in

described in the ‘‘Results’’ section.

Computation of probabilistic questions
Assuming the parameters are set, we here define and illustrate

on an example the way the model is used in order to simulate

cognitive tasks it can solve. This is done using Bayesian inference,

in a systematic, automatized manner. Indeed, the BAP model

defines a joint probability distribution over its variables, from

which any probabilistic term of interest can be computed. This is

demonstrated by the following theorem [13,43].

Given a joint probability distribution over M variables

X1, . . . ,XM , and given any partition of these variables into three

subsets Se, Kn, Fr (for the searched, known and free variables,

respectively), P(Se jKnp) is computed from P(X1 . . .XM jp) by:

P(Se jKnp)~
P(SeKn jp)

P(Kn jp)

~

P

Fr P(SeKnFr jp)
P

Se,Fr P(SeKnFr jp)

P(Se jKnp)~

P

Fr P(X1 . . .XM jp)
P

Se,Fr P(X1 . . .XM jp)
:

ð13Þ

The joint probability distribution is itself defined as a product of

terms, so that any inference amounts to a number of sum and

product operations on probability terms. Of course, this brute

force inference mechanism sometimes yields impractical compu-

tation time ans space requirements, as Bayesian inference in the

general case is NP-hard [44].

All of the inferences described in the remainder of the text have

been carried out using a general purpose probabilistic engine,

ProBT� from ProBayes. (The ProBT inference engine is

available, free of charge, for academic purposes. Please refer to

http://www.bayesian-programming.org/.) This inference engine

uses two main phases to reduce computation time. The first is a

symbolic simplification phase: it reorders the imbricated sums and

products, and applies simplifications whenever possible. The

second is a numerical computation phase, where most of the

classical techniques are available, along with some custom

methods for representation and maximization of probability

distributions [45,46].

Figure 8. Schema of the two-joint manipulator used in our
simulations. h1 represents the shoulder angle, and h2 represents the
elbow angle. The segment lengths are l1~25cm and l2~35cm, as in
[39].
doi:10.1371/journal.pone.0020387.g008
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Finally, since parts of the BAP model are based on Dirac

probability distributions defined by deterministic functions, they

can sometimes be extracted from the Bayesian inference

equations. Our simulation algorithms are therefore defined in a

fully probabilistic framework, and then implemented with

combinations of deterministic and probabilistic programming.

Each probabilistic term P(Se jKnp) computed in this manner is

called a question, and is associated with a cognitive task that is to be

simulated and solved by the model. In the experimental section,

we will present a series of cognitive tasks and describe how the

model solves them. We now detail an example, based only on the

letter representation part of BAP, in order to illustrate the general

inference mechanism.

Example: recognizing letters from via-point sequences
This example is preliminary to the case of letter recognition. In

this simplified version, instead of a complete trajectory, we assume

the BAP model is directly provided with the corresponding

sequence of N via-points c0:Nlv , along with the identity w of the

writer who generated the trajectory.

Given these via-points, we want the BAP model to compute the

most likely letter they correspond to. In probabilistic terms, this is

translated into the following question:

P L C0:N
LV ~c0:Nlv

� �

W~w½ �
�

�

� �

: ð14Þ

This computes the probability distribution over letters, given the

available input information. We now detail the inference and

simplifications made in order to compute this question.

We first apply the general inference described by Eq. (13). In

this case, the searched variable Se is L, the known variables Kn

are C0:N
LV and W , and the free variables Fr are all the other

variables that appear in the BAP model, that is, Fr~

fCV CLPCPCLSCSV PE lL lV lP lSg (see the decomposition,

Eq. (6)). This yields:

P L C0:N
L ~c0:Nl

� �

W~w½ �
�

�

� �

~

P

Fr P L½C0:N
L ~c0:Nl � W~w½ �Fr

� �

P

L,Fr P L C0:N
L ~c0:Nl

� �

W~w½ �Fr
� � :

ð15Þ

The denominator is a constant, that does not depend on the value

of L. Therefore, instead of explicitly computing the large

summation over L and Fr, we can compute it afterwards as a

normalization constant of the probability distribution over L. In

other words, we first compute the result up to a proportionality

constant Z1, with:

P L C0:N
L ~c0:Nl

� �

W~w½ �
�

�

� �

~

1

Z1

X

Fr

P L C0:N
L ~c0:Nl

� �

W~w½ �Fr
� �

:
ð16Þ

Under the summation, we replace the joint probability distribution

by the product of terms that define it (see Eq. (6)). This allows

many symbolic simplifications, and yields:

P L C0:N
L ~c0:Nl

� �

W~w½ �
�

�

� �

~

1

Z1

P C0:N
L ~c0:Nl

� �

L W~w½ �j
� �

P Lð ÞP W~w½ �ð Þ:
ð17Þ

Both terms P(L) and P(W ) are defined by uniform probability

distributions, so that their values are constants, independently of

the value of L. They can be included into the normalization

constant which become Z2:

P L C0:N
L ~c0:Nl

� �

W~w½ �
�

�

� �

~
1

Z2

P C0:N
L ~c0:Nl

� �

L W~w½ �j
� �

: ð18Þ

Finally, recall that Eq. (4) specifies that P(½C0:N
L ~c0:Nl �jL

½W~w�), the representation of letter model, is defined as a

product of terms. This yields:

P(L j ½C0:N
L ~c0:Nl �½W~w�)

!

P(½C0
Lx~c0lx� jL½W~w�)

P(½C0
Ly~c0ly� jL½W~w�)

P(½C0
L _xx~c0l _xx� jL½W~w�)

P(½C0
L _yy~c0l _yy� jL½W~w�)

0

B

B

B

B

B

@

1

C

C

C

C

C

A

P
N

n~1

P(½Cn
Lx~cnlx� j ½C

n{1
Lx ~cn{1

lx �L½W~w�)

P(½Cn
Ly~cnly� j ½C

n{1
Ly ~cn{1

ly �L½W~w�)

P(½Cn
L _xx~cnl _xx� j ½C

n{1
L _xx ~cn{1

l _xx �L½W~w�)

P(½Cn
L _yy~cnl _yy� j ½C

n{1
L _yy ~cn{1

l _yy �L½W~w�)

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

ð19Þ

For each considered letter in L, its probability is thus propor-

tional to the product of 4(Nz1) probability values (recall that N is

the number of via-points). Once probabilities for all letters in L are

computed, normalization yields the probability distribution over

letters, given the input via-points and letter identity, which is the

desired result.

Results

Experimental data and parameter fitting
Data collection. In order to set the parameters of the internal

representation of letters, we have designed a data collection

procedure and learning phase. Using a Wacom Intuos 3 pen

tablet, we asked 4 adults to write 40 example trajectories of each of

22 letters, providing a complete database of 3,520 trajectories. We

only considered letters without a pen-up movement for ease of

data collection. The letters removed were i, j, t and x, as in [27].

Parameter identification
The BAP model is now structurally completely defined. The

only remaining piece to specify is the mathematical forms for the

terms of the letter representation model (see Eq. (4). Except for the

case of initial via-points, terms have the form P(Ci
L jC

i{1
L LW ),

and encode information about the position and velocity of a via-

point, given the previous via-point and letter and writer identity.

Each of these probability distributions is defined as a Laplace

succession law. For instance, for the x position Cn
Lx:
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P(½Cn
Lx~v�j½Cn{1

Lx ~c�½L~l�½W~w�)~
piz1

Dzk
, ð20Þ

with D being the total number of observations (D data), k the

number of possible values for Cn
Lx and pi the number of

observations of the specific value v (that is,
X

v
pi~D). In other

words, Laplace succession laws are very similar to histograms,

except for the added terms at the numerator and denominator,

that ensure that probabilities are never zero (1=(Dzk) when pi is

0) and that the initial form, before any observation, is a uniform

probability distribution (1=k when pi and D are 0).

The free parameters of the BAP model are thus the values of pi
and D, which are learned experimentally. In our implementation,

the via-points variables are represented over discrete domains,

with 41 integer values between 0 and 40 for position dimensions

and 7 integer values between -3 and 3 for velocity dimensions.

Consider P(Cn
Lx jC

n{1
Lx LW ), which is one of the terms of Eq. (4):

it involves 40|41|22|4~144,320 free parameters (for each

writer, each letter, and each possible position of the previous via-

point, a Laplace succession law of 41 parameters is defined over

the current via-point position, but one of its parameter is not free

because of the normalization rule).

Overall, the representation of letters involves a large database

of free parameters: 8,960 for the first via-point, and, for each

subsequent via-point, 296,032 free parameters. Notice that this

number is much larger than the number of sample points in

the learning database, which contains 3,520 trajectories. To solve

this issue, the Laplace succession law probability distributions

were smoothed using a binomial filter (of size 9 for position

dimensions and size 7 for velocity dimensions) [47]. This allowed

the generalization of experimental observations to neighboring,

unobserved cases.

To help appreciate the gain in space requirement brought by

the first-order Markov hypothesis, consider that the number of free

parameters for each via-point would be 11,885,984 under a

second-order Markov hypothesis, and 485,566,048 under a third-

order Markov hypothesis. Concerning the separability of dimen-

sions, for the n-th via-point, the joint term P(Cn
LxC

n
LyC

n
L _xxC

n
L _yy j

Cn{1
Lx Cn{1

Ly Cn{1
L _xx Cn{1

L _yy LW ) would require 597,042,141,696 free

parameters.

As a summary, the learning process amounts to counting, in the

database, the number of observation of each case pi: for each

letter, writer and via-point position and velocity (index n{1), we

obtained the number of observations pi of each via-point position

and velocity (index n). The result of this algorithm can be shown to

be the maximum likelihood solution for the parameter of the BAP

model, under the assumption of a uniform prior probability

distribution over parameter values [48].

Fig. 9 presents an example of a learned probability distribution

for P(C3
Lx j ½C

2
Lx~15�½L~l�½W~Julienne�): when the x position

of the second via-point is equal to 15, the x coordinate of the third

via-point will probably be between 7 and 9. In other words, the

third via-point is very likely to be on the left of the second

via-point.

Learned representations of letters: example
Letters have many possible forms – called allographs – because

of fluctuations in handwriting (see Fig. 10). The representation of

letters must be robust to this within-writer variability. Indeed, the

Laplace succession laws model this variability: they implicitly

encode several allographs in one distribution. For instance, Fig. 11

presents the probability distribution of the third via-point of the

letter l, given the position of the second via-point. The two

allographs of Fig. 10 respectively correspond to the series of peaks

below the diagonal (the third via-point is to the left of the second

via-point, as in the upward l ), and the main peak above the

diagonal (the third via-point is to the right of the second via-point,

as in the slanted l ).

Perception: reading letters
Question and inference. The cognitive task of letter

recognition consists of identifying the presented letter. In other

words, the question is: ‘‘given a trajectory produced by a known

writer, what is the letter?’’ In probabilistic terms, this corresponds

to computing:

P(L j ½V0:M
x ~v0:Mx �½V0:M

y ~v0:My �½W~w�½lV~1�), ð21Þ

where V0:M
x ,V0:M

y constitutes the input trajectory, w is the given

writer, and lV~1 activates only the perception and letter

representation parts of our model. Bayesian inference yields:

P(L j ½V0:M
x ~v0:Mx �½V0:M

y ~v0:My �½W~w�½lV~1�)

!P(½CLV~f (v0:Mx ,v0:My )� jL½W~w�):
ð22Þ

This probabilistic equation can be explained using an algorithmic

equivalent. The computation proceeds as if the via-points

extracted from the input trajectory were matched to the learned

representations, for each letter. For each via-point and each

possible letter, both positions and velocities are compared, using

the memorized probability distributions: ‘‘if the letter was an a (b,

c, etc.), what would be the probabilities of observing the positions

and velocities of the first (second, third, etc.) observed via-point?’’

For example, we computed the following question:

P(L j ½V0:M
X ~v0:Mx �½V0:M

Y ~v0:My �½W~Estelle�½lV~1�) ð23Þ

with v0:Mx , v0:My being the trajectory shown Fig. 12. On this

particular example trajectory, the computed probability distribu-

tion is a Dirac distribution centered on L~l: the model always

correctly recognizes the input trajectory as being an l.

Results. We systematized the previous observations, in order

to assess the quality of the letter recognition using a global

recognition rate. To do so, we split our database of trajectories into

a training set and a testing set, using 35 samples for training and 5

samples for testing. Training consisted of parameter identification,

as previously described, and testing consisted of computing the

probability distribution over letters L and using this distribution to

draw randomly a value for L. This selected value, the answer to

the recognition task, was then used to assess whether the model

had succeeded in recognizing the presented letter.

We repeated this procedure, varying the samples that were

used for training and testing, applying classical K-fold cross-

validation [49].
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Overall, we obtained a satisfactory correct recognition rate of

93.36%. Misclassifications arose because of the geometric

similarities of some letters. As an example, Table 1 shows an

extract of the confusion matrix when the model is presented with

examples of the letter l: we see that, overall, ls can be confused

with bs or hs with low probabilities.

We extended our study of letter recognition by exploring several

variants. Eq. (23) corresponds to the case where the writer is

specified in the term to be computed. A slightly more difficult case

is to hide this information from the model and to compute

P(L jV0:M
x V0:M

y ½lV~1�) instead. The resulting Bayesian infer-

ence includes a summation over the missing variable, W .

However, we still observed a high accuracy rate of 92.72%. An

even more difficult case is to test letter recognition using the model

with a new writer, by using testing trajectories provided by a writer

who was not used in the training trajectories. In this case, the

correct recognition rate drops to 49.68%.

Discussion. We now discuss the interpretation of the above

recognition rates.

The first point here is to recall our objective. In an industrial

application, it would make sense to find methods to improve the

correct classification rates. However, in the context of modeling

human perception–action loops, this is less of an issue. The above

recognition rates are to be taken as performance predictions,

which can then be compared with the predicted performance

under other conditions. For instance, the basis for an experimental

prediction is to compare the recognition performance with and

without internal simulation of movements (see Section ‘‘Experi-

mental predictions’’).

Moreover, the recognition rates can only be compared

assuming that the underlying learning databases are common.

For a single test trajectory, the recognition process almost always

outputs a probability distribution that is very close to a Dirac

distribution. In other words, perception is almost always certain of

its output, whether it leads to a correct or incorrect classification.

Therefore, the correct classification rate mostly reflects the

properties of the database contents: ‘‘how many test trajectories

were similar enough to the learning trajectories to be correctly

Figure 9. Example of probability distribution extracted from the learned model of letter representation. Probability distribution of the
abscissa of the third via-point of the letter l and the writer Julienne, given that the abscissa of the second via-point is equal to 15:
P(C3

Lx j ½C
2
Lx~15�½L~l�½W~Julienne�).

doi:10.1371/journal.pone.0020387.g009

Figure 10. Two graphical forms of the same letter (l ) written by
the same writer JulieJu the left, the letter is upward and
described with 6 via-points. On the right, the slanted form yields only 4
via-points.
doi:10.1371/journal.pone.0020387.g010
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classified?’’. The contrary would be a more objective, less

contingent measure, such as ‘‘how close are cursive handwritten

gs to qs?’’, which would require a more systematic and complete

database. Therefore, the obtained recognition rates mostly reflect

the contents of the learning database, and not general properties of

letters.

Perception: recognizing writers
Question and inference. In the previous probabilistic

question, a writer W was specified, in order to compute a

probability distribution over letters L. Reversing the role of these

variables yields another perception task, which is writer

recognition. Computing:

P(W j ½V0:M
x ~v0:Mx �½V0:M

y ~v0:My �½L~l�½lV~1�) ð24Þ

corresponds to building a probability distribution over writers,

given an input trajectory and the identity of the presented letter.

This is solved by Bayesian inference in a manner similar to

Eq. (22).

Results. Our model was tested once on 5 trajectory

samples for each letter and each writer, taken from our

database of 40 samples; the 35 remaining trajectories per letter

and writer were used to identify, as previously, the parameters

of the model. Because our database was small and specific, the

global correct recognition rate of 79.5% mostly reflects

idiosyncrasies of the writing styles of our 4 participants.

However, Table 2 shows the full confusion matrix as a proof-

of-concept example.

As previously noted, when we made the letter recognition task

more difficult by not specifying writer identity, we also tested

writer recognition without specifying the letter identities. That is,

we computed:

P(W j ½V0:M
x ~v0:Mx �½V0:M

y ~v0:My �½lV~1�), ð25Þ

instead of Eq. (24). As previously mentioned, this yields a

summation over the missing variable, which is L in this case.

Experimental results show no qualitative change, with the

recognition rate dropping from 79.5 to 78%.

Note that in this case, the writer is recognized independently of

letter identification. In other words, the last variant we did not

explore was joint writer and letter identification, which would have

been solved by Bayesian inference by computing:

P(LW j½V0:M
x ~v0:Mx �½V0:M

y ~v0:My �½lV~1�): ð26Þ

Action: writing letters
We now turn to cognitive tasks that involve the action model of

BAP. The main task developed here is simply the writing task.
Question and inference. Given a letter l to write, and a

writer w to imitate, what are the accelerations required to trace the

letter? This writing task is translated, mathematically, by

computing:

P(€hh
0:T

1
€hh
0:T

2 j ½L~l�½W~w�½lP~1�): ð27Þ

Bayesian inference yields:

P €hh
0:T

1
€hh
0:T

2 j ½L~l�½W~w�½lP~1�
	 


~
1

Z2

X

CLP

P(CLP j ½L~l�½W~w�)

P(€hh
0:T

1
€hh
0:T

2 j ½ _hh
0:T

1
_hh
0:T

2 ~h(g(CLP))�)

 !

:
ð28Þ

Figure 11. Example of several probability distributions extracted from the learned model of letter representation. Probability
distributions of the abscissa of the third via-point of the letter (l) from the writer Julienne, as a function of the abscissa of the second via-point:
P(C3

Lx jC
2
Lx½L~l�½W~Julienne�). Each column is a probability distribution and sums to 1. For instance, Fig. 9 corresponds to the column for

C2
Lx~15.

doi:10.1371/journal.pone.0020387.g011
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Instead of explicitly computing the costly summation of Eq. 28,

we drastically approximate it, and, from this approximated

probability distribution, sample acceleration values to apply to

the simulated arm. This approximation can be seen as a two-step

algorithm. First, the model of letter representation is used to draw

randomly positions and velocities of via-points. Second, the

trajectory generation model is used to determine the complete

trajectory between the via-points. The effector model finally

translates the Cartesian coordinates of points in the trajectory to

joint coordinates and accelerations to apply.

Obviously, this only involves the motor branch and the

representation of letter submodels: the perception branch is not

used.

Results. Fig. 13 shows an example of acceleration profiles (€hh1
and €hh2) obtained in response to the question:

P(€hh
0:T

1
€hh
0:T

2 j ½L~a�½W~Estelle�½lP~1�): ð29Þ

‘‘What are the accelerations to apply to the arm to write the letter

a using the writing style of Estelle?’’ Applying these accelerations

to the simulated arm yields the trajectory shown in Fig. 14 (left).

This is readable and clearly identifiable as an a.

We now illustrate the fact that the BAP model reproduces

between-writer variabilities. For instance, Fig. 14 shows trajecto-

ries for as generated using the writing styles of Estelle and

Christophe.

We also compare the trajectories output by the model with

typical trajectories provided by the participants in the database

(see Fig. 15). We observe that writing styles are encoded and

reproduced by the model. The as produced by Estelle are typically

Figure 12. Example of input trajectory presented to the model for letter identification. It is composed of two series of x (top left) and y
(top right) positions indexed by time, from which velocities are approximated using a finite difference method. Bottom: the trajectory presented in
the x,y workspace, with extracted via-points superimposed (in blue). Vectors at the via-points represent velocity information.
doi:10.1371/journal.pone.0020387.g012
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rounded, whereas those produced by Christophe are more slanted

and elongated.

Finally, if we ask the same question several times of the model,

we observe within-writer intertrial variability; that is, the resulting

trajectories are not identical (see Fig. 16). Indeed, as the positions

and the velocities at via-points are drawn according to a

probability distribution, the obtained trajectories vary. This result

is, of course, in agreement with the everyday observation that

every time we write, we are not producing exactly the same

trajectory.
Discussion. We now wish to discuss two points about the

above experiment: the origin of variability, and the observation of

motor equivalence.

Firstly, our results show that the BAP model was able to

reproduce both between-writer and within-writer variabilities. The

question of variability in writing, and in motor control more

generally, is crucial and presents a method for investigating the

possible mechanisms involved. It is commonly agreed that

variability does not result from a single step of the process.

Perceptual processes (like target localization and proprioceptive

feedback) and motor processes (like movement planning and

movement execution) are assumed to contribute to observed

variability [40,50–52].

In the BAP model, movement planning is optimality-based

and deterministic, the movement execution model is determin-

istic, and movements are simulated in an open-loop fashion.

This would result in fixed produced trajectories [37], except

that, in BAP, another source of variability exists, ‘‘upstream’’ of

trajectory generation and execution. Indeed, at the representa-

tional level, positions and velocities at via-points are encoded by

probability distributions; these yield the observed intertrial

variability [37].

Finally, whereas most literature on the subject attributes motor

variability to noise and ‘‘corruption’’ of the underlying processes,

we would argue that variability is not always a nuisance. Indeed,

in the BAP model, probability distributions at the representa-

tional level are multimodal and have high variances. This

certainly yields variability in written trajectories, but it also

provides generalization capabilities, between training examples of

the limited database, which results in satisfying performance

during letter recognition (93%).

We now turn to the motor equivalence effect, which motivated

one of our founding hypotheses (see Section ‘‘Letter encoding in

the Cartesian workspace’’). This led us to assume that letters would

be encoded in a Cartesian reference frame.

We experimentally verified that the BAP model satisfied motor

equivalence. To do so, we used three different effectors to write

letters and analyzed the resulting trajectories. The first was the

simulated two-joint manipulator that we had used so far (see

Fig. 8). The other two were real robotic devices: a real two-joint

arm with the same characteristics as the simulated one, and a

holonomic mobile robot (see Fig. 17).

These platforms required adapted effector models. Concerning

the real robotic arm, it was built to be quite similar to the

simulated one, except that it was controlled using velocity

commands instead of acceleration commands. Therefore its

effector model contains the first two terms of the simulated arm

effector model (see Eq. (11)):

P(h0:T1 h
0:T
2

_hh
0:T

1
_hh
0:T

2 jP0:T
X P0:T

Y )

~P(h0:T1 h
0:T
2 jP0:T

X P0:T
Y )P( _hh

0:T

1
_hh
0:T

2 jh0:T1 h
0:T
2 ):

ð30Þ

The holonomic mobile robot, on the other hand, is quite

different from robotic arms. It is controlled by velocity

commands to its three omnidirectional wheels, using a two-

part effector model. First, from the P0:T
X ,P0:T

Y generated

trajectory, a kinematic model computes velocity commands

in the plane, V1,V2,V3, in each wheel’s reference frame. Then,

a control model translates these into lower-level rotation

speeds v1,v2,v3. This is encoded in the following probabilistic

effector model (the full definition of this model is available

elsewhere [14]):

P(V0:T
1 V0:T

2 V0:T
3 v

0:T
1 v

0:T
2 v

0:T
3 jP0:T

X P0:T
Y )~

P(V0:T
1 V0:T

2 V0:T
3 jP0:T

X P0:T
Y )P(v0:T

1 v
0:T
2 v

0:T
3 jV0:T

1 V0:T
2 V0:T

3 ):
ð31Þ

The first result of this experiment is that the three effectors

correctly produce letters, given adequate effector models. In other

words, no writing learning is required for the new effectors.

Writing can be performed immediately on any new effector that

we know how to control. This is in line with previous motor

equivalence observations.

Furthermore, motor equivalence predicts that whichever

effector is used, writing styles should be preserved and recogniz-

able. We used the three effectors to write ns, imitating three

different writers (see Fig. 18). We observe, as expected,

recognizable characteristics in the trajectories, independent of

the effector used to produce them.

Perception and action: copying trajectories and letters
We now turn to a cognitive task that involves the representation

of letters, and the perception and action branches of the model. It

Table 1. Confusion matrix when the model is presented with
examples of the letter l.

Letter b h l

Probability 0.10 0.08 0.82

The letter l is recognized by the model with a probability of 0.82. It can be
confused with a b, with probability 0.1, or an h, with probability 0.08. All
probabilities for other letters are 0.
doi:10.1371/journal.pone.0020387.t001

Table 2. Confusion matrix obtained for writer recognition.

Estelle Julienne Jean-Louis Christophe

Estelle 0.76 0.03 0.07 0.14

Julienne 0.02 0.80 0.07 0.11

Jean-Louis 0 0 1 0

Christophe 0.10 0.14 0.13 0.63

Probability distributions over the writers are read in rows: for instance, the
model correctly identifies Estelle as the writer with probability 0.76, and Jean-
Louis is always correctly identified (probability of 1).
doi:10.1371/journal.pone.0020387.t002
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consists in copying input trajectories. However, we distinguish the

copies of trajectories, where the representations of letters are

deactivated, from the copies of letters, where they are activated

(see Fig. 19). The former can be seen as introductory to the last

cognitive task of letter recognition with internal simulation of

movement: copies involve the activation of most of the BAP

model. We now detail each type of copy in turn.

Perception and action: copying trajectories
Question and inference. In order to copy a trajectory, we

provide an input trajectory and ask the model to compute the

corresponding accelerations to apply to the simulated arm. This is

translated mathematically and solved by Bayesian inference in the

following manner:

P €hh
0:T

1
€hh
0:T

2

½V0:M
x ~v0:Mx �½V0:M

y ~v0:My �

½lv~1�½ll~1�½lp~1�)

�

�

�

�

�

 !

!

P(€hh
0:T

1
€hh
0:T

2 j _hh
0:T

1
_hh
0:T

2 h
0:T
1 h

0:T
2 )P(h0:T1 h

0:T
2 jP)

P(P j ½CP~f (v0:Mx ,v0:My )�)

0

@

1

A:

ð32Þ

The term P(P j ½CP~f (v0:Mx ,v0:My )�) corresponds to the extrac-

tion of via-points from the perceived trajectory and to the

generation of a full trajectory, based on these via-points. We

observe that the model of letter representation is not involved in

Figure 13. Example of joint accelerations computed by the model in order to generate a trajectory. Joint accelerations, €hh1 (top) and €hh2

(bottom), as functions of time, obtained for the question P(€hh
0:T

1
€hh
0:T

2 j ½L~a�½W~Estelle�½lP~1�).
doi:10.1371/journal.pone.0020387.g013
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this question: the model does not analyze the trajectory in order to

recognize the presented letter. As a consequence, with this

mathematical translation of the task, any type of trajectory can

be copied, not only those for known letters.

Results. We show, in Fig. 20, trajectories obtained with the

copy-of-trajectories inference. The model can copy trajectories

corresponding to known letters (e.g., w) and those corresponding to

unknown symbols, outside of the learned repertoire (e.g., a).

We observe that the via-points extracted from the input

trajectory are given directly as constraints to the trajectory

generation. Input and output trajectories therefore coincide at

the via-points, and the differences are situated between via-points.

Perception and action: copying letters
Question and inference. The probabilistic question that

corresponds to the copying of letters, and the resulting Bayesian

inference, are:

P €hh
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1
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2
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There are several differences between the questions for the

copying of trajectories and the copying of letters. The first is that

by not setting ½ll~1� for the copying of letters (contrary to Eq.

(32)), we no longer bypass the representation of letters. The second

difference is that we modified the model slightly, by duplicating the

writer variable W into WV and WP, so that the input trajectory

could be recognized as a letter according to the visual writer style,

WV , and be copied out according to another writer style, WP.

The inference also appears more complicated for the copying of

letters. However, it can be interpreted again as a schematically

equivalent algorithm. Via-points are extracted from the input

trajectory, and a probability distribution over recognized letters L

is computed. Given this probability distribution, a new sequence of

via-points is drawn at random, which is a very rough approxima-

tion of the summation over L of Eq. (33). These are used to

produce a new trajectory. Please note that at no point is the letter

explicitly recognized: only the probability distribution over letters

is computed.

Results. Fig. 21 presents results for the copying of letters.

We observe that the model has recognized and copied the letters

(e.g., w). The trajectories produced by the model correspond to

production of the recognized letters, in contrast to the copying of

trajectories. Consequently, the graphical forms between input and

output trajectories can be quite different, provided that the writing

styles of the input and output writers are different. In other words,

with this task, it is possible to copy a letter of a writer in the

handwriting style of another writer (see, for instance, the w in

Fig. 21).

Furthermore, when the presented trajectory does not corre-

spond to a letter known by the model, the generated letter is the

closest (in the sense of the probabilistic recognition of letters) in the

known repertoire (e.g. an n instead of an a).

Discussion. In the BAP model, two types of copying are

formalized: when the letter representation is activated, letters

are copied; when it is not, trajectories are copied. A question

naturally follows: assuming that these two types of copying

exist in humans, do their processes differ in the same way as in

the model? Indeed, the model predicts that the difference is the

use of the letter representation model. If that is the case, then

preliterate children are only able to copy trajectories, and only

older children and adults would be able to perform both

tasks. Therefore, we should be able to observe a gradual

appearance of letter copying, as the default process, as letter

representations are acquired by children when they learn to

read and write. This could possibly be challenging to observe

experimentally in children, and could be instead investigated

in adults, using letters of foreign alphabets or pseudo-

characters to copy.

Figure 16. Within-writer inter-trial variability produced by the
BAP model trajectory generation. Four trajectories obtained by

computing P(€hh
0:T

1
€hh
0:T

2 j ½L~a�½W~Estelle�½lP~1�).
doi:10.1371/journal.pone.0020387.g016

Figure 14. Examples of trajectories generated by the model,
when asked to write an a. Left: the writing style specified is
W~Estelle. Right: W~Christophe.
doi:10.1371/journal.pone.0020387.g014

Figure 15. Illustration of between-writer variability present in
the learning database. Top row: Three as produced by Estelle.
Bottom row: as produced by Christophe. They are more slanted than
Estelle’s trajectories, which are more rounded.
doi:10.1371/journal.pone.0020387.g015
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Perception and action: reading letters using internal
simulation of movements
The final cognitive task that we present revisits the reading of

letters. While it was previously studied in a restricted version of our

model, involving only the perception and representation of letters

submodels, here we study the recognition of letters when the entire

BAP model is activated. In other words, this task can also be seen

as an extension of trajectory copying, where, instead of being

executed, the planned trajectory is fed to the internal simulation of

movement loop.

Question and inference. As previously discussed, we define

the cognitive task of reading by the following question: ‘‘given an

input trajectory, what is the corresponding letter?’’ We also

provide, as input, the identity of the writer, although, as

previously, this could be omitted in order to make the task more

difficult. This task is translated and solved by Bayesian inference

using the following:

P L
½V0:M

x ~v0:Mx �½V0:M
y ~v0:My �½W~w�

½lV~1�½lL~1�½lP~1�½lS~1�

�

�

�

�

�

 !

!

P(½CLV~f (v0:Mx ,v0:My )� jL½W~w�)

P(½CLS~h(g(CLV ))� jL½W~w�))

 !

:

ð34Þ

We observe that this equation is the product of two terms:

P ½CLV~f (v0:Mx ,v0:My )� jL½W~w�
	 


is exactly Eq. (22). In other

words, this first term amounts to letter recognition in the reading

task, where the motor and simulation parts of the model are not

activated. This is the result of letter recognition where information

only flows from the input trajectory to the representation of letters

along the perception branch; via-points are extracted from the

input trajectory and are compared with the memorized via-points

for each letter.

The second term of Eq. (34) is P(½CLS~h(g(CLV ))� jL½W~

w�)). This also corresponds to letter recognition but using via-

points that are the result of a longer circuit inside the model. First,

via-points are extracted from the input trajectory, and then these

are forwarded to the trajectory generation motor model, which

generates a complete simulated trajectory. This is then forwarded

to the simulated perception branch of the model, which extracts

from it another set of via-points. These via-points are then

compared in the letter representation model with the memorized

letter representations.

An important point has to be recalled here. As discussed

previously, we interpret the equations of Bayesian inference with

pseudoalgorithms, using a few sentences. However, these would

tend to suggest an ordered sequence of steps in the treatment of

information, which does not follow at all from the original

equations. For instance, in this case, the commutativity of the

product obviously forbids the conclusion that the first term is

computed before or after the second term. We believe this

precaution is necessary, as it would be tempting, but wrong, to use

the interpretations of the inferences to draw predictions about

possible neural correlates. This is important in this case in

particular because studying the properties of the internal

simulations of movements during perception is a popular topic

in neuroimagery [5,13].

We also would like also to emphasize that it is not only temporal

properties of the inference that require precaution. Just because

schemas of our BAP model show spatially distinct subparts of

models, this does not mean that we would expect spatially distinct

corresponding areas in the central nervous system (CNS). More

precisely, although we require mathematically distinct perception

and simulated perception branches in the model, it could be the

case that, in the CNS, there is only one set of areas that deal with

both perception and simulated perception, with possibly tempo-

rally distinct or overlapping activations. If we correctly restrict

ourselves to the algebraic notation, the model does not provide any

prediction about spatial or temporal properties of possible neural

correlates.

Results. Firstly, we present an illustrative result. Fig. 22

shows the two main trajectories involved in the reading task using

internal simulation: the input trajectory and via-points extracted

by the perception branch, and the internally simulated trajectory

and via-points that result from simulated perception.

We observe that the sets of via-points shown for perception and

simulated perception are not identical (see, for instance, the via-

points along the middle arc, which are added by internal

Figure 17. Two real robots used in our experiments. Top: two-
joint robotic arm; Bottom: holonomic mobile platform. A pen is
attached, and the robot moves and writes on large sheets of paper.
doi:10.1371/journal.pone.0020387.g017
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simulation). Letter recognition uses both sets of via-points; in this

example, the letter is recognized as an m with probability 1.

Secondly, we present systematic evaluations of our results. We

tested the model under the same conditions as in the reading task

using only the perception submodel (see Section ‘‘Perception:

reading letters’’) and obtained an overall recognition rate of

90.22%. An analysis of the confusion matrices of both experiments

(not shown) indicates that specific errors differ; some letters that

were misclassified in the reading task without simulated perception

were correctly recognized using simulated perception, and vice

versa. However, the overall misclassification rates are of the same

magnitude under both conditions (90 vs. 93%).

Finally, because of the similar observed performance between

reading with motor simulation and reading without motor

simulation under classical conditions, we have designed another

experiment with a more difficult scenario. Instead of presenting

complete trajectories as inputs, we designed truncated versions of

trajectories where we erased a set of consecutive points.

We have found several cases where reading without motor

simulation would fail but reading with motor simulation would

succeed. We illustrate here a few of such cases, shown in Fig. 23.

Consider, for instance, the gs shown at the top of Fig. 23. Table 3

shows extracts of the probability distributions over letters obtained

by reading with and without internal simulation. We observe that

the incomplete g is misclassified as a q without simulation, and

correctly recognized as a g with internal simulation of movements.

In this case, we can conclude that internal simulation of

movements helps improve stimulus recognition.

Recall that we only consider isolated letters, so that contextual

and semantic cues are not available and thus not modeled in BAP.

Had they been available, an open issue would have been to model

the combination of these top-down cues with the bottom-up cues

that we showed were provided by motor simulation.

Discussion. We wish to conclude this section with a

speculative consideration. We have shown that internal simulation

could have a major effect during perception. For instance, it is able

Figure 18. Examples of trajectories, illustrating the motor equivalence property. Trajectories produced by the BAP model simulating
writers Estelle (left), Christophe (center), and Julienne (right), using a simulated arm (top row), a two-joint robotic arm (middle row) and a holonomic
mobile robot (bottom row). Writing styles are preserved independently of the effector: notice, for example, the sharp peak at the end of the
trajectory, which is specific to Christophe’s writing style.
doi:10.1371/journal.pone.0020387.g018

Figure 19. Copying trajectories and copying letters. Left: the highlighted parts of the model are activated during the copying of trajectories.
Right: parts of the model involved in the copying of letters. Variables: L letter, W writer, CLV and CV perceptive internal representations, CLP and CP

motor internal representations, CLS and CS simulated internal representations, V read trajectory, P generated trajectory, E effector, S simulated
generated trajectory, lV , lL, lP and lS probabilistic switches. The probabilistic question corresponding to the copy of trajectories is shown Eq. (32),
and the one for the copy of letters is shown Eq. (33).
doi:10.1371/journal.pone.0020387.g019
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to overcome the difficult case of incomplete input trajectories.

Another way to make the perception task harder would be to

remove sequence information: we would then consider offline letter

recognition, instead of online letter recognition as we have done so

far.

We believe that in this case, internal simulation of movements

might also be very beneficial. It is known that writing expertise, in

particular the directions of commonly performed movements,

biases perception [3]. We would therefore imagine that when

seeing a written l, motor knowledge of stereotypical movements

would help in selecting the starting point and sequence of the

trajectory. The offline problem would first be reduced to the

online problem that we have addressed in this paper. This seems

easy if assuming motor knowledge but appears a very difficult step

for a purely perception-based system (i.e., one with trajectory and

sequence recovery from a pixel-based image).

Discussion

Summary
In this paper, we defined a Bayesian model of the perception–

action loop involved in handwriting and letter recognition, and

used it to study the influence of motor simulation on perception.

Four hypotheses form the basis of the architecture of the BAP

model. First, there are two distinct internal representations of

letters: one for the perception model and one for the action model.

Second, these representations are of the same nature (Cartesian

space) and are based on the same encoding. Third, this encoding

consists in summarizing letter trajectories by sequences of via-

points, which lie at points where the tangent is either vertical or

horizontal, and at cusps. Finally, a feedback loop from the

generated trajectories back to the internal representation of letters

implements an internal simulation of movements.

We used probabilistic modeling to define the BAP model

mathematically. With the joint probability distribution fully

defined, the model was used to solve cognitive tasks automatically,

using Bayesian inference. We detailed six such tasks in the paper:

reading with and without motor simulation, writer recognition,

copying of letters and trajectories, and writing letters with different

effectors. In particular, we showed that internal simulation of

movements improves performance for reading tasks in the difficult

case of truncated letters.

General discussion
Related work. In Cognitive Science, Bayesian modeling of

perception and action is blooming, but the modern trend yields

models that differ somewhat in flavor from the BAP model we

presented here. A wide variety of domains has been explored with

probabilistic modeling approaches; to name just a few examples,

visuo-haptic fusion [53], visual perception [54] and motor control

[40]. These mainly come from experimental psychophysics and

psychology.

In contrast, our approach draws inspiration from research in

robotics and artificial intelligence [13,48,55]. Several models

of cognitive systems, like the BAP model we presented here, have

been developed in that context. They range from eye move-

ment selection [56] to self-motion perception [57] and speech

acquisition [58]. Their main feature is that they are structured

Figure 20. Examples of trajectory copying. The input trajectories
are in blue; the copied, output trajectories are in pink.
doi:10.1371/journal.pone.0020387.g020

Figure 21. Examples of letter copying. The input trajectories are in
blue; the output, copied trajectories are in pink. The model has
recognized the trajectories as letters and has generated corresponding
trajectories.
doi:10.1371/journal.pone.0020387.g021

Figure 22. Two trajectories are used in the reading task, when
internal simulation of movements is activated. Left: input
trajectory presented to the model, and corresponding via-point
positions. Right: Internally simulated trajectory produced by the model,
and resulting via-points extracted by simulated perception.
doi:10.1371/journal.pone.0020387.g022

Figure 23. Example cases where the internal simulation of
movements helps identify the correct letter. Left: incomplete
trajectories presented to the model (in blue) and corresponding via-
points extracted by perception. Right: the same trajectory with the
trajectory generated by internal motor simulation (in black) and
resulting via-points extracted by simulated perception (in red).
doi:10.1371/journal.pone.0020387.g023
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models, as a pendant to classical computer science structured

programs. This contrasts with the previously cited approaches that

mostly focus on ‘‘flat’’ models, with a single likelihood function and

a – usually informed – probabilistic prior distribution.

The recent ‘‘causal inference’’ model [59–61] is noteworthy, in

this regard, as it appears to stand halfway between the two

approaches: an internal, latent variable represents the number of

presented sources and weighs the relative contributions of two sub-

models. Each model perception under the assumption that there is

either one or two sources.

To get a more in-depth presentation of how all these models,

and other, relate, the interested reader can refer to a recent article

in which we proposed a treatment of several usual cognitive issues

[62]. In this paper, we show how probabilistic models of these

cognitive issues can be formally rewritten and cast in the notation

of Bayesian Programming, which then serves as a unifying

framework. (Formally, the class of models written in the Bayesian

Programming notation is the same as the class of models that can

be written using probabilistic factor graphs. This is a proper

superset of the models that can be written using Bayesian

Networks.) This is presented using an incremental traversal of

several Bayesian models, highlighting the corresponding gradua-

tion in structure complexity.

Concerning the BAP model, it is easily seen that it also heavily

features structured modeling. Indeed, the two central hypotheses

of BAP are related to its structure. Firstly, we assumed a

representation of letter that acts as pivot between perception

and action processes. Secondly, we assumed an internal loop

implementing a simulation of movement preparation and

perception. Conditional independence hypotheses also have been

used (see the dimension separability and Markov hypothesis of Eq.

(4)), simplifying the BAP model structure and making it

computationally tractable.

The main advantage, we believe, of the proposed approach lies

in its expressive power. In this view, Bayes’ rule is not restricted to

deal with the combination of prior probability distributions about

hypotheses and likelihood functions about observations. We apply

Bayes’ rule instead to combine various representations, and

conditional independence hypotheses to structure the relations

between these representations. In that regard, our approach is

clearly to be considered part of the ‘‘algorithmic’’ level of Marr’s

hierarchy of levels of analysis [63]. Alternatively, to use the

vocabulary of a recent discussion, it is part of the Bayesian

Enlightenment school of probabilistic modeling [64].

Of course, this expressive power comes at a price: experimental

validation of complex models with large number of parameters is

not easy. In previous research, we have validated models by

showing they closely predicted a large variety of experimental

results in the literature [65], independently of the fine tuning of

internal parameters. Another approach, inspired by psychophysics

and widely applied in related research, is to first calibrate the

model parameters on some experimental data of control

conditions, and then validate the model by its ability to predict

observations for test conditions. A third approach consists in

defining variants of a model and comparing their adequacy to

some experimental data using Bayesian model comparison

[56,66]. Because of the complexity of the BAP model, and its

large number of internal parameters, such methods are inadequate

for the BAP model. Therefore, we explored another approach: all

parameters being set, we compared predictions for a few variants

of the model. This allows the study of general properties of

structures of the variants under scrutiny. For instance, we studied

letter recognition both with and without activation of the internal

simulation of movements.

Experimental predictions. Indeed, because the translation

of assumptions into the model is so transparent in the probabilistic

framework, the BAP model can be seen as a basis; variants of BAP

can easily be created, and their performance can be analyzed in

various numerical simulations.

For instance, we have assumed that position and velocity

information was encoded at via-points, as suggested by previous

experiments [67]. It is then straightforward to remove, from the

current BAP formulation, velocity information from the model,

and to simulate both versions concurrently for a variety of tasks,

looking for situations where predictions are different. Moreover,

the Bayesian formalism easily accommodates the systematic search

of such distinguishable predictions [68].

The BAP model is also a fertile ground for producing testable

hypotheses in a more classical manner. Some properties of the

BAP model, as described in this paper, can already be the basis of

experimentation. We highlight one example here, which is

probably the most central to the current paper.

Consider the internal simulation of movement loop, and its use

in perception tasks. We have shown that, under the condition of

complete letters, the recognition rate was similar between the cases

where perception was based purely on sensory processing and

where it was complemented by simulated perception. However,

under the condition of truncated letters, we have shown examples

where pure perception would fail, whereas perception with the

internal simulation of movements would recover information so as

to identify the stimulus correctly.

In other words, there is a predicted interaction between the

difficulty of the recognition task and the use of internal simulation.

There are a number of ways to limit the use of motor simulation

experimentally; for example, the widespread Transcranial Mag-

netic Stimulation (TMS) technique. However, there are also more

low-tech solutions, such as interfering with the motor processes by

introducing a concurrent motor task. This has recently been

shown to be effective in a variety of situations, such as distance

perception [69] or letter recognition [4].

Based on this predicted interaction, we designed and are

currently running an experiment.

Learning representations of letters. As we have previously

argued, we believe that the BAP model, thanks to its mathematical

formulation, is a basis for exploring the properties of variants, in

order to study the relevance of underlying hypotheses.

Finally, we also argue that it is the basis for developing other

aspects of human letter perception and production, which we have

so far left out of our scope. Consider, for instance, the learning of

reading and writing.

In BAP, we have treated the learning of the model parameters

in a mathematically straightforward yet highly implausible

manner. For instance, the trajectories of the learning database

Table 3. Extracts of the probability distributions over letters,
with and without motor simulation.

f g h k l m n o p q r

With motor
simulation

0 0 0 0 0 0 0 0 0 1 0

Without motor
simulation

0 0.9 0 0 0 0 0 0 0 0.1 0

Extracts of the probability distributions over letters, computed as solutions to
the reading task with (top row) and without (bottom row) motor simulation,
when presented with the truncated g shown Fig. 23.
doi:10.1371/journal.pone.0020387.t003
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are fed in a single batch to the internal representation submodel,

which computes its parameter accordingly. We have also assumed

that motor control, and more precisely the general purpose

effector model, was available directly from the start and was highly

accurate (i.e., the effector and trajectory formation submodels are

deterministic, with no control noise and uncertainties added).

In other words, the BAP model, as presented in this paper, can

be seen as a highly skilled painter, adult and illiterate, who would

learn how to read by observing many letter samples and then

immediately be able to write as well as an expert. This is obviously

a model of a very specific and improbable case.

It is more usual for children to learn reading, writing, and motor

control simultaneously.

This implies that perceptual samples come from external

sources and also from early trials of the production of letters.

Whether this would help or hinder the formation of suitable

internal representations of letters is an open question, which would

be relevant to the study of the pedagogy of writing.

This question could also be tackled by exploiting a leverage that

we have not used in the current paper: even though the perceptive

and motor internal representation models are duplicated in BAP,

their content is so far always identical. The question of whether

they could be collapsed into a single representation, or whether

duplicate and coconstructed representations are needed, is still

open.

Supporting Information

Appendix S1 (‘‘Activation or deactivation of submodels: the

Bayesian switch’’) is provided as a supplementary material. It

describes the formal definition of Bayesian switches in the general

case, and the mathematical proof that some inferences yield

activation or deactivation of submodels it connects, thus making it

behave like a switch between submodels.

(PDF)
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