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Abstract

The paper is devoted to the development of a non overlapping Domain

Decomposition method adapted to granular dynamics. The formulation and

the efficiency of such a method are well established for structural mechanics.

In order to extend this approach to granular systems a so-called primal split-

ting of the domain is chosen because it is a less intrusive method for software

development. Once the interface problem is defined and the solver is slightly

enriched with some extra numerical parameters, the method is tested on rail-

way ballast simulations for improving the maintenance of railway tracks.
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1 Motivations

The simulation of more and more realistic granular media leads to intensive com-

putations. The size of the simulation increases both in term of number of bodies

or particles and of duration of the process to be simulated. The increase of the
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computations concerns then both the space and the time, because a granular sys-

tem presents often a complex dynamic behavior. Indeed dense collections of grains

subjected to dynamic loadings require large-scale samples simulated on a long time

to capture the local dynamic crises responsible of the global behavior of the sys-

tem. Many applications involve such dense assemblies as the sand piles, dunes,

blocky rocks, powders. We are here specially interested in a class of applications

for which the connectivity of the grains remains almost stable during the studied

process, as the masonry of monuments (before collapse) or the railway ballast.

The denominations of ‘discrete element methods’ and ‘distinct element meth-

ods’ (DEM) are commonly used to refer to the pioneering approach of Cundall

[11], today implemented in a large range of commercial pieces of software in-

tended to handle non-interpenetrability. Also, because the computation techniques

applied in such implementations are close to those of molecular simulations, the

denomination of ‘molecular dynamics’ (MD) method is also used, specially in the

domain of granular mechanics [16]. Such an approach is based on regulariza-

tion strategies both for the dynamics and the interactions between grains. First,

the non-interpenetrability constraints are replaced by some stiff ‘elastic’ repulsion

laws which take effect as soon as two members of the system come close to each

other. Similarly, frictional contact may be somewhat regularized through the intro-

duction [12] of a local elastic micro-deformation and of viscosity-like effects. The

dynamics of the approximate system is then governed by stiff differential equations

requiring a very small step-length in a classical explicit integration scheme.

The Non Smooth Contact Dynamics (NSCD) or Contact Dynamics in short,

has been developed by J. J. Moreau and M. Jean over the last two decades [21, 29].

It is well suited for our applications as characterized above. It does not use reg-

ularization of the nonsmooth frictional contact relations. Numerical simulations

thus may to be performed using a fully implicit resolution of the contact forces.

At each step of the evolution problem, all kinematic constraints within the packing

are simultaneously taken into account along with the equations of motion to deter-

mine all contact forces. Using a much larger time step than the MD method, this

allows us to deal properly with nonlocal momentum transfers involved in multiple

collisions, contrary to the classical DEM that consider the system evolution as a

succession of binary collisions.

The parallel computing may be useful for different stages of the calculation in

granular simulations: contact detection, partitioning and solver. If a classical MD

approach is used, we have no solver and the main effort has to be done on the con-

tact detection phase, see [27, 31] for instance. In this case the partitioning phase has

to be parallelized to optimize the load balance of the processors only if a Domain

Decomposition strategy is performed [23]. Since we use large time steps with the

NSCD approach for simulating granular systems involving moreover a stable con-

nectivity, we focus on the parallelization of a solver which combines the generic

NSCD solver identified to a Non Linear Gauss Seidel algorithm [22, 33] (NLGS)

and a Domain Decomposition Method (DDM). We resort to a DDM among all the

parallel techniques because of two reasons. First, in the long term, a DDM may

2



provide an automatic numerical homogenization procedure if a multiscale descrip-

tion is performed [24, 17, 26]. A discrete-continuous mixed model may be also

defined for a dense granular system which may be viewed as continuous medium

at a macroscale. Secondly, in the short term, a pertinent geometric decomposition

may at least reduce the computational effort in some subdomains far enough from

the solicitation to be in a stable mechanical state.

The first difficulty to deal with a DDM for a granular system is to split the

domain into subdomains because the system is discrete and the nonsmoothness

occurs within the whole domain and not only on a few surfaces as it is often the

case in structural mechanics [8, 15]. Since the system is discrete, we have two

possible strategies for splitting the domain. Starting from a box-like partitioning

[6] the primal strategy provides a nonsmooth interface, whereas the dual one leads

to perfect interfaces. The dual partitioning and the associated solvers require the-

oretical developments and are investigated in others papers concerning granular

mediums [19, 20] and previously tensegrity systems [32] or more general reticu-

lated structures [2]. We opt in this article for the primal partitioning because it is

the less intrusive approach for an industrial software. Such a method may be also

interpreted as a special renumbering of the contacts.

Secondly the evaluation of the efficiency of a new solver in comparison with

the previous one is a difficult topic because a dense granular system is an evolutive

nonsmooth problem leading to a large multiplicity of solutions [30]. Consequently

we have not relevant error estimates as underlined in [21]. Only the quality of the

computation may be appreciated using a set of qualitative indicators as presented

in the section 3.

This article is structured as follows. In section 2 the fundamental equations

of the Granular Dynamics are presented from the velocity-impulse formulation of

the NSCD to the NLGS generic solver. In section 3 the primal partitioning and

the resulting coupled DD-NLGS solver are detailed. In section 4 the ability to

distribute inhomogeneously the computational efforts into the subdomains of an

industrial application is discussed according some qualitative indicators before a

first attempt to evaluate the efficiency of the parallel treatment.

The deterioration of railway track under intense train traffics induces various

tracks irregularities in the track mainly due to differential settlement. In order to

restore the initial geometry of the track, the ballast tamping operation is currently

in use and some open point about ballast durability, track deterioration rate have to

be investigated in order to optimize maintenance. The opportunities to use Domain

Decomposition Methods allows to evaluate an industrial process over a represen-

tative portion of railway track for optimize the efficiency of a continuous process

in a granular media.
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2 Granular dynamics

2.1 Grain dynamics with nonsmooth interactions

The system considered is a collections of rigid bodies submitted to externel ef-

forts and non smooth interaction such as contact and friction. These interactions

assumed to be a finite number of ponctual contacts.

Its evolution is described with its velocity and its rotation rate, and since it

involves nonsmooth effects with velocity jumps, a scheme which is not built on the

derivability and continuity of velocity equations is used. Because of the very large

number of contacts involved in a dense granular media, a time-stepping scheme is

chosen rather than an event-driven one, which would lead to a too small time step.

Such a scheme, on a time slab ]ti, ti+1[ involves a discretized equation of dynamics

with impulses in its right-hand side [28, 29]:

M(V − V i) = Rd + R (1)

where M stores the mass and inertia matrix, V is the velocity (and rotation rate) at

ti+1, V i is the previous velocity at ti. Rd is the prescribed impulse on the studied

time slab, and R is the resulting impulse arising from the contact interactions. In

the following, (1) will denote the assembly of the nonsmooth dynamics of all the

grains.

For each potential contact α between two grains, the non penetration condition

enforces a positive gap: gα ≥ 0. The relative velocity is denoted vα. It can

be derived from the kinematics of the neighboring grains with a global-to-local

operator Hα as vα = HT
α V . The assembly for all the potential contacts reads:

v = HT V . The dual quantity is the assembly of the impulses on the grains, from

the impulse in the interactions rα as: R = Hr.

Moreau’s Lemma [29] allows to express the Signori conditions at each contact

with relative velocities and impulses for the normal part, denoted with a subscript n
(non penetration and no adhesion), and Coulomb friction model for the tangential

part, denoted with a subscript t, as:







if g > 0, r = 0

if g = 0, 0 ≤ vn ⊥ rn ≥ 0 and

{

if ‖vt‖ = 0, ‖rt‖ ≤ µrn

if ‖vt‖ 6= 0, rt = −µrnvt/‖vt‖
(2)

(these conditions are assumed to be expressed on each contact α separately). In the

following, they are gathered and formally expressed as a non-univoque and non

differentiable expression of the form: R(r, v) = 0.

2.2 Reference problem

The reference problem can be expressed in the reduced dynamics form by invert-

ing the system (1) (it is block diagonal for each grain, and even diagonal if the
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velocities are expressed at mass centers, and rotation rates in each principal inertial

basis) and using the operators H and HT , to get, at each time step:

v = vd + Wr (3)

R(r, v) = 0 (4)

where W = HT M−1H is the Delassus operator, and the given quantity is vd =
HT (M−1Rd+V i). The unknowns are the couples of impulse and relative velocity

at each potential contact (r, v).
Once solved, the positions are updated with an integration scheme, the con-

tact detection is performed (the potential contacts may evolve from a time step to

another), and the next time step is searched for. As already specified, we are con-

cerned herein in the parallelization of the solver but not of the contact detection

phase, though this may be costly too, but for which several existing methods are

already available, see [7] for instance.

2.3 Non Linear Gauss Seidel solver

A nonlinear Gauss-Seidel (NLGS) applied to the reference problem (3), (4) on the

current time step is the following:

• Initialization: compute the “free” velocity by solving dynamics on each

grain: Vfree = M−1Rd, and vd = HT (Vfree + V i); for each contact α,

extract Wαα =
∑

j HT
jαM−1

j Hjα where the sum is performed on the grains

j connected to the contact α.

• Iterate: for each contact α, solve

Wααrα − vα = −vd
α −

∑

β 6=α

Wαβrβ (5)

R(rα, vα) = 0 (6)

To do so, the right hand side is evaluated as follows; for each grain j con-

nected to the contact α, solve the dynamical equation: MjVj =
∑

β 6=α Hjβrβ

and assemble the contributions:
∑

j HT
jβVj . Once the right hand side is com-

puted, the current iterate can be solved explicitly for the normal contact part.

For the tangential part, if the search direction Wαα is diagonal, the solution

is explicit as well; if not, a small non linear system has to be solved in 3D,

for instance with a generalized Newton method [1] . Once each contact has

been dealt with, the loop is performed again. Such an iteration is called a

sweeping iteration because the set of contacts is swept.

The iterations are performed till a convergence criterion is satisfied. For large-scale

industrial problems, the selection of a pertinent termination criterion is still an open

question [21]. A check on the penetration residual at contact, and a stationary

condition, are usually part of it.
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The overall implicit solver is known as Non Smooth Contact Dynamics (NSCD)

and is implemented into the LMGC90 platform [13] All the subsequent develop-

ments are also performed in the same platform.

3 Domain Decomposition solver

To address the case of large-scale problems, a partitioning strategy belonging to the

domain decomposition methods (DDM) is selected. In this Section, a non overlap-

ping DDM [9] is designed for the case of discrete problem that exhibits several

non smoothness: the dynamics of a rigid body collection, and the frictional contact

and impact interactions between them. Moreover, since an evolution problem is

settled, the configuration (connectivity between grains with potential contact de-

tection) may change at each time step. Previous studies have addressed the case

of discrete static problems with unilateral conditions and compliance, as well as

a fixed configuration (case of tensegrity structures) [32, 2], and also granular dy-

namics with a different DDM design [19, 20]. Indeed, the proposed DDM in this

article deals with an algebraic partitioning of the reference problem (3) allowed by

the chosen partitioning described in the following.

3.1 Geometric and algebraic partitioning

The proposed geometric partitioning relies on a graph partitioning, cf. [25] for

instance, using the coordinates of the vertices: a box-like partitioning is used herein

[6] that allows to get a locality of data useful for a parallel implementation. This

feature is an add-on when compared to the previous study [33] and will allow an

algorithm design that is suited to both shared and distributed memory architectures.

Figure 1: Left: a simple connectivity between grains (1 to 4) with potential contacts

(a to e). Middle: the corresponding dual graph. Right: the corresponding primal

graph.
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Figure 2: Box-decomposition of a 2D granular media (left) and its principle (right)

Figure 3: Primal decomposition (left) with links as interface, dual decomposition

(right) with nodes as interface

Considering the granular system as an assembly of nodes (grains) and links

(potential contact interactions detected at a particular time step), two splittings can

be considered, Figures 1, 2 and 3:

• If a graph is defined with nodes as vertices, and links as edges (the primal

graph), the nodes can be split among the subdomains (considering their cen-

ter of mass coordinates, and the box-like decomposition of the domain);

• If a graph is defined with links as vertices, and nodes as edges (the dual

graph), the links can be split among the subdomains (considering the coor-

dinates of the barycenter of the two grains that posses a potential interaction,

and the box-like decomposition of the domain), as in [20].

We choose herein to use the primal splitting. In such a case a node belongs to

only one subdomain, and the global interface is constituted with links that traduces

an interaction between two nodes belonging to different subdomains. The behavior

of this interface is therefore non smooth, and non smoothness is also located within

each subdomain for the internal links (between two nodes belonging to the same

subdomain).

The DDM allows to define quasi-independent blocks via a geometrical split-

ting of the domain. A subdomain is therefore a granular system itself, coupled

with its neighbor by specific boundary conditions arising from a global interface.

As soon as these boundary conditions are known (within each DDM iteration), a

subdomain resolution is a granular independent problem, and can reuse an existing

solver technology on a particular processor. The global interface treatment is also
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a standard resolution, but dealing only with links behavior since no node is located

in this interface.

We choose herein to consider the global interface treatment in a specific step

to produce a synchronized algorithm. An other solution could be to parallelize the

interface treatment by splitting itself into different processors [14], but this would

lead to an asynchronous treatment. Two arguments are used to motivate our choice:

• The global interface treatment is expected to be cheap due to the interface

nature (this will be justified in the numerical results Section);

• Since the granular dynamics problem is a multi-valued problem, an asyn-

chronous algorithm will produce a different local solution at each run [33].

The algebraic partitioning of the reference problem (3) is performed in the fol-

lowing. Since a partition of nodes is performed, each node belongs to one subdo-

main only. Therefore, all the node-based fields (grain velocity, grain impulse) can

be split accordingly. Let E and E′ denote two subdomains for sake of simplicity;

one gets:

V =

[

VE

VE′

]

and R =

[

RE

RE′

]

(7)

The case of link-based quantities is somehow different. Indeed, since links can

be internal ones (denoted with a subscript E for a subdomain E) and links on

the global interface (denoted with a subscript Γ), the relative velocities and the

interaction impulses are split as:

v =





vE

vE′

vΓ



 and r =





rE

rE′

rΓ



 (8)

The dynamical evolution of the grains on the subdomain E is therefore:

MEVE = MEV i
E + Rd

E + RE + REΓ (9)

RE is the assembly of internal interaction impulses, while REΓ is the assembly,

at the subdomain E level, of the impulses of Γ acting on E (EΓ denotes the local

interface of subdomain E, i.e. a part of the larger global interface Γ). A consistent

splitting of the operator H leads to the following admissibility conditions. Note

that since each subdomain is independent from each other, the block decomposition

of H into h can be used as well:

RE = HEr = hErE and REΓ = HEΓr = hEΓrΓ (10)

Γ can be seen as a particular subdomain constituted of interactions but no grains.

Similarly, one gets:

vE = HT
EV = hT

EVE and vΓ =
∑

E

HT
EΓV =

∑

E

hT
EΓVE (11)
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The condensed dynamics on each subdomain and interface leads to an algebraic

splitting of the reference problem (3):





vE

vE′

vΓ



 =





vd
E

vd
E′

vd
Γ



 +





WE 0 WEΓ

0 WE′ WE′Γ

WΓE WΓE′ WΓ









rE

rE′

rΓ



 (12)

where

vd
E = hT

E(V i
E + M−1

E Rd
E)

vd
Γ =

∑

E

hT
EΓ(V i

E + M−1

E Rd
E)

WE = hT
EM−1

E hE

WEΓ = W T
ΓE = hT

EM−1

E hEΓ

and

WΓ =
∑

E

hT
EΓM−1

E hEΓ (13)

Note that due to the diagonal character (at least per block, corresponding to

each grain) of ME , and to the fact that hEΓ is a signed boolean matrix with at

most one non null entry per column (an interface link is at most connected to one

grain in a subdomain), WΓ is almost a diagonal matrix (the slighly not diagonal

character came from possible rows in hEΓ with more than one non null entry: a

grain may have more than one interface link). Therefore, it is expected that the

interface problem, dealing with left-hand-side WΓ will not be costly.

3.2 DD-NLGS algorithm

A typical Jacobi splitting of a coupled system naturally leads to a parallel treatment

of the resolution. With the previous algebraic splitting, a bloc Gauss-Seidel will

also lead to a parallel treatment of all the subdomains. Since we wish to sequen-

tialize the treatment of the global interface to obtain a synchronous algorithm, we

propose the following Gauss-Seidel-like splitting of the previous problem (12):





WL
E 0 0

0 WL
E′ 0

WEΓ WE′Γ WL
Γ









rE

rE′

rΓ



 −





vE

vE′

vΓ



 =

= −





vd
E

vd
E′

vd
Γ



 −





(WE − WL
E ) 0 WEΓ

0 (WE′ − WL
E′) WE′Γ

0 0 (WΓ − WL
Γ

)









rE

rE′

rΓ



 (14)

where the superscript L refers to the lower diagonal part (including the diagonal).

To close the problem (at each time step), one has to add the constitutive behav-

ior of the interactions, i.e.

R(rE , vE) = 0, R(rE′ , vE′) = 0 and R(rΓ, vΓ) = 0 (15)
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The corresponding generic program is described in Algorithm 1. This algo-

rithm is suited to a shared memory parallelization via compiler directives (typ-

ically, OpenMP paradigm [10]); for a distributed memory, data synchronization

should be ensured by ad hoc communications between processors to exchange in-

formation (typically, with MPI library), but this is not detailed herein. For sake of

simplicity, we choose herein to perform a domain partitioning at each time step to

cope with connectivity modifications (new contact detection at each time step).

There are two additional parameters when compared to a sequential algorithm:

the number of sub-iterations n and m. Due to the previously mentioned quasi-

diagonal character of WΓ, one could choose m = 1. The frequency of interface

updating, i.e. the parameter n, has to be chosen from experiments. This is the goal

of the following tests.

Algorithm 1 DD–NLGS

Loop on time steps

for i = 1, 2 . . . do

position prediction and potential contact detection

Domain partitioning

Parallel loop on subdomains

for E = 1, 2 . . . nSD do

Compute free velocities per subdomain E
end for

Loop on DDM iterations

for j = 1, 2 . . . nDDM do

Parallel loop on subdomains

for E = 1, 2 . . . nSD do

NLGS resolution per subdomain E, with n sweeping iterations

Compute error contribution of subdomain E
end for

NLGS resolution on global interface Γ, with m sweeping iterations

Compute error contribution of interface Γ
Assemble error contributions, to check for loop termination

end for

Parallel loop on subdomains

for E = 1, 2 . . . nSD do

Compute nodal quantities (velocities and position updates)

end for

end for

The first numerical study aim to settle recommendations for the choice of the

additional parameters n and m. Consequently with the previously mentioned spar-

sity of WΓ, we first select m = 1. The proposed test case concerns a slice of a

ballasted railway containing 28 608 ballast grains (polyhedra) and an average of

120 500 frictional contact interactions between grains, with a friction coefficient
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Figure 4: The first test case. One slice of a ballasted railway with one sleeper (only

half of the slice is modeled here)

µ = 0.7. The grains are also in contact with a sleeper with a friction coefficient

µs = 2. Finally, there are 3 planes delimiting the sample, and one plane for the

ground, each with a friction coefficient µp = 0.8. Figure 4 illustrates the initial

state. This study investigates the behaviour of ballast grain under the dynamic

track stabilizer which simulate during a few second a railway traffic to restore the

initial level of lateral resistance of track before tamping operation [3]. The load-

ing is a vertical descending force on the sleeper with an amplitude 120 kN, and a

lateral speed prescribed on the same sleeper, in the Y direction with an amplitude

0.237 m/s at a frequency of 30 Hz, but only the beginning of the evolution is com-

puted since the studied time interval is [0, T ] with T = 0.02 s (it is discretized in

time with 100 time steps).

The reference solution is obtained with 100 sweeping iterations within each

time step on the whole domain. For the domain-decomposed problem, 3 × 3 × 3
subdomains are used, and we check several cases with a variable n and a variable

number of DDM iterations nDDM, while maintaining an overall number of sweep-

ings n × nDDM roughly constant: (nDDM = 100, n = 1), (nDDM = 50, n = 2),

(nDDM = 33, n = 3) and (nDDM = 25, n = 4). To check the obtained solution in

each case, several physical quantities of interest for the ballast [34, 5]) are used:

• the inertia parameter I = ε̇
√

m/(dp), measuring the quasistatic character of

the problem [18], where d and m are the average size and mass of the grains,

p the average pressure, and ε̇ the mean strain rate.

• the spleeper settlement δ, i.e. the vertical displacement of the sleeper,

• the number of single contacts between grains n1,
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• the compactness c, which is the solid fraction of the sample (the ratio be-

tween the sum of the volumes of the grains in the sample and the volume of

the sample).

The time evolution of these quantities is reported on Figure 5 for the different

cases. All of them leads to the same conclusion: The most accurate solution (for

a roughly constant cost in terms of computer operations) is obtained with n =
1. This conclusion holds for several decompositions with a different number of

subdomains: 1 × 1 × 1 (reference problem), 2 × 2 × 1, 2 × 2 × 2, 3 × 3 × 3,

4 × 4 × 4 and 5 × 5 × 5 subdomains. In each case, with (nDDM = 100, n = 1)

the obtained solution is comparable: the number of single contacts varies only by

0.44 %, the compactness by 0.004 %. The vertical settlement of the sleeper varies

by 2 % and the maximal deviation is obtained from the inertia parameter (6 %); the

evolution of these last two quantities are depicted on Figure 6.

Note that even the solution obtained with nDDM = 100 and n = 1, how-

ever close to the reference for the above quantities of interest, does not reproduce

exactly the reference solution. Indeed, this granular problem has a plurality of so-

lutions and even a modification in the contact ordering for the iteration may lead to

a different local solution [30]. For checking that such a local solution is feasible,

several error indicators are computed, such as the relative residual interpenetration

in volume to ensure a good numerical solution. An example of this numerical indi-

cator is presented in Figure 7, for the case with 125 subdomains. The other global

physical quantities (such as compactness, vertical settlement...) are the quantities

of interest to select the optimal parameters n and nDDM, to avoid bias in physical

results and to allow a sensitivity analysis on the physical parameters of the process

(frequency and amplitude of the sollicitation).

As a partial conclusion, the number of synchronization points with the interface

has to be sufficiently large to ensure the coupling between the subdomains. Indeed,

from a parallel efficiency point of view, one would prefer to increase granularity by

allowing the subdomain to maintain a large number of local computations without

exchanging data with the interface. In the following, we privileged the convergence

rate for the solution by selecting n = 1.

4 Numerical results

4.1 Qualitative study on the tamping process

The first numerical investigation focused on the influence of the number of solver

iterations per subdomain which can be fixed by considering the mechanical con-

straint imposed to the granular sample. In our case we suppose that the tamping

of the first sleeper dop not modify the ballast behaviour far from the tamped one.

The industrial tamping process consist of three phases after the sleepers have been

lifted :

• The tamping tines are inserted around the sleepers,
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Figure 5: Case with 9 subdomains. Comparisons of several strategies on 4 physical

quantities
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Figure 8: A railway slice of seven sleepers with tamping tines

• Then the tamping tines squeeze the ballast to fill the voids under the sleeper,

• Finally the tamping tines are removed.

The simulation of such a process allows to perform parametric studies to eval-

uate the influence of different parameters. For instance a previous study [5] un-

derlined the importance of the first phase which contributes to fifty percent of the

final compaction gain. The simulations showed also that low speeds of penetration

improve the final compaction gain.

We focus attention on the first phase but applied to a large scale problem repre-

senting a long railway slice with seven sleepers. (In the long term the process has

to be simulated sequentially or simultaneously on several sleepers for both accel-

erating and improving the maintenance.) The tamping tines are inserted around the

second sleeper. The railway slice now contains 90 000 grains and around 300 000

contacts. The domain is split into seven subdomains under the seven sleepers ac-

cording to the Figure 8. The main objective is here to test the possibility to reduce

the computations in the subdomains far from the tamping tines. For that we per-

form five multidomain computations with different sweeping iteration number per

subdomain according to Table 1. To carry on such a strategy starting from the Al-

gorithm 1, the parameters are fixed as follows: nDDM = 800, n = 1, m = 1.

But for some subdomains (4 to 7 for the Run1 for instance) n = 0 as soon as

j > 700 as illustrated in Table 1. The reference run requires 800 sweepings for

all the subdomains whereas three runs require a decreasing sweeping number from

the sleeper 4 to the sleeper 7. The last run is quite special with a small sweeping

number for the sleeper 4 and a slightly increasing number for the following ones.

We fix the number of sweeping iterations because we do not have relevant error

estimates to control the computation. The quality of the computation is appreciated

according to a set of qualitative indicators mixing error estimates and quantities of
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Table 1: Distribution of the sweeping number per subdomains (sleepers)

Sleeper # 1 2 3 4 5 6 7

Reference 800 800 800 800 800 800 800

Run 1 800 800 800 700 700 700 700

Run 2 800 800 800 700 600 500 400

Run 3 800 800 800 700 500 300 200

Run 4 800 800 800 100 200 300 400
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Figure 9: Volume error (interpenetration) under the sleepers 3 and 4, for the 5 runs

mechanical interest. Three of them are discussed in the following: the volume

error quantifying the geometrical interpenetration, the compactness c, the inertia

parameter discriminating dynamic versus quasistatic regime.

The more interesting results concern the sleepers 3 and 4 and the run 4. In

Figure 9 the interpenetration error remains admissible (less than 2 %) in the two

subdomains and for all the runs except under the fourth sleeper and for the run 4.

That means that 100 sweepings are not sufficient to avoid interpenetration, but this

error is not propagated toward the neighboring subdomain 3.

In Figure 10 the evolution of the compacteness is given. The main difference

occurs yet with the run 4. The compactness is overestimated under the sleeper 4

and underestimated under the sleeper 3. Then the lack of computation under the

sleeper 4 perturbs this indicator also under the sleeper 3.

In Figure 11 the inertia parameter is compared under the same sleepers. This

indicator is slightly perturbed by the lack of iterations of the run 4 under the sleeper

4 where the regime remains quasistatic during the process. On the contrary this

parameter is clearly modified at the end of the process under the sleeper 3 where it

is overestimated.

This study shows the possibility to distribute the computational effort accord-

ing to solicitation but with some precautions. The number of sweepings cannot be

drastically reduced in a subdomain weakly loaded but close to a strongly loaded

subdomain.
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Figure 10: Compactness under the sleeper 3 and 4, for the 5 runs
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Figure 11: Inertia parameter under the sleeper 3 and 4, for the 5 runs

4.2 Parallelization strategy with OpenMP

Figure 12: Sample with 2 000 grains and an harmonic force

In this Section, we analyze the efficiency of the parallelization strategy with OpenMP

[10] on the previous DD–NLGS algorithm.

The analysis focused on a confined sample of polyhedral grains submitted to

an harmonic force. The sample is contained in an open cubic box of 50 cm edge.

One of the wall is submitted to an harmonic force along X direction : f(t) =
Fmax(1 − sinωt) with Fmax = 5 kN, a frequency of 5 Hz, and a time interval

[0, 0.02 s] discretized in 100 time steps. The mechanical behavior of such a sample

under an harmonic driving force is analyzed with more details in [4].
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Herein, to estimate the effect of the parallelization on the resolution part, we

use one sweeping iteration (n = m = 1) but a large number of DDM iterations

(nDDM = 10 000).
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Figure 13: Execution time of the sample split into 4 subdomains

A first decomposition with nSD = 2×2×1 = 4 subdomains is tested. The com-

putation is performed on a 2 Dual-Core processor machine, i.e. with a resource of

a maximum of 4 processors. The reference case (sequential) and the 4-subdomain

decomposition are tested with different numbers of processors (1 to 4). Figure 13

reports the elapsed time spent for the sole treatment of subdomains and for the total

simulation, along with the number of processors. With 4 subdomains, the elapsed

time in the parallel region is approx. 80 % of the total computation time.
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Figure 14: Performance of the parallelization with 4 subdomains

To assess the parallelization, the speedup is defined as: Sp = Ts/Tp where Ts

is the execution time of the sequential algorithm and Tp is the execution time of the

parallel algorithm on p processors. The ideal speedup is obtained when Sp = p.

The efficiency is: Ep = Sp/p and is typically in the range [0, 1]. Both are depicted

in Figure 14.

For the parallel region of the code, the case of 2 running cores gets the best

efficiency. For 4 cores, it is still of 78 %. However, a low efficiency is obtained

for 3 cores; indeed, the unbalance of the amount of computation is large, since one

processor is idle when the 3 remaining ones have been assigned to 1 subdomain
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each. Of course, the parallel ratio of the overall code is less that that of the parallel

region, and the efficiency is lower for the total run (Ep = 60% for p = 4). Indeed,

the interface treatment, contact detection, decomposition of the domain are still

sequential parts of the code.
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Figure 15: Influence of the number of subdomain, for a fixed number of processors

(p = 4). Left: percentage of elapsed time spent on different parts of the code;

right: speedups

Since the number of DDM iterations nDDM is large, the cost is dominated by the

interface and subdomain treatments; Figure 15 (left) reports the percentage of time

spent in these different regions of the code, with different numbers of subdomains

nSD.

Table 2: Total elapsed time for several splittings

Number of subdomains Total elapsed time / s

nSD sequential 1 proc. 2 proc. 3 proc. 4 proc

4 = 2 × 2 × 1 7757 7964 4427 4761 3263

9 = 3 × 3 × 1 8168 8322 5279 4772 4412

12 = 2 × 3 × 2 8082 8268 5597 4724 4180

16 = 1 × 4 × 4 8320 8482 5608 5291 4707

27 = 3 × 3 × 3 8315 8477 5665 5189 4788

32 = 4 × 2 × 4 8413 8571 6168 5459 5088

125 = 5 × 5 × 5 8824 8974 7044 6381 6106

Indeed, when increasing the number of subdomains, the size of the interface

increases along with its dedicated percentage of time. Since the treatment of the

interface is a sequential part in the algorithm, the speedup is expected to decrease

when increasing the number of subdomains, though a better load balancing is ob-

tained when the number of subdomains is a multiple of the number of processors.

This is reported in Table 2 and Figure 15 (right).

18



5 Conclusions

The improvement of industrial process or the increase of knowledge of the physi-

cal behavior of granular material require usage of numerical simulations which can

produce a large volume of data for deep post-processing [5]. The analysis of gran-

ular simulations give some orientation to characterize the mechanical behavior, but

the variability of the system behavior under the external solicitations remains a

hard task to solve. The development of numerical methods with parallelism is also

an opportunity to perform statistical study of large sample.

The DDM approach proposed in this paper allows to decrease computational

efforts by using parallel algorithm without any difference with a sequential ap-

proach. The application of the approach on several railway industrial process cur-

rently used for maintenance gives the opportunity to qualify quickly the influence

of some parameters. The tamping operation has been investigated on a portion of

railway track and we can exhibit the influence of the process on other sleepers and

the variability of compaction gain. This parameter is crucial to obtain the lowest

differential settlement under cyclic loading and to propose orientations to decrease

maintenance cost.

Since we choose only one sweeping iteration per DDM iteration (n = 1) to

privilege a higher convergence rate, the best performances are obtained when the

interface is as small as possible, because it is a bottleneck for parallelization (of

course a fine grain parallelization of the interface treatment at the contact level

would also be possible). Usually it leads to select a small number of subdomains,

i.e. equal to the number of processors. To avoid a load unbalance among the subdo-

mains, a first criteria could be to have a similar number of contact per subdomain,

and therefore to use a direct partitioning of the potential contact graph to split the

grains in subdomains. Up to now, only a geometric box decomposition has been

used, with good results if the granulometry and the density of the granular sample

is uniform. The first results have been obtained in parallel on a small sample, and

on a small number of processors. The treatment of a larger problem, say the full

industrial tamping process on the seven-sleeper case, and eventually with a larger

number of processors, will be required to completely validate the proposed strategy

on a multicore environment.
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[5] E. Azéma, F. Radjai, and G. Saussine. Quasistatic rheology, force trans-

mission and fabric properties of a packing of irregular polyhedral particles.

Mechanics of Materials, 41(6):729–741, 2009. Advances in the Dynamics of

Granular Materials.

[6] P. Breitkopf and M. Jean. Modélisation parallèle des matériaux granulaires.
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