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1LaBRI CNRS (UMR 5800 Université Bordeaux), 33405 Talence Cedex, France
2 University of Rennes I - CNRS UMR 6074, IRISA, F-35042 Rennes,France

3 INRIA, VisAGeS U746 Unit/Project, IRISA, F-35042 Rennes, France
4 INSERM, VisAGeS U746 Unit/Project, IRISA, F-35042 Rennes, France

5 University Hospital of Rennes, F-35043 Rennes, France
6 Technicolor Corporate Research Rennes Laboratory, France

October 17, 2011

Abstract

The registration of intraoperative ultrasound (US) images with pre-
operative magnetic resonance (MR) images is a challenging problem due
to the difference of information contained in each image modality. To
overcome this difficulty, we introduce a new probabilistic function based
on the matching of cerebral hyperechogenic structures. In brain imag-
ing, these structures are the liquid interfaces such as the cerebral falx
and the sulci, and the lesions when the corresponding tissue is hypere-
chogenic. The registration procedure is achieved by maximizing the joint
probability for a voxel to be included in hyperechogenic structures in both
modalities. Experiments were carried out on real datasets acquired dur-
ing neurosurgical procedures. The proposed validation framework is based
on (i) visual assessment, (ii) manual expert estimations , and (iii) a ro-
bustness study. Results show that the proposed method (i) is visually
efficient, (ii) produces no statistically different registration accuracy com-
pared to manual-based expert registration, and (iii) converges robustly.
Finally, the computation time required by our method is compatible with
intraoperative use.

1 Introduction

Due to its low cost, its real-time imaging capabilities, and its non invasive nature,
ultrasound (US) imaging has become a popular modality. These attributes
have been used for a large number of clinical applications. In neurosurgery,
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ultrasound imaging has been employed in many cases of brain examinations over
the last two decades [41]. Several studies demonstrated that ultrasonography
can be used for locating tumors, defining their margins, differentiating their
internal characteristics, and for detecting of brain shift and residual tumoral
tissues [9]. At present, 3D US imaging is integrated within the neuronavigation
systems to provide a useful and efficient intraoperative tool [44]. Ultrasound
imaging has also been shown to be a promising method for quantifying and for
correcting brainshift in Image-Guided Neurosurgery (IGNS) [2,3,5,13,15,21,27,
28,33,36,37].

During a neurosurgical procedure, the ultrasound probe is tracked by the
neuronavigation system which computes the 3D positions and orientations of the
B-scans. Matching between the intraoperative US images and the preoperative
MR image is ensured by a rigid registration. In phantom [5] and animal studies
[28], the matching accuracy between intraoperative B-scans and preoperative
images has been quantified between 1.5mm and 3mm. Nevertheless, in clinical
context, the matching error can reach 10mm (see Table 1). This error includes
tool calibration errors (the position localizer and the US probe), tool localization
errors (tracking system error), and registration errors from the neuronavigation
system.

Registration approaches based on classical image similarity measures such
as the Sum Square Difference (SSD), Mutual Information (MI) or Correlation
Ratio (CR) are known to fail to robustly register MR and US images [40].
Therefore, other options have been investigated.

• a) Landmark-based registration represents the majority of the approaches
[5,13,21,34,36,37]. The motivation is bound to the difficulty of finding a
function matching US image intensities with MR image intensities. These
methods are based on the matching of manually defined points [13], lines
representing the vascular system [5,34,36,37], or cortical surface [21].

• b) Intensity-based approaches using histogram-based similarity measures
tend to overcome the problem by preprocessing the images in order to
register more similar images [2, 26].

• c) By introducing the Bivariate Correlation Ratio (BCR), Roche et al. [40]
incorporated the transformation of MR to pseudo-US image as a function
into the similarity measure.

In this paper, we propose a new objective function based on the matching of
the cerebral hyperechogenic structures such as sulci and the cerebral falx, and
the lesion when the corresponding tissue is hyperechogenic. The registration is
achevied by maximizing the correlation value between the US image and the
probabilistic map of hyperechogenic structures estimated from MR image. The
proposed method is thus a compromise between landmark and intensity-based
approaches:

• As with landmark-based approaches, only regions considered as relevant
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are used to drive the registration procedure. In our method, these regions
are the hyperechogenic structures of the brain.

• As with intensity-based methods, the proposed approach does not require
segmentation of the US image what is a challenging problem.

2 Materials and Methods

2.1 Method overview

The scheme of the overall workflow is presented in figure 1. First, the “hyper-
echogenic” structures present in MR image (i.e. the structures visible in MR
image expected to be hyperechogenic in intraoperative US) are detected with
the MLvv operator [12, 29]. In brain imaging, these structures are the liquid
interfaces such as the cerebral falx and the sulci, in addition to the lesions when
the corresponding tissue is hyperechogenic (e.g. carvernoma or glioma). The
curvature-based MLvv operator was first introduced in [12, 29] before being
used to detect the sulci and the cerebral falx in [22–24]. The US image and
the probability map of the hyperechogenic structures extracted from MR image
are then registered by maximizing the probability for a voxel to be included in
hyperechogenic structures in both modalities.

Contrary to histogram-based approaches that match all the information in
both images, the proposed approach consists of matching only hyperechogenic
structures [6], which makes it more robust to artefacts such as acoustic shadows.
Indeed, in US imaging, the bright areas provide information on the underlying
structures whereas the dark areas can correspond to the underlying anatomical
structure or acoustic shadows [16]. Moreover, the accuracy of sulci matching is
an important issue since these structures are used by the neurosurgeon during
the neurosurgical procedure [19]. Finally, by using the natural property of US
imaging to detect the hyperechogenic structures, the method does not require
segmentation of the US image. This way, the method is less sensitive to error
of US image segmentation and is less time consuming during the intraoperative
stage.

2.2 Probabilistic objective function

The proposed registration process is based on the estimation of the transforma-
tion T̂ maximizing the joint probability for a voxel X = (x, y, z) to be included
in hyperechogenic structures in both modalities:

T̂ = argmax
T

∫

Ω

p(X ∈ ΦUS , T (X) ∈ ΦMR) dX (1)

where p(X ∈ ΦUS) is the probability for X to be included in an hyperechogenic
structure from the US image and p(X ∈ ΦMR) is the probability for X to be
included in an hyperechogenic structure (in the sense of the ultrasound image)
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from the T1-w MR image. Assuming that the probabilities are independent, we
can write:

T̂ = argmax
T

∫

Ω

p(X ∈ ΦUS).p(T (X) ∈ ΦMR) dX (2)

Our objective function can be viewed as the maximization of the correlation
value between the two probability maps of hyperechogenic structures extracted
from both modalities.

2.3 Construction of the probability maps

In order to construct the probability maps, we define a function f matching the
intensity of both the US image and the MR image with the probability for X

to be included in hyperechogenic structures:

p(X ∈ Φ) = f(u(X)) (3)

where u : Ω 7−→ R is an image defined on Ω.

2.3.1 Intraoperative US image

For the intraoperative US image U , by definition f is the identity function.

p(X ∈ ΦUS) = U(X) (4)

The intensity of U are only scaled between 0 and 1 during surgery to fit with
our probabilistic framework.

2.3.2 Preoperative MR image

For the preoperative MR image V , the evaluation of f is done prior to surgery
and is based on both the detection of the liquid interfaces with the MLvv

operator and the segmentation of the pathological tissues.
The Lvv operator is a robust intensity-based curvature detector [12] based

on the first and second derivatives of the image intensities. The first and second
derivatives are combined to obtain an operator less sensitive to flat areas with
low gradients. This kind of operator is used to detect ridge-like features in
images, with negative value for crests in the intensity domain and positive value
for valleys in the intensity domain. In [29], the MLvv has been proposed for
multimodal registration of CT and MR images. In our case, as in [22–24], the
MLvv is used to extract the hyperechogenic structures (sulci, cerebral falx)
from T1-w MR image. Overall, curvature information has been used by several
other authors to characterize cortical features [4,38,43]. Most of these methods
are based on geodesic curvature computed on cortical surfaces.

In T1-w MR images, the sulci are valleys (negative ridges) in the intensity
domain. By using the positive values of MLvv, the sulci and the cerebral falx
can be efficiently detected [22–24]. Figures 2, 3 and 4 show the positive values
of MLvv operator.
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Finally, our function f is defined as :

p(X ∈ ΦMR) = MLvv(V (X))IM1(X) + Ψ(X)IM2(X) (5)

where IM is the indicator function for the set M:

• M1 = {X ∈ Ω, such that MLvv(V (X)) > 0}

• M2 = {X ∈ Ω, such that X belongs to the lesional tissue}

As for the US intensities, the positive values of the MLvv are scaled between 0
and 1. The MLvv operator is defined in 3D as :

MLvv(V (x, y, z)) = −

1
2‖~w‖2

[

∂V (X)
∂x

2
(
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(6)

where ‖~w‖2 = ∂V (X)
∂x

2
+ ∂V (X)

∂y

2
+ ∂V (X)

∂z

2
. Ψ(X) is the probability given to X

in the segmentation of pathological tissue M2. Ψ is used to incorporate a priori
on pathology. For pathological tissue such as cavernoma or low-grade glioma,
Ψ(X) is high since these tissues are hyperechogenic.

2.4 Preprocessing of the MR data before surgery

First, skull stripping is performed from the T1-w MRI sequence [30]. We choose
to remove the skull prior to MLvv computation because this structure does not
appear in the area of the craniotomy. The raw MR images are then denoised
using an optimized Non Local Means filter1 [8] before applying the MLvv oper-
ator to the brain tissues. The use of a denoising stage makes the computation of
the MLvv more stable. Indeed, the presence of noise may create false positive
or negative curvatures which could bias the registration framework. After ap-
plying the MLvv operator, only the positive values (i.e. the sulci and the falx)
are kept in the processing stream. Finally, the MLvv map and the segmentation
M2 are merged together (see Fig. 2, see Fig 3 and Fig. 4). In our experiments,
the segmentation of pathology was manually performed by the neuroanatomist
before the surgical procedure (see Fig. 1). The computational time required
by preprocessing steps performed during preoperative stage was 4 minutes for
skull stripping and 3 minutes for denoising on a Pentium M 2GHz. In addition,
3-8 minutes were required for manual segmentation of the lesion according to
its size on a Stealth Station TREON (Medtronic Inc., Minneapolis, USA). Since
these steps are performed before surgery, there is no impact of on practical value
of the proposed method.

1https://www.irisa.fr/visages/benchmarks/
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2.5 Data acquisition

T1-w SENSE 3D sequences were used to acquire preoperative T1-weighted MR
images on a 3T Philips Gyroscan scanner (Best, the Netherlands). During the
neurosurgical procedure, the US probe (Sonosite Inc. Bothell, WA. USA, cra-
nial 7−4MHz probe) was tracked by the Polaris cameras of the Stealth Station
TREON (Medtronic Inc., Minneapolis, USA). The Sononav software of the neu-
ronavigation system was used to acquire the 2D B-scans and the probe positions.
From the 2D B-scans and their positions, a 3D volume was reconstructed with
the Probe Trajectory method [7]. The experiments were carried out on 3 pa-
tients. For each patient, a sequence of images was acquired before opening the
dura. Some studies have considered quantitative measurement of brain shift
during surgical procedures and showed that non significant displacement oc-
curred before dura opening [17,39]. Thus, we assumed that the transformation
between intraoperative US and preoperative MR was rigid. The characteristics
of reconstructed volumes are:

• for patient 1 a 3D volume of 486 × 462 × 206 voxels with a resolution of
0.15× 0.14× 0.14 mm3,

• for patient 2 a 3D volume of 510 × 423 × 174 voxels with a resolution of
0.21× 0.19× 0.20 mm3,

• for patient 3 a 3D volume of 265 × 450 × 324 voxels with a resolution of
0.19× 0.17× 0.18 mm3.

2.6 MR-US registration of the neuronavigation system

During all the neurosurgical procedure, the coordinate system of the preopera-
tive MR image and the coordinate system of the intraoperative field are related
by a rigid registration. The rigid registration of the neuronavigation system is
based on surface matching between the preoperative MR image and the posi-
tion of points acquired on the patient’s head with the position localizer. First,
the skin is extracted from the MR image by manual thresholding. A cloud of
points is then continuously acquired on the patient’s head close to the eyes re-
gion by moving the position localizer. Following this, one point is acquired on
each ear with another point on the extremity of the patient’s nose. Finally, the
neuronavigation system performs a points to surface matching.

According to phantom and animal studies, the errors in probe calibration,
3D localization of the probe, and rigid registration performed by the neuronav-
igation system lead to a global error less than 3mm [5, 27, 28]. The error due
to the 3D localization of the probe is estimated to 0.35mm for each marker on
a tool from the manufacturer [1]. The error due to the calibration is generally
estimated around 1.5mm [5, 28]. In our case, the probe was calibrated with a
Z-wire phantom by the manufacturer. Finally, the error due to rigid registra-
tion performed by the neuronavigation system has been estimated to be around
1.5mm in [28].
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2.7 Pathology of the patients

In this study, hyperechogenic pathologies such as cavernoma (patient 1, see
Fig. 5 and patient 2, see Fig. 6) and low-grade glioma (patient 3, see Fig. 7)
were considered. In T1-w MR images, the central part of cavernoma is usually
heterogeneous (hyper and hyposignal) and the outlying area appears in hyposig-
nal. The low-grade glioma are more homogeneous and appears in hyposignal
in T1-w MR images. In US images, numerous studies showed that all solid
brain tumors, metastatic brain lesions, and cavernomas exhibited echogenic-
ity [10,14,25,31,45]. For brain gliomas, the higher its grade (more malignant),
the more echogenic it is in US and the less homogeneous it appears. In our study,
the corresponding lesional tissues were considered both homogeneous and hy-
perechogenic in US images. As such, Ψ(X) was set to 1 for all segmentation of
pathological tissue M2 (see Eq. 5). Typical examples of intraoperative images
and probability maps are presented in Fig. 2, Fig. 3 and Fig. 4.

2.8 Parameter Settings

The maximization of the joint probability (see Eq. 2) is performed within a
multiresolution procedure using the simplex algorithm [32]. During the experi-
ments, the parameters of the simplex algorithm were: tolerance = 0.1, stepsize
= 1.5 and maximum number of iterations = 100. The coarsest resolution cor-
responded to the original volumes downsampled by a factor 3 and the finest
resolution was that of the original volumes. The registration procedures take
less than two minutes on Intel Pentium M at 2GHz.

As with most derivative-based operators, the MLvv operator uses Gaussian
kernel to compute the image derivatives. In [12], the authors showed that the
convolution of the image with a derivative Gaussian kernel provides a well-
posed approach of the differentiation problem. The standard deviation σ of the
Gaussian kernel is called the image scale. This parameter has been shown as
very stable for MR image sulci segmentation on numerous works [22–24], and
thus, no tuning has been done for this parameter throughout our study. In our
experiments, an image scale of 2 voxels has been used to compute the MLvv

values. This value is consistent with others works [22–24] conducted on brain
cortical segmentation where the scale parameter was always kept in this range.

2.9 Evaluation Framework

In order to evaluate our method, a validation framework with different ap-
proaches is proposed.

• First, a visual assessment is proposed.

• Second, a manual validation by experts is presented. This validation is
divided in two parts: a point-based estimation of the rigid registration by
3 experts for the 3 patients, and an evaluation of the residual error by all
experts for 1 patient (post-registration error).
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• Third, a study on convergence robustness was carried out.

The expert manual validation was difficult due to the time required. For each
expert, 4 hours were required to perform the a priori estimation of the trans-
formation for 3 patients.

2.9.1 Visual Assessment

The visual assessment remains a valuable indicator of the registration accu-
racy. In [18], the observer discernibility of registration errors has been estimated
around 0.2 mm. A study on visual inspection for image registration assessment
can be found in [11]. In our paper, we propose an overlay of US and MR images
before and after registration to assess the registration accuracy.

2.9.2 Validation by experts

First, the experts manually evaluate the rigid transformation between the intra-
operative US and the MR image resliced with the rigid transformation given by
the neuronavigation system. This estimation is denoted as a priori estimation
of the registration. From this a priori estimation, the initial error (i.e. after the
registration performed by the neuronavigation system) and the Target Registra-
tion Error (TRE) can be computed. The a priori estimation of the registration
is used to show that there are no statistical differences between the expert-based
transformations and the transformation estimated with our method in terms of
the TRE.

The experts estimate the residual error after rigid registration based on a
given transformation (either by our method or the point-based expert registra-
tions). This estimation is called a posteriori evaluation of the residual error and
is designed to show that experts do not detect significant differences when they
inspect the registered volumes with our method or with their own manually
defined transformations.

A priori estimation of the registration

Point picking The a priori estimation of the registration is based on the
location of ten points in the US image and the ten corresponding points in the
MR image: each expert defines a set of point in the 3D reconstruction of the
intraoperative ultrasound and its corresponding landmark in the resliced MR
image. The resliced MR image is obtained with the rigid registration given by
the neuronavigation system and has the same resolutions, dimensions, and field
of view as the reconstructed US image. During the experiments, the experts
used three orthogonal 2D views to define homologous points in the 3D volumes.
For each volume, the visualization software was run independently, with the
cursors in the two volumes unlinked. Each expert was allowed to choose their
set of homologous points.
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Initial error The initial error is computed by using the mean Euclidean
distance between the homologous points defined by the experts in both modal-
ities. The three samples (one per expert) containing the ten error values (one
per point) are compared by using a Kruskal-Wallis test.

Target Registration Error A leave-one-out procedure is used to com-
pute the TRE of each point (i.e. Euclidean distance between homologous point
after rigid transformation). First, one of the ten homologous point is removed
from the set of points. The nine remaining homologous points are then used
to compute a rigid transformation in the least squares sense. Finally, this rigid
transformation is used to compute the TRE of the initially removed point. This
procedure is repeated for all the ten points. The final TRE is the mean TRE
over all the points. For each patient, the expert-based TRE and the TRE ob-
tained with our method are compared by using a non parametric Kruskal-Wallis
test.

A posteriori evaluation of the residual error

Point picking First, the patient images are registered using several trans-
formations. These transformations are: i) the three expert-based transforma-
tions (T̃1, T̃2, T̃3), ii) the rigid transformation obtained with our method (T̂ ),
and iii) the transformation computed using all the thirty points defined by the
three experts T̃all. The experts then define ten homologous points on the regis-
tered volumes. This procedure is performed for the five studied registrations on
the patient 2 dataset. The positions of the points are fixed for all the experts.

Residual error As for initial error, the final error or residual error is
simply obtained by computing the mean Euclidean distance between the ho-
mologous points defined by the experts in both modalities. The statistical com-
parison of the residual errors is performed on the five samples (one per trans-
formation) containing ten errors values (one per point) with a Kruskal-Wallis
test.

2.9.3 Robustness study

First, the US and resliced MR images of patient 2 are registered with the trans-
formation T̃all. Then, 100 rigid transformations are randomly generated with a
translation along each axis uniformly distributed between 0 − 5 mm and with
a rotation around each axis uniformly distributed between 0 − 5 degrees. Fi-
nally, each transformation is applied to the resliced MR image before performing
registrations with the proposed method. The warping index ω [42] is used to
compute the distance between the estimated transformation by the registration
process T̂ and the true transformation T :

ω =
1

|Ω|

∑

X∈Ω

∣∣∣
∣∣∣T−1(X)− T̂ (X)

∣∣∣
∣∣∣
2

(7)
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where ||.||2 is the L2-norm. The success rate is estimated by considering a success
as a registration with a warping index inferior to 3.5 mm. This threshold has
been chosen close to the upper bound of the TRE estimated by the experts (see
distribution for patient 2 in Fig. 9). Contrary to TRE estimated over selected
points, the warping index is computed as the average error between the volumes
over all the voxels.

3 Results

3.1 Visual assessment

The registration results are first displayed for visual assessment. The results
obtained with our method are presented in Fig 5, 6 and 7. For patient 1 (see
Fig. 5), even if the lesion was not entirely included in the US volume, the
proposed registration procedure converged efficiently. For patient 2 (see Fig.
6), acoustic shadows are present on the US image. The signal below the lesion
tends to zero. The proposed approach overcomes these artifacts without specific
detection of the shadows. For patient 3 (see Fig. 7), despite the large size of the
low-grade glioma and the limited field of view, our approach performed well.

3.2 Validation by experts

3.2.1 A priori estimation of the registration

Table 1 presents the estimated initial error for the three patients by the three
experts. The p-value of the Kruskal-Wallis test showed that there was no signif-
icant difference between the expert estimations. Table 1 also shows the inter-
individual variability for the same measure between the experts. The Fig. 8
summarizes the distribution of the error.

The estimated initial errors are significantly higher than values given in [5,28]
(< 3mm) or by the manufacturer (< 1.5mm). It is important to note that the
ultrasound images used in our experiments were acquired in clinical context
during a neurosurgical operation. The real neurosurgery context is likely more
difficult than phantom and animal studies.

A priori estimation of the registration: Initial error in mm

mean (std) Expert 1 Expert 2 Expert 3 p-value

Patient 1 5.52 (1.15) 4.31 (1.55) 5.00 (1.50) 0.30

Patient 2 8.64 (0.89) 8.31 (1.24) 8.76 (1.04) 0.69

Patient 3 3.56 (1.09) 4.61 (1.39) 4.38 (1.13) 0.13

Table 1: Manual estimation of the initial error in mm (i.e. error of the registra-
tion given by the neuronavigation system).
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Tab. 2 shows the TRE estimated by each expert, for each patient dataset.
In all the cases, there were no statistically significant differences between the
TRE obtained with expert-based estimations and the TRE obtained with our
method. Figure 9 shows the result of the Kruskal-Wallis test. In all the cases,
the experts and our method provided consistent results.
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Figure 1: Illustration of the performed workflow to achieve the registration. The
skull stripping, the denoising, the MLvv computation and the segmentation of
lesion are performed before the neurosurgical procedure. The 3D reconstruction
of intraoperative volume, the reslicing of the MR map and the estimation of the
transformation are then performed during the neurosurgical procedure.
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Figure 2: Patient 1.Left: the denoised MR image corresponding to US image
(Middle). Right: the probability map based on MLvv operator and extracted
from denoising MR image. The preoperative MR image is resliced with the
registration matrix provided by the neuronavigation system. The matching is
not perfect due to the initial error, estimated around 4.2 mm by the experts for
this patient. As visible on the US image, the lesion presents a hypoechogenic
central area (indicated on the US image by a narrow).

Figure 3: Patient 2. Left: the denoised MR image corresponding to US image
(Middle). Right: the probability map based on MLvv operator and extracted
from denoising MR image. The preoperative MR image is resliced with the
registration matrix provided by the neuronavigation system. The matching is
not perfect due to the initial error, estimated around 8.5 mm by the experts for
this patient. The red box shows a sulcal area where the matching between US
image and the MLvv-based probability map is visually high. A large acoustic
shadow is visible in US around the ventricle area (indicated in orange on the
US image).
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Figure 4: Patient 3. Left: the denoised MR image corresponding to US image
(Middle). Right: the probability map based on MLvv operator and extracted
from denoising MR image. The initial error is estimated around 5 mm by the
experts for this patient. In the red box, the MLvv operator efficiently detects
the sulci also visible in the US image. This case presents a limited field of view
while the lesion is large. Moreover, an acoustic shadow is visible on the right
lower part of the US image ( (indicated on the US image by a narrow).)
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x-y plane

x-z plane

y-z plane

Figure 5: Patient 1. Left : registration given by the neuronavigation system.
Right : the result after correction with our registration approach. The low
intensities of US images are in green and the high in red. For this case, even if
the lesion was not entirely included in the US volume, the proposed registration
procedure converged. The location of the lesion is indicated by ellipses on the
fused image after registration.
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x-y plane

x-z plane

y-z plane

Figure 6: Patient 2. Left : registration given by the neuronavigation system.
Right : results after correction with our registration approach. The low inten-
sities of US images are in green and the high in red. In this case, the acoustic
shadow artifact was present on the US image. The signal below the lesion was
totally dark as shown on Fig. 3. The proposed approach allowed to overcome
these artifacts without specific detection of the shadows.
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x-y plane

x-z plane

y-z plane

Figure 7: Patient 3. Left : registration given by the neuronavigation system.
Right : the result after correction with our registration approach.The low in-
tensities of US images are in green and the high in red.
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A priori estimation of the registration: Initial error in mm
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Figure 8: Initial errors (in mm) estimated by all experts for the each patient.
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A priori estimation of the registration: Target Registration Error in mm

mean (std) Expert 1 Method p-value Expert 2 Method p-value Expert 3 Method p-value

Patient 1 2.26 (1.54) 2.25 (0.48) 0.28 2.16 (0.58) 2.03 (0.53) 0.50 1.75 (0.54) 1.63 (0.58) 0.50
Patient 2 1.90 (1.14) 2.11 (0.86) 0.68 2.39 (0.92) 2.39 (0.50) 0.76 2.02 (0.72) 1.89 (0.84) 0.71
Patient 3 1.47 (1.28) 1.64 (0.59) 0.20 1.82 (0.73) 1.84 (0.42) 0.97 1.78 (0.76) 1.79 (0.64) 0.88

Table 2: Target Registration Error in mm. The p-values correspond to Kruskal-Wallis test perform between the TRE
obtained by experts and the TRE obtained with our method.
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Patient 1: Target Registration Error in mm
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Figure 9: Target Registration Error (in mm) estimated by all experts for the
each patient dataset.

3.2.2 A posteriori evaluation of the residual error

Table 3 shows the expert-based estimation of the a posteriori residual error
of the different registrations (manual-based T̃ and automatic T̂ ) proposed for
patient 2. The Kruskal-Wallis test shows that the errors associated with the
transformations (T̃1, T̃2, T̃3, T̃all) and T̂ are not significantly different. Fig. 10
shows the statistical distribution of the residual error for each transformation
compared. Finally, the experts failed to detect significant differences between
the manual-based registrations and our automatic registration. The residual
error estimated by experts is around 1− 1.5 mm for all the transformations.
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A posteriori evaluation of the residual error in mm

mean (std) T̃1 T̃2 T̃3 T̃all T̂ p-value

Expert 1 0.90 (0.47) 0.90 (0.31) 1.14 (0.74) 0.82 (0.45) 0.90 (0.43) 0.88

Expert 2 1.36 (0.79) 1.54 (1.07) 1.48 (1.00) 1.61 (0.98) 1.24 (0.60) 0.95

Expert 3 1.21 (1.27) 1.43 (0.65) 1.13 (0.44) 1.04 (0.56) 1.08 (0.57) 0.58

Table 3: A posteriori evaluation of the residual error in mm on Patient 2 by all
experts. Our automatic registration T̂ obtains no statistically different result
compared to transformations extracted from experts estimation.
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Figure 10: A posteriori residual error (in mm) estimated for all transformations
by each expert.

3.3 Robustness study

Tab. 4 shows the robustness and the warping index results obtained during
the experiment. The proposed method obtained 92% of success rate with a
mean warping index of 2.38 mm. This value is relative to the TRE of the
used gold standard. Thus, it gives information about the distance between the
transformation from all the experts (T̃all) and the final transformation provided
by our method. This value is close to the TRE estimated for patient 2 in Tab.
2. The figure 11 shows the distribution of the warping index.

Success rate in % ω in mm (mean (std))

92 2.38 (0.71)

Table 4: Robustness study. Results of the proposed method for patient 2.
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Figure 11: Distribution of the warping index in mm obtained with our method.

4 Discusion and Conclusion

This paper presents a new framework for the 3D rigid registration of US and
T1-w MR brain images. In order to address this changeling problem, we propose
an innovative probabilistic objective function that maximizes the joint proba-
bility of the i) a priori most probable locations of hyperechogenic structure in
the preoperative MR image, and ii ) the highest intensities of the intraoperative
US images. We show that the proposed method enables a robust registration of
MR and US images in a computational time compatible with clinical use. All
our experiments were carried out on real intraoperative data. The expert-based
quantitative study shows that our method produces no statistically different
registration compared to the a priori estimation of the registration by the ex-
perts. Moreover, the a posteriori estimation of the residual registration error
shows that the experts failed to detect differences between manual registration
and our automatic registration.

During our experiments, manual segmentation has been used to built the
probability map. This segmentation is always available, since the neurosurgeon
performed it before the surgery. In this paper, the used segmentations were
the segmentations dedicated to the neurosurgery. However, the segmentation
of the lesion could be automated [20, 35] and the different parts of pathologies
(lesion, coagulated blood, cyst, necrotic tissue, etc) could be defined. Through
this, the simple model of homogeneous hyperechogenic lesion used in our experi-
ment could be improved by using different hyperechogenic levels to the different
pathological tissues. To evaluate the robustness of our method to heterogeneous
lesion, more datasets are needed although this situation was present in case of
Patient 1.

The proposed method is related to the segmentation accuracy of the tumor
in preoperative MR images. Although the segmentation of the MR image is not
considered as difficult, this step may introduce some errors. Our experiments
showed that the proposed method produced consistent results with manual seg-
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mentation used in clinical routine.
The presented clinical datasets showed that our method is robust to some

discrepancies between the features present in both US and MRI probability
maps. Based on the correlation of maps where only regions considered as rel-
evant are used to drive the registration procedure, our methods is able to deal
with partially missing information resulting from a limited field of view or acous-
tic shadows. In case of Patient 1 (see Fig 2 and Fig. 5), only a subpart of the
lesion was visible in the reconstructed US image. In case of Patient 2 (see Fig.
3 and Fig. 6) the acoustic shadow below the lesion reduced information around
ventricle in US. Moreover, the information derived from sulci was much more
present in MR maps than in US map. Finally, in case of Patient 3 (see Fig.
4 and Fig. 7) the limited field of view and the large size of glioma reduced
the importance of sulcal information. However, experiments using only the seg-
mentation of the lesion or only sulcal information derived from Mlvv operator
failed to provide satisfactory registration. This seems to indicate that a certain
amount of homologous features has to be present in both probability maps to
enable the method working.

Finally, in our opinion, the proposed approach relies on a similar and comple-
mentary idea to the vessel-based method proposed by Reinertsen’s et al. [36,37].
Indeed, in both cases, an implicit segmentation of salient features in US images
(hyperechogenic structures in B-mode or vessels in Doppler) is matched with
corresponding structures detected in MR images. Only the selected salient
features differ between the methods. In [36, 37], the method utilizes vessels
extracted from Doppler US images and their segmentation from MR images.
Therefore, both methods have the advantage of not requiring segmentation of
the US image and also being robust to US artefacts. However, the extraction
of the vessel centerlines from MR images is a challenging problem and requires
extensive processing.

Our method is dedicated to brain US imaging since MLvv operator is rel-
evant for sulci and cerebral falx detection. As such, the application of the
proposed framework to another body part requires adaptation of the hypere-
chogenic structure detection. Moreover, if T2-w MR image or another sequence
is used as preoperative MR image, the selected values of the MLvv need to be
adapted. Since the final aim of this US/MR registration method is to compen-
sate for the brainshift, further works will investigate extension of our probabilis-
tic objective function to non-rigid deformations.
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