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Adaptive Multiresolution Non-Local Means Filter for 3D MR Image Denoising

In this paper, an adaptive multiresolution version of the Blockwise Non-Local (NL-) means filter is presented for 3D Magnetic Resonance (MR) images. Based on an adaptive soft wavelet coefficient mixing, the proposed filter implicitly adapts the amount of denoising according to the spatial and frequency information contained in the image.

Two versions of the filter are described for Gaussian and Rician noise. Quantitative validation was carried out on Brainweb datasets by using several quality metrics. The results show that the proposed multiresolution filter obtained competitive performance compared to recently proposed Rician NL-means filters. Finally, qualitative experiments on anatomical and Diffusion-Weighted MR images show that the proposed filter efficiently removes noise while preserving fine structures in classical and very noisy cases. The impact of the proposed denoising method on fiber tracking is also presented on a HARDI dataset.

I. INTRODUCTION

In magnetic resonance (MR) imaging, denoising is an important preprocessing step used to improve image analysis. Since the noise directly impacts the accuracy of automatic approaches such as segmentation and registration, it is important to improve the Signal-Noise-Ratio (SNR) of images used during quantitative analysis. This is usually done by using a denoising method. However, the challenge is the remove of the noise component while preservation all the image features. In the past, many approaches have been proposed to address the difficult problem of MR image denoising [START_REF] Gerig | Nonlinear anisotropic filtering of MRI data[END_REF]- [START_REF] Awate | Feature-preserving MRI denoising: A nonparametric empirical bayes approach[END_REF].

Recently, in 2D natural image denoising, a new filter has been introduced by Buades et al. [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]: the Non-Local (NL-) means filter. Based on the natural redundancy of the images, this filter uses comparison of image patches in order to achieve the denoising. Due to its simplicity and high denoising performance, this filter is one of the best state-of-the-art methods. Recently, the NL-means or similar patch-based approaches are being adapted to MR denoising [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF], [START_REF] Awate | Feature-preserving MRI denoising: A nonparametric empirical bayes approach[END_REF], [START_REF] Manjón | MRI denoising using Non-Local Means[END_REF], [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF]. This paper focuses on a new adaptive multiresolution version of the NL-means filter. As shown in [START_REF] Brox | Efficient nonlocal means for denoising of textural patterns[END_REF], there exists no set of parameters optimal for all the regions of a single image. According to the nature of the underlying structures (edge, texture, constant area...), the filtering parameters should be adapted. The main contribution of this paper is to introduce a new Adaptive Soft wavelet Coefficient Mixing (ASCM) procedure to implicitly optimize the denoising over all the space-frequency resolutions of the image. The main idea is to combine, in the wavelet transform domain, denoised images obtained with different sets of filtering parameters using the noisy input image.

II. METHODS

A. The Non Local Means filter

In the classical formulation of the NL-means filter [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], the restored intensity û(x i ) of the voxel x i , is a weighted average of the voxels intensities u(x j ) in the "search volume" V i of radius M :

û(x i ) = xj∈Vi w(x i , x j )u(x j ) (1) 
where w(x i , x j ) is the weight assigned to intensity value u(x j ) to restore the intensity u(x i ) at voxel x i . More precisely, the weight evaluates the similarity between the intensity of the patches N i and N j centered on voxels x i and x j , such that w(x i , x j ) ∈ [0, 1] and xj∈Vi w(x i , x j ) = 1.

For each voxel x j in V i , the computation of the weight is based on the squared Euclidean distance between intensity patches u(N j ) and u(N i ), defined as:

w(x i , x j ) = 1 Z i e -u(N i )-u(N j ) 2 2 h 2 (2)
where Z i is a normalization constant ensuring that j w(x i , x j ) = 1, and h acts as a smoothing parameter. The main limitation of the standard NL-means filter is its computational burden, especially in 3D. Therefore, we used the blockwise approach and the patch preselection strategy proposed in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF] to drastically reduce the computational time. The blockwise approach consists in denoising the entire patch at the same time. By this way, we obtained restored values for all the elements of the patch:

û(N i ) = Nj∈Vi w(x i , x j )u(N j ), (3) 
Since the patches overlap, several estimations are obtained for each voxel. The final restored intensity is thus obtained by averaging these different estimations. More details can be found in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF].

B. Adaptation to Rician noise

The raw data of an MR image are complex values corrupted by white additive Gaussian noise with the same variance in real and imaginary parts [START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF]. In magnitude MR images, the distribution of the noise is transformed into a Rician distribution [START_REF] Gudbjartsson | The Rician distribution of noisy MRI data[END_REF], [START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF]:

p(m) = m σ 2 exp(-
m 2 + A 2 2σ 2 )I 0 ( Am σ 2 ). ( 4 
)
where σ is the standard deviation of Gaussian noise in the complex domain, A is the amplitude of the signal without noise, m is the value in the magnitude image and I 0 is the zeroth order modified Bessel function. The second-order moment of a Rician distribution can be written as:

E(m 2 ) = A 2 + 2σ 2 (5) 
Recently, the nonlocal means filter has been adapted to Rician noise using Conventional Approach (CA) [START_REF] Manjón | MRI denoising using Non-Local Means[END_REF], [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF] and Maximum Likelihood Estimators (MLE) [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF].

In [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF], authors proposed a Non-local Maximum Likelihood (NLML) method considering that the N most similar pixels to the current pixel (in the patch distance sense) comes from the same Rician distribution. Knowing the level of noise, an optimization procedure is used to maximize the Rician-based log likelihood function:

logL = N i=1 log m i σ 2 - N i=1 m 2 i + A 2 2σ 2 + N i=1 log I 0 Am i σ 2 (6)
and the MLE is obtained as:

ÂMLE = arg max A (log L) (7) 
The main limitation of the extention to 3D of these methods is the required computational load. Moreover, based on a minimization procedure, these approaches can converge to local minimum and require extra parameters.

In [START_REF] Manjón | MRI denoising using Non-Local Means[END_REF], [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF], authors have proposed Rician-adapted versions of the original NL-means filter using the properties of the second-order moment of Rician distribution called Conventional Approach (CA). The even order moments of a Rician law are usually used due to their simplicity. Indeed, by working on the squared signal, the bias intensity can be removed by subtraction as follows:

ÂCA = max E(m 2 ) -2σ 2 , 0 (8) 
In denoising context, E(m 2 ) is usually estimated as the restored value of the squared noisy signal. The CA does not require extra computational time nor minimization procedure. Nevertheless, this method can artificially clamp background values to zero for very high levels of noise. Finally, the CA is more biased than the MLE when a small number of samples is used [START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF].

As we will show in our experiments, the NL-means framework is better suited to CA approach since it involves a large number of samples during estimation. Therefore, we chosen to use the CA proposed in [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF] with the blockwise approach defined in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF] as follows:

û(N i ) = max     Nj∈Vi w(x i , x j )u(N j ) 2   -2σ 2 , 0   (9) 
C. Multiresolution Framework 1) Hard Wavelet Subbands Mixing: As for all the denoising filters, the choice of the filtering parameters is crucial in NL-means-based restoration. Lukin [START_REF] Lukin | A multiresolution approach for improving quality of image denoising algorithms[END_REF] proposed a multiresolution framework to implicitly adapt the filtering parameters over the different space-frequency resolutions by combining in the transform domain the results obtained with different sets of filtering parameters. We have adapted this framework to NL-means-based restoration of 3D MR images in [START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF]. This Hard Subband Mixing (HSM) can be described as follows:

1) Denoise the original noisy MR image I n using two sets of filtering parameters: S u adapted to the image features preservation (i.e. small patches and/or low h parameter) and S o , adapted to the noise components removal (i.e. large patches and/or high h parameter). This yields two denoised images: Îu with efficient feature preservation (slightly undersmoothed) and Îo with efficient noise removal (slightly oversmoothed).

2) Decompose Îu and Îo into subbands with 3D discrete Wavelet Transform (DWT) at first level decomposition.

By using the usual notation: LLL denotes the low subband whereas LHH, LHL, LLH, HLL, HLH, HHL and HHH denote the high subbands

3) Select the LLL, LLH, LHL and HLL subbands of Îu and the LHH, HHL, HLH and HHH subbands of Îo .

4) Reconstruct the final image Î by an inverse 3D DWT from the combination of the selected subbands.

This procedure can be written as: ĉk = ĉk,u dk = dk,u for LLH, LHL and HLL dk = dk,o for HHL, HLH, LHH and HHH [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF] where ĉk , ĉk,u are the scaling coefficients (i.e. coefficients in LLL low band) of Î and Îu decompositions, and dk , dk,u and dk,o are the wavelet coefficients in detailed subbands of Î, Îu and Îo decompositions (more details can be found in [START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF]). This HSM procedure improves the denoising performances of the NL-means filter by selecting the optimal denoised subbands along the image frequencies. Nevertheless, the HSM is not adapted according to noise level, nor to spatial information contained in subbands (i.e. the underlying structure). Moreover, with HSM, the subband selection is empirically optimized instead of being driven by the input signal.

2) Adaptive Soft Wavelet Coefficient Mixing:

In this paper, we propose to automatically adapt the mixing procedure according to the noise level and the spatial information contained in the detailed subbands. To achieve that, we use a similar strategy than in wavelet denoising thresholding method: detect wavelet coefficients corresponding to noise from coefficients corresponding to data by comparison with a threshold. Usually, the coefficients below this threshold are considered as noise and the others correspond to data information [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF]. In our case, the distance between coefficients of noisy input image and the threshold is used to drive the mixing of the coefficients of the denoised images.

First, we decompose I n , Îu and Îo into subbands with a 3D DWT. For each subband of I n , the signed distances between absolute values of noisy wavelet coefficients d k,n obtained from the original noisy image I n and a threshold are computed.

Then, this signed distance is used to perform a soft mixing between denoised wavelet coefficients, dk,u and dk,o , obtained from the two denoised images (see Fig. 1). When signed distance is superior to zero, the corresponding noisy wavelet coefficient is mainly considered as data, thus denoised wavelet coefficient from Îu should be privileged.

Inversely, when signed distance is inferior to zero, the corresponding noisy wavelet coefficient is mainly considered as noise, thus denoised wavelet coefficient from Îo should be privileged. In our approach, the weight assigned to each denoised wavelet coefficient is estimated using a weighting function as described below.

3) Adaptive Threshold: In the wavelet literature several thresholds have been proposed to perform denoising [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], [START_REF] Chang | Adaptive wavelet thresholding for image denoising and compression[END_REF]. In our approach the BayesSkrink threshold [START_REF] Chang | Adaptive wavelet thresholding for image denoising and compression[END_REF] has been chosen. This threshold Tb can be computed for a wavelet coefficients subband b as:

Tb (σ) = σ 2 σX ( 11 
)
where

σX = max(σ 2 b -σ 2 , 0) (12) 
where σ2 b is the variance of the subband b.

4) Soft Coefficient Mixing:

It has been shown that the soft thresholding produces less artifacts and better visual results than hard thresholding [START_REF] Chang | Adaptive wavelet thresholding for image denoising and compression[END_REF]. Thus, we propose to use soft mixing instead of hard mixing such as the final coefficient is a weighted average of the coefficients from the two denoised images (see Fig. 1).

ĉk = ĉk,u dk = φ(d k , Tb (σ)) dk,u + (1 -φ(d k , Tb (σ))) dk,o (13) 
where 

φ(d k , Tb (σ)) = 1 1 + e (-λ(|dk|-Tb(σ))) (14) 

III. MATERIALS

A. Phantom Database

In order to evaluate the performance of the different variants of the NL-means filter on 3D MR images, tests were performed on the BrainWeb database [START_REF] Collins | Design and construction of a realistic digital brain phantom[END_REF]. T1-w phantom MR images with different levels of noise were simulated to validate the performance of the denoising. For each image, ten levels of noise from 3% up to 21%

have been simulated for Gaussian and Rician distributions.

The Rician noise was built from white Gaussian noise in the complex domain:

• I r (x j ) = I(x j ) + η 1 (x j ), η 1 (x j ) ∽ N (0, σ) • I i (x j ) = η 2 (x j ), η 2 (x j ) ∽ N (0, σ)
where I is the noise free "ground truth" from Brainweb, I r is the real component and I i is the imaginary, and σ is the standard deviation of the added white Gaussian noise. Then, the noisy image is computed as:

I n (x j ) = I r (x j ) 2 + I i (x j ) 2 (15) 

B. Filters compared

During the experiment, different implementations of the NL-means filter were compared:

• RNLM: voxelwise implementation of the Rician adapted NL-means filter proposed in [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF].

• ONLM/ORNLM: Optimized blockwise implementation of the NL-means filter proposed in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF] 1 without (ONLM) and with (ORNLM) the Rician adaptation described in [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF] .

• ONLM/ORNLM with HSM: ONLM or ORNLM filters with hard subbands mixing as proposed in [START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF].

• ONLM/ORNLM with ASCM: the proposed ONLM or ORNLM filters with adaptive soft coefficients mixing.

• NLML: 3D extention of the NonLocal-Maximum Likelihood approach proposed in [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF].

The selected filtering parameters for the different implementations were:

• For the RNLM filter: h 2 = σ 2 , α = 1, and M = 5 as proposed in [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF].

• For the ONLM/ORNLM filters: h 2 = σ 2 , α = 1, n = 2, M = 5, µ 1 = 0.95 and σ 2 1 = 0.5.

• For the ONLM/ORNLM with HSM/ASCM filters as proposed in [START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF]:

n = 2, S u = (α u , M w , h 2 ) = (1, 3, σ 2 )
for Îu and S o = (α o , M w , h 2 ) = (2, 3, σ 2 ) for Îo . For both we set µ 1 = 0.95 and σ 2 1 = 0.5.

• For the 3D extention of NLML filter: α = 1, N = 25 and M = 4. As in [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF], the number of pixels/voxels N used to maximize the likelihood function was set to 25.

As usually done in nonlocal means litterature, we use a semi-local paradigm instead of fully nonlocal paradigm by restricting the size of search volume. This enables to obtain a practical computational time but also to obtain near-optimal or optimal results excepted for image with repetitive textures [START_REF] Brox | Efficient nonlocal means for denoising of textural patterns[END_REF].

C. Quality metrics

The evaluation of denoising performance depends on the balance between noise removal and structure preservation. Each quality metric tends to privilege the first or second aspect, making it difficult to compare denoising filters. Nevertheless, an optimal denoising should improve the both at the same time. We used six different metrics to evaluate the noise removal and the structure preservation performance of the compared filters.

1) The Signal-to-Noise Ratio (SNR):

SN R = 10log 10 xi∈Ω I(x i ) 2 xi∈Ω (I(x i ) -Î(x i )) 2 ( 16 
)
where Ω is the image grid. This metric is based on the noisefree "ground truth" image I and the denoised image Î. Higher SNR values correspond to good denoising results.

2) The MSE on gradient:

MSE on gradient = 1 |Ω| xi∈Ω (∆I(x i ) -∆ Î(x i )) 2 (17) 
where the gradient modulus image is computed as: ∆I = ∆ x I 2 + ∆ y I 2 + ∆ z I 2 . This metric is based on the mean L 2 -norm between the first derivate of the images.

3) The Correlation Coefficient [START_REF] Sattar | Image enhancement based on a nonlinear multiscale method[END_REF]:

CoC = xi∈Ω (I(x i ) -Ī)( Î(x i ) -Ī) xi∈Ω (I(x i ) -Ī) 2 xi∈Ω ( Î(x i ) -Ī) 2 (18) 
where Ī and Ī are the means of the noisefree and the denoised image.

4) The Edge Preservation Index [START_REF] Sattar | Image enhancement based on a nonlinear multiscale method[END_REF]:

EP I = xi∈Ω (∇I(x i ) -∇I)(∇ Î(x i ) -∇ Î) xi∈Ω (∇I(x i ) -∇I) 2 xi∈Ω ( ∇I(x i ) -∇ Î) 2 (19) 
where the Laplacian operator ∇ is obtained with the standard 3 × 3 × 3 voxels approximation. The EPI is computed as the CoC between the second derivatives of the images.

5) The Universal Quality Index [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]:

U QI = σ I Î σ I σ Î . 2I Î (I) 2 + ( Î) 2 . 2σ I σ Î σ 2 I + σ 2 Î ( 20 
)
where σ I Î corresponds to the covariance between the noisefree and the denoised image.

6) The Mean Structural SIMilarity (MSSIM) [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]:

SSIM = (2I Î + C 1 )(2σ I Î + C 2 ) ((I) 2 + ( Î) 2 + C 1 )(σ 2 I + σ 2 Î + C 2 ) (21) 
The constants C 1 and C 2 are used to stabilize the UQI when the means or the variances of the compared images are close to zero. During our experiment, the SSIM is locally computed within a 5 × 5 × 5 voxels Gaussian kernel. Finally, the MSSIM is estimated as the mean value of the local SSIM values.

IV. RESULTS

A. Comparison of CA and MLE

As in [START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF], we propose to compare CA and MLE on a constant signal = 100 corrupted with several Rician noise levels. As in [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF], a MATLAB Nelder-Mead simplex method has been for optimization procedure during MLE estimation. Each experiment was repeated 10,000 times and the mean estimation is used as the result. In [START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF] the size of the sample was N = 16 to be close to multiple acquisition number or neighborhood size used in classical denoising filters. Since NL-Means-based approaches use much larger numbers of samples (e.g. 11 3 = 1331 with a search area similar to [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF]), we have studied the impact of the size of the sample on CA and MLE with N = 10, N = 100 and N = 1000. The results presented in Fig. 2 show that for small sample size (i.e. N = 10), the MLE obtained slightly better results than CA (around 1% at 100% noise). These results are similar to those provided by Sijbers in [START_REF] Sijbers | Estimation of the noise in magnitude MR images[END_REF]. However, when N increases, the difference between CA and MLE decreases. At N = 1000, CA and MLE provide similar estimation accuracy, while the computational time required by MLE is 1500 times higher than for CA. This computational time explained why the NL-means methods based on MLE use a limited number of samples (in [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF], N = 25 for NLML) and has been proposed only for 2D images. The presented experiment clearly demonstrates that it is better to use a CA with a high number of samples (N > 1000 in case of 3D NLM) than a MLE on a limited number of samples (N = 25 in case of NLML). 

B. Impact of the ASCM on Gaussian Noise

We first studied the impact of the ASCM on Gaussian noise on a simple case (i.e. without the Rician bias intensity problem). Fig. 3 shows the results obtained for the different quality metrics. For all the metrics (except EPI) and for all the noise levels, the ASCM-based filter showed the best performances. 

C. Comparison of Rician NL-means filters

Figure 4 presents the results obtained for the Rician adapted NL-means filters . For all the metrics and all the noise levels, the proposed ORNLM filter with ASCM obtained the best results. The ORNLM filter and the ORNLM filter with HSM obtained similar results. The empirical subband mixing proposed for Gaussian noise in [START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF] did not improve results on Rician noise, while, without any tuning, the ASCM automatically optimizes the denoising for both Gaussian and Rician noises.

Figure 5 shows the denoising results at 17% Rician noise. The voxelwise implementation of Rician NL-means filter (i.e. RNLM filter) obtained worse results than ORNLM-based filters due to soft structure degradation (see Fig. 5). As shown in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF], the preselection strategy better preserves contrast and edges. The 3D extention of NLML approach proposed in [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF] tended to leave more residual noise (see Fig. 5), thus adversely impacting the quality metrics.

Table I presents the computational time required by the different filters used during our comparison. 

V. EXPERIMENTS ON CLINICAL DATASETS

A. T1-weighted anatomical MR image

The proposed method has been applied to a T1-w MR image of 170 × 256 × 256 voxels acquired on a 1.5T

Philips Gyroscan (Best, the Netherlands). Figure 6 shows the denoised image and the absolute residual image.

Visually, the ORNLM with ASCM preserves the anatomical structures in the image while efficiently removing the noise.

B. DW-MRI with high b-value

As assessed by quantitative results on phantom dataset, the proposed multiresolution approach is particularly efficient in the case of high levels of noise. To emphasize the improvement brought by using ASCM, the ORNLM Medical Systems, Erlangen, Germany) using an 8-channel phased-array head coil. The dataset was acquired with 99 diffusion encoding directions and 10 b=0 images, 2mm isotropic voxel size, 63 slices, b=3000 s/mm 2 , TE=121ms and TR=11.1s. As proposed in [START_REF] Aja-Fernandez | Restoration of dwi data using a rician lmmse estimator[END_REF], [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF], each b=0 image and each gradient direction has been denoised separately.

Figure 7 shows the results obtained on one of the gradient directions. The corresponding FA map is presented in Fig. 8. The FA maps computed on the denoised DW-MRI contained less noise and less artifacts than the FA map computed on the original data, especially on the frontal region (see green box in Fig. 8).

Finally, we conclude with an example of fiber tracking to show the qualitative performance of our denoising filter on a DTI application using the same data as the previous example. Streamline tractography was obtained by using the method described in [START_REF] Campbell | Validation and regularization in diffusion MRI tractography[END_REF]. The central slice of the corpus Callosum was used as seed region for the tractography (i.e. all the voxels in this region were used for the initialization).

Figure 9 shows the tractography obtained with the noisy data and the DW-MRI denoised with the proposed filter.

The fibres tracked on denoised image were longer and more dense.

Noisy Undersmoothed

Oversmoothed ORNLM with ASCM two denoised images, where the input noisy image is used to automatically drive the mixing. This new framework demonstrated better denoising capability using 6 quality metrics on Gaussian and Rician noise.

To deal with intensity bias introduced by Rician noise, Conventional Approach (CA) has been used within our NL-means framework as in [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF]. Experiment on bias estimation indicates that using CA for Rician noise removal within a 3D NL-Means framework appears to be the most efficient and practical. The denoising results on the BrainWeb MR phantom shows that the proposed Adaptive Multiresolution NL-means filter outperforms the optimized implementations presented in [START_REF] Coupé | An Optimized Blockwise NonLocal Means Denoising Filter for 3-D Magnetic Resonance Images[END_REF], [START_REF] Coupé | 3D wavelet subbands mixing for image denoising[END_REF] on Gaussian noise. Moreover, the Rician version of the proposed filter obtained competitive results compared to recently proposed Rician NL-means filters [START_REF] He | A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images[END_REF], [START_REF] Wiest-Daesslé | Rician noise removal by non-local means filtering for low signal-to-noise ratio mri: Applications to DT-MRI[END_REF] in terms of denoising performance and computational time. 
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 1 Fig. 1. Adaptive Soft Wavelet Coefficient Mixing Procedure. First, the wavelet transform of the original image is used to compute the threshold Tb for each subband b. Each noisy wavelet coefficient from original image is then compared to Tb in order to drive the soft mixing between the denoised wavelet coefficients. Finally, an invert wavelet transform is used to obtain final image.
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 2 Fig. 2. Comparison between the conventional and ML estimators.
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 3 Fig. 3. Impact of the ASCM on Gaussian noise. Results obtained with the different implementations of the ONLM filter on T1-w phantom.
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 4 Fig. 4. Comparison of the Rician-adapted NL-means filters on Rician noise.
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 56 Fig. 5. Comparison of the Rician-adapted NL-means filters. Results obtained on T1-w phantom corrupted by 17% Rician noise. The images and the maps have the same scale for all the Rician filters compared.

Fig. 7 .Fig. 8 .

 78 Fig. 7. Gradient direction of the DWI dataset with high b-value . Top. Left: Noisy DW-MRI. Right: Undersmoothed Iu DW-MRI (SN R = 7.12dB estimated with [23]). Bottom. Left: Oversmoothed Io DW-MRI. Right: DW-MRI denoised with ORNLM filter with ASCM.

Fig. 9 .

 9 Fig. 9. Fibres seeded from the central slice of the Corpus Callosum.

This filter can be freely tested at: http://www.irisa.fr/visages/benchmarks
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