N

N

Vector Addition System Reachability Problem: A Short
Self-Contained Proof

Jérome Leroux

» To cite this version:

Jérome Leroux. Vector Addition System Reachability Problem: A Short Self-Contained Proof. Logical
Methods in Computer Science, 2010, 6 (3), pp.1-25. 10.2168/LMCS-6(3:22)2010 . hal-00645446

HAL Id: hal-00645446
https://hal.science/hal-00645446v1

Submitted on 28 Nov 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00645446v1
https://hal.archives-ouvertes.fr

Vector Addition System Reachability Problem:
A Short Self-Contained Proof

Jérdme Lerouk

LaBRI, Université de Bordeaux, CNRS
|l eroux@abri.fr

Abstract. The reachability problem for Vector Addition Systems (VA$s a
central problem of net theory. The general problem is knawbe decidable by
algorithms exclusively based on the classical Kosarajutbert-Mayr-Sacerdote-
Tenney decomposition (KLMTS decomposition). Recentlyrfiihis decomposi-
tion, we deduced that a final configuration is not reachalole fan initial one if
and only if there exists a Presburger inductive invariaat ttontains the initial
configuration but not the final one. Since we can decide if dlrger formula
denotes an inductive invariant, we deduce from this rehaltthere exist check-
able certificates of non-reachability in the Presburgetharétic. In particular,
there exists a simple algorithm for deciding the general V&&chability prob-
lem based on two semi-algorithms. A first one that tries ta@tbe reachability
by enumerating finite sequences of actions and a second atrteidis to prove the
non-reachability by enumerating Presburger formulashis paper we provide
the first proof of the VAS reachability problem that is not éa®n the KLMST
decomposition. The proof is based on the notion of prodnagdations, inspired
from Hauschildt, that directly proves the existence of Bueger inductive invari-
ants.

1 Introduction

Vector Addition Systems (VASS) or equivalently Petri Nets ane of the most popular
formal methods for the representation and the analysismfllpbprocesses [1]. Their
reachability problem is central since many computatiomabfems (even outside the
realm of parallel processes) reduce to the reachabilithlpm. Sacerdote and Tenney
provided in [9] a partial proof of decidability of this prah. The proof was completed
in 1981 by Mayr [7] and simplified by Kosaraju [4] from [9,7]ef years later [5],
Lambert provided a further simplified version based on [4fsTast proof still remains
difficult and the upper-bound complexity of the correspogdilgorithm is just known
to be non-primitive recursive. Nowadays, the exact conipl@f the reachability prob-
lem for VASs is still an open-problem. Even the existencexdl@mentary upper-bound
complexity is open. In fact, the known general reachabdityorithms are exclusively
based on the Kosaraju-Lambert-Mayr-Sacerdote-Tennef&L) decomposition.

* This version extends the POPL'2011 paper with additionalrég and examples. Some classes
of sets get more intuitive names like the polytope conic,gbts polytope periodic sets, and
the Petri sets that are now called the definable conic setasymptotically definable periodic
sets, and the almost semilinear sets.
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Recently [6] we proved thanks to the KLMST decomposition tarikh images of
languages accepted by VASs are semi-pseudo-linear, alcldsextends the Presburger
sets. An application of this result was provided; we prove & final configuration is
not reachable from an initial one if and only if there exisferavard inductive invariant
definable in the Presburger arithmetic that contains thialmionfiguration but not the
final one. Since we can decide if a Presburger formula dereofesward inductive
invariant, we deduce that there exist checkable certiicaftenon-reachability in the
Presburger arithmetic. In particular, there exists a stngdtjorithm for deciding the
general VAS reachability problem based on two semi-algoré. A first one that tries
to prove the reachability by enumerating finite sequencextibns and a second one
that tries to prove the non-reachability by enumeratingBugger formulas.

In this paper we provide a new proof of the reachability peobthat is not based on
the KLMST decomposition. The proof is based on thieduction relationsnspired by
Hauschildt [3] and it proves directly that reachabilityssatealmost semilinegra class
of sets introduced in this paper that extend the class obBrger sets and contained
in the class of semi-pseudo-linear sets. In particularghjger provides a more precise
characterization of the reachability sets of VASs.

Outline of the paperSection 2 provides notations and classical definitions- Se
tion 3 and Section 4 introduce classes of sets used in thesbedefinable conic sets
andvector space# the first one andsymptotically definable periodsets Presburger
sets, andglmost semilineasets in the second one. Section 5 and Section 6 show that
is sufficient to prove that the reachability relation of a ¥gcAddition system is an
almost semilinear relation in order to deduce the existeféarward inductive invari-
ants definable in the Presburger arithmetic proving theneachability. In Section 7 we
introduce the class of Vector Addition Systems and the e¢ntition of production re-
lations. We show in the next Section 8 that these relatioassymptotically definable
periodic. In Section 9 we prove that the reachability relaibf a Vector Addition Sys-
tem is an almost semilinear relation. Finally in Section ¥ae@mbine all the previous
results to deduce the decidability of the Vector Additiorsteyn reachability problem
based on Presburger inductive invariants.

2 Notations

We introduce in this section notations and classical dé&imstused in this paper.

We denote byN, N+, Z,Q,Q>0, Qs the set ofnatural numberspositive inte-
gers integers rational numbersnon negative rational numberandpositive rational
numbers Vectorsandsets of vectorare denoted in bold face. Thth componenbf
a vectorv € Q7 is denoted by (). We introduce||v||o. = maxi<;<q|v(i)| where
|v(i)| is theabsolute valuef v(i). The total ordex overQ is extended component-
wise into an ordex over the set of vector®<. The addition functiont is also ex-
tended component-wise ov@f. Given two setd;, Vo, C Q¢ we denote by, + V,
the set{vy + vo | (v1,v2) € V7 x Vy}, and we denote byv; — V, the set
{vi —va | (v1,v2) € Vi x V3}. In the same way givef C Q andV C Q¢
we letTV = {tv | (¢t,v) € T x V}. We also denote by, + V, andV; + v, the sets
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{vi} + V2 andV; + {v2}, and we denote byV andTv the sets{t}V andT{v}.
In the sequel, an empty sum of sets include@ihdenotes the set reduced to the zero
vector{0}.

A (binary) relation R overQ? is a subseRR C Q% x Q<. Thecompositiorof two
relationsR andS is the relation denoted bit o .S and defined as usual by the following
equality:

RoS = U {(x,2) eQ"x Q| (x,y) € R A (y,z) €S}

yeQd

The reflexive and transitive closuref a relationR is denoted byR*. In this paper,
notions introduced over the sets are transposed over titeores by identifyingQ? x Q¢
with Q2.

An orderCC over a sefS is said to bavell if for every sequencés,, )..cn 0f elements
s, € S we can extract a sub-sequence that is non-decreasing, fice. there exists a
strictly increasing sequencey,)ren Of natural numbers itiN, <) such that(s,, )ren
is non decreasing far. A minimal elemenof an ordered sétS, C) is an element € S
such that for every € T the relationt C s impliess = t. Given aset” C S we denote
by min (V') theset of minimal elementsf the ordered s€fY, C). Let us recall that if
(S,C) is well ordered therX = minc(Y) is finite and for every € Y there exists
x € X such thatr C y.

Let us consider an ordér over a sef5. We introduce the component-wise extension
of C over the set of vector§? defined bys C t if s(i) C t(i) for everyi € {1,...,d}.

Lemma 2.1 (Dickson’s Lemma).The ordered setS?, C) is well for every well or-
dered se{S,C).

Example 2.2.The set(N, <) is well ordered. HencéN¢, <) is also well ordered. The
set(Z, <) is not well ordered.

3 Definable Conic Sets

A conic setis a setC C Q% such thap € C, C + C C C and such thaf-,C C C.
A conic setC is said to bdinitely generatedf there exists a finite sequence, . . . , cx
of vectorsc; € C suchthalC = Qx>ocy + - - - + Q>ocy.

Definition 3.1. A conic selC is said to belefinabldf it is definable infFO (Q, +, <, 0).

In this section definable conic sets are geometrically aftaraed thanks to theector
spacesand thetopological closure

Example 3.2.Fig. 1 depicts examples of finitely generated conic sets aad finitely
generated) definable conic sets. The coniog®et {(c1,c2) € Q2 | V22 < ¢} is
not definable. -

3
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Fig.1. The finitely generated conic s&>0(1,1) + Q>0(1,0) and the definable conic set
{(0,00}U{(c1,c2) € Q2o | 2 < 1}

A vector spaces a setV C Q¢ such thatd € V, V +V C V and such that
QV C V. LetX C Q< The following set is a vector space called treetor space
generatedy X.

k
V=< N\x; | keNand(),x;) €Qx X

Jj=1

This vector space is the minimal for inclusion among the wegpace that contairs.
Note that the vector spac€é generated by a conic s€t satisfies the equality =
C — C. Let us recall that every vector spakeis generated by a finite s& with at
mostd vectors. Theank rank(V) of a vector spac® is the minimal natural number
r € {0, ...,d} such that there exists a finite S&twith » vectors that generatds. Note
thatrank(V) < rank(W) for every pair of vector spacé& C W. Moreover, ifV is
strictly included inW thenrank(V) < rank(W).

Example 3.3.Vector space¥ included inQ? satisfyrank(V) € {0, 1,2}. Moreover
these vectors spaces can be classified as followsk(V) = 0 if and only if V. = {0},
rank(V) = 1if and only if V.= Qv with v € Q?\{0}, andrank(V) = 2 if and only
if V.=Q2%.

The (topological) closureof a setX C Q7 is the setX of vectorsr € Q¢ such
that for everye € Q¢ there existx € X satisfying||r — x||oc < €. A setX is said
to beclosedif X = X. Note thatX is closed and this set is the minimal for inclusion
among the closed sets that contXinLet us recall that a vector spasgis closed and
the closure of a conic set is a conic set. Since the classipaldgical interior of a conic
setC is empty when the vector space generatedtig not equal taQ? (the conic set
is degeneratel] we introduce the notion of interior &F relatively to the vector space
V = C — C. More precisely, a vectar € C is said to be in thénterior of C if there
existse € Q- such thaic + v € C for everyv € C — C satisfying||v||o. < €. We
denote byint(C) the set ofnterior vectorsof C. Let us recall thaint(C) is non empty
for every conic seC, andC; = C; if and only if int(C;) = int(Cs) for every conic
setsC, Cs.

Example 3.4.LetX = (1,5) x (1,5). ThenX = [1, 5] x [1, 5] (see Fig. 2).



Vector Addition System Reachability Problem: A Short Setintained Proof

Fig.2.SetsX = (1,5) x (1,5) andX = [1, 5] x [L, 5]

The following lemma characterizes the finitely generatetkso

Lemma 3.5 (Duality).Let V C Q¢ be a vector space. A conic S€tC V is finitely
generated if and only if there exists a sequefleg < ;< of vectorsh; € V\{0} such

that:
k d
C= ﬂ {v ev] Zhj(i)v(i) > 0}

Moreover in this case the following equality holds if andyoifilV is the vector space
generated byC:
k d
int(C) = ) {v €V hi)v(i) > o}
=1

j=1

Proof. This is a classical result of duality [10]. a

hy

h;

Fig. 3. A picture of the duality lemma 3.5

Example 3.6.Let us introduce the whole vector spade= Q? and the finitely gener-
ated conic se€ = Q>o(1,1) + Q>0(1,0). Fig. 3 shows tha€ = (. ; 1 {v € V|

>4 h;(i)v(i) > 0} whereh; = (0,2) andhy = (2, —2).

Lemma 3.7. The topological closure of a set definablel® (Q, +, <,0) is a finite
union of finitely generated conic sets.

5
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Proof. Let X C Q< be a set definable if'O (Q, +, <,0). Since this logic admits
guantification elimination we deduce that there exists antjfier free formula in this
logic that denoteX. Hence there exists a finite sequedg), < j<, of finite setsd; C

Q? x {>,>} such thaX = |J}_, X; where:

d
X;= ) {xe@d|2h(i)x(i)#0}

(h,#)€A;

We can assume without loss of generality tXgtis non empty. Moreover it = 0 the
proof is immediate sinc& = (). So we can assume that> 1. Let us introduce the
following setR;:

d
R;= () {x €eQ?| Zh(i)x(i) > 0}

(h,#)€A;

Lemma 3.5 shows th& ; is finitely generated. Thanks to Lemma 3.5, we deduce that
R = U§:1 R; is closed. We are going to prove thdt= R. SinceX; C R, we get

X C R. AsRis closed we deduce tha® C R. Let us prove the converse inclusion.
Letr € R. There existg € {1,...,k} suchthat € R;. SinceX; is non empty, there
existsx; € X;. Asr; € R; andx; € X; we deduce that; + Q.ox; C X;. Hence

r; € X; and we have proved the other inclusiBnC X. ThereforeX is a finite union

of finitely generated conic sets since it is equaRto O

Theorem 3.8. A conic setC C Q¢ is definable if and only if the conic s€&NV is
finitely generated for every vector spageC Q.

Proof. Let us first consider a definable conic €tC Q¢ let V be a vector space, and
let us prove thakX is finitely generated wher®X = C N V. SinceX is definable in
FO (Q,+, <,0), Lemma 3.7 shows thX = U?:l C; whereC; is afinitely generated
conic sets. Moreover, aX is non empty we deduce that> 1. As X is a conic set
we deduce thaEf:1 C; C X. Moreover, a®d € C; for everyj, we deduce that
C,; C Y5, C, foreveryj. ThusX = 3°_| C; and we have proved tha is finitely
generated.

Conversely, we prove by induction overthat the conic set€ C Q¢ such that
rank(C — C) < r and such that the conic s€tN'V is finitely generated for every
vector spac&’ C Q7 are definable. The case= 0 is immediate since in this case
C = {0}. Let us assume the induction proved for an integerN and let us consider
a conic setC C Q7 such thatrank(C — C) < r + 1 and such that the conic set
C NV is finitely generated for every vector spaveC Q<. We introduce the vector
spaceW = C — C. SinceC = CNV with V = Q¢, we deduce tha€ is finitely
generated. Lemma 3.5 shows that there exists a finite seglrng << of vectors
h; € W\{0} such that the following equality holds:

d
{x €W Y h;(i)x(i) > 0}

k
C:

J
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Sinceint(C) = int(C) we get the following equality:

k

d
int(C) = ) {x EW | Zhj(i)x(i) > o}

j=1

In particularint(C) is definable irFO (Q, +, <,0, 1). Asint(C) C C C C we deduce
the following decomposition whef® ; = {w € W | Zle S(@)w(i ) }

k
= int(C UCﬁW

Observe thah; € W\W; and in particularW ; is strictly included inW. Thus
rank(W;) < rank(W) < r + 1. Note thatC; = C N 'W; is a conic set such that
rank(C; — C;) < rank(W;) < r and such thaC; NV is a finitely generated conic
set for every vector spadé. Thus by inductiorC; is definable inFO (Q, +, <,0,1).
We deduce tha is definable. We have proved the induction. O

Example 3.9.0bserve that the conic s€t = {(c1,c2) € Q% | V2ca < ¢1} is not
finitely generated. Let us consid® = Q2 and observe tha NV = C and since
C = C we deduce tha€ NV is not finitely generated. Theorem 3.8 shows @4

not definable.

4 Presburger Sets And Almost Semilinear Sets

In this section we introduce tHeresburgersets and thalmost semilineasets.

A periodic setis a subseP C Z¢ such thaD € P and suchthaP + P C P. A
periodic sefP is said to bdinitely generatedf there exists a finite sequenps, . . ., px
of vectorsp; € P such thatP = Np; + --- + Np;, (see Fig. 4). A subs& C 7% is
called aPresburger seif it can be denoted by a formula in the Presburger arithmetic
FO (Z,+, <,0,1). Let us recall [2] that a subsBtC Z? is Presburger if and only if it
is semilinear i.e. a finite union of setb + P whereb € Z¢ andP C Z? is a finitely
generated periodic set. The class of almost semilinearssetgained by weakening the
finiteness property of the periodic sé&ts

Definition 4.1. A periodic sefP is said to beasymptotically definablé the conic set
Q>oP is definable.

Remark 4.2.Every finitely generated periodic sBtis asymptotically definable since
in this caseQx(P is a finitely generated conic set and in particular a definabigc
set.

Example 4.3.The periodic seP = {(p1,p2) € N? | v/2p, < p;} is not asymptot-
ically definable sincé&)>oP = {(c1,c2) € N? | V2ey < c1} is not definable (see
example 3.9).

7
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Fig. 5. An asymptotically definable periodic set.

Example 4.4.The periodic seP = {p € N? | p(2) < p(1) < 2P(®) — 1} is rep-
resented in Figure 5. Observe tiat P = {0} U {c € Q%, | p(2) < p(1)} isa
definable conic set. ThuB is an asymptotically definable periodic set.

The following lemma shows that the class of asymptoticadlfirchble periodic sets
is stable by finite intersections.

Lemma 4.5. We havdQ>oP1) N (Q>0P2) = Q>0(P1 N Py) for every periodic sets
Py, P, C 74,

Proof. Observe thaP; C Q>¢P; andP; C Q>P3. HenceP; N P, C C where
C = (Q>0P1) N (Q>0P3). As C is a conic set we deduce that.o(P; N P3) C C.
For the converse inclusion. Let € C. Sincec € Qx>(P;, there exists\; € Qx>¢
such thaic € \P;. Symmetrically there exists; € Qx¢ such thaic € \;P». Let
ni,ne € Nyg such thatn;A; € N andna)s € N. Letn = nyno and observe that
nc € na(n1A1)P1 C Py sinceP; is a periodic set. Symmetricallyc € Po. We have
proved that.c € P;NP5. Thusc € Q>o(P;NP2) and we get the other inclusionD

Definition 4.6. Analmost semilinear sé$ a subselX C Z? such that for every Pres-
burger setS C Z? the setX N S is a finite union of sety + P whereb € Z¢ and
P C Z%is an asymptotically definable periodic set.
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Fig. 6. An asymptotically definable periodic set that is not almeshiinear.

Example 4.7 Let us consider the periodic sBt = {(0,0)} U {(2",1) | n € N} U
((1,2) +N?) depicted in Fig.6. Observe th@t (P is the definable conic s§t0,0)} U
Q>0 x Qs¢. Note thafP is not almost semilinear sin@N (N x {1}) = {(2",1) | n €
N} can not be decomposed as a finite union of betsP whereb € Z?¢ andP C 7Z¢
is an asymptotically definable periodic set.

The class of almost semilinear sets is included in the claBsasburger sets. The
strict inclusion will be proved strict as a direct consequesaf a stronger result proved
in this paper. In fact theeachability relation of a Vector Addition System is proved
be almost semilineaand we know that in general such a relation is not Presburger.

5 Linearizations

The linearization of a periodic s& C Z< is the periodic setin(P) defined by the
following equality:
lin(P) = (P —-P)NQ>oP

Lemma 5.1. The linearization of an asymptotically definable periodit & finitely
generated.

Proof. Let V be the vector space generatedByand let us introduce the conic set
C = Q>oP. Note thatQ>oP C V and sinceV is closed we geC C V. As
Q>oP is a definable conic set we deduce tiiatis finitely generated. Hence there
existscy,...,c, € C such thatC = Qxpc1 + -+ + Q>oci. Asc; € C C V =
Q>oP — Q>(P, by replacinge; by a vector inN-oc; we can assume thaj ¢ P — P
for everyj € {1,...,k}.

We introduce the following séR:

k
R={reP-Plr=> Xc; ;3 €QO0<) <1

Jj=1

We observe that every vectere R satisfies||r||.o < s wheres = Zle ¢ ]]oo-
HenceR C {—s,...,s}? and we deduce th& is finite.

Let L be the periodic set generated by the finiteRet {cs, ..., cx}. Since this
finite set is included ifin(P) we deduce thaL C lin(P). Let us prove the converse
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inclusion. Letx € lin(P). Sincex € C, there exists a sequenge; )1 << of rational
elementsy; € Q> such thatx = Z?:l w;c;. Let us introducer; € N such that

Aj = pj — n; satisfiesd < \; < 1. Letr = Z;‘Zl Ajcj. Asr = x — Z;‘f:l n;c; we
getr ¢ P—P. Thusr € R. Fromx =r + Zle njc; we getx € L. We have proved
thatlin(P) is the finitely generated periodic sbt O

We observe that if the intersectigh; + P1) N (b + P2) is empty wheré,, b, €
Z4 andP, P, C Z9 are two asymptotically definable periodic sets then thesettion
(b1 +lin(P1)) N (b2 + lin(P2)) may be non empty (see Example 5.3). In this section
we show that a dimension is strictly decreasing.

Let us first introduce our definition of dimension. Téenensiordim(X) of a non-
empty selX C Z< is the minimalinteger € {0, ..., d} such thatthere exists€ N,
asequencéb;); <<, of vectorsb; € Z4, and a sequendd/; ), << of vector spaces
V; C Q4 such thatank(V;) < r and such thakK C Ule b; + V. The dimension
of the empty set is defined kiim(()) = —1.

In the reminder of this section we prove the following Thenre.2. All the other
results or definitions introduced in this section are notlisghe sequel.

Theorem 5.2. Letby, by, € Z¢ and letP,, P, be two asymptotically definable peri-
odic sets such that the intersectifn; + P1) N (bs + P2) is empty. The intersection
X = (bl + 11n(P1)) N (bg + hn(Pg)) satisfies:

dim(X) < max{dim(b; + P1),dim(bs + P3)}

Example 5.3.Sets introduced in this example are depicted in Fig. 7. Lehtueduce
the asymptotically definable periodic s&s = {p € N? | p(2) < p(1) < 2P?®) — 1}
andP, = N(1,0) + N(3, —1). We consideb; = (0,0) andb, = (7,2). We observe
that the intersection db; + P; andbsy + P, is empty. Note that the intersectidd
of by + lin(P;) andbs + lin(P») satisfiesX = {(7,2), (10,1), (13,0)} + N(1,0). In
particular we haveim(X) = 1 whereaslim(b; +1in(P;)) = dim(by+1in(P3)) = 2.

000000000000
0000000000000

00000000 e

o0

A 4

0000000000000
0000000000
0-0-0-0-0-0-0>

Fig. 7. A figure for Theorem 5.2 and Example 5.3.

We first characterize the dimension of a periodic set.
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Lemma 5.4. LetV be the vector space generated by a periodidsethenrank(V) =
dim(P).

Proof. Let P be a periodic set and let us first prove by induction dver N, that

for every sequencéV )<< of vector space¥; C Q¢, the inclusionP C Ule V;
implies that there existg € {1,...,k} such thatP C V,. The casek = 1 is im-
mediate. Assume the property proved for an intdger N-, and let us assume that

P C Uf;l V;. It P C Vi, the property is proved. So we can assume that there

existsp € P\Vy41. Let us prove thaP C Ule V;. We considex € P. Observe

that if x € Vi1 thenx € U;‘f:l V;. So we can assume thatc V.. We ob-
serve thap + nx € P for everyn € N since the seP is periodic. We deduce that
there existsj € {1,...,k + 1} such thatp + nx € V. Naturally this integeyj de-
pends om. However, since1, ...,k + 1} is finite whereadN is infinite, there exists
jeA{l,...,k+1}andn < n’ in N such thatp + nx andp + n’x are both inV.
As V; is a vector space, we deduce thétp + nx) — n(p + n'x) is in V;. Hence

p € V;. Asp ¢ V1 we deduce thaf # k + 1. As V; is a vector space we deduce
that(p +n'x) — (p + nx) € V. Hencex € V. We have proved that € Ule V;.

ThusP C Ule V; and by induction there exisfse {1,...,k} such thatP C V;.
We have proved the induction.

Now, let us prove the lemma. We consider a periodicBaind we letV be the
vector space generated by this set. SiRce V we deduce thadim(P) < rank(V).
For the converse inclusion, sinfeis non empty we deduce thRt C Ule b; +V;
wherek € N.o, b; € Z? andV; C Q7 is a vector space such thatnk(V;) <
dim(P). Let us consider the set= {j € {1,...,k} | b; € V,} and let us prove that
PC UjeJ V;.Letp € P andn € N. Sincenp € P there existg € {1,...,k} such
thatnp € b, + V. Hence there exists € {1,...,k} andn < n’ in N such thatip
andn’p are both inb,; + V;. As'V, is a vector space we deduce thgp — np € V.
Thusp € V;. Moreoverab; € np—V; C V; we deduce that € J. We have prove
the inclusionP C UjeJ V;. From the previous paragraph we deduce that there exists
j € J such thatP C V;. By minimality of the vector space generated Bywe get
V C V;. Hencerank(V) < rank(Vj;). Sincerank(V;) < dim(P) we have proved
the inequalityrank(V) < dim(P). O

Next we prove a separation property.

Lemma 5.5. Let C< and C> be two finitely generated conic sets that generates the
same vector spac¥ and such that the vector space generatedhyn C is strictly
included inV. Then there exists a vectare V\{0} such that for every € {<, >},

we have:

d
Cy C {v eV Zh(i)v(i)#o}

i=1
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Proof. Lemma 3.5 shows that there exists two finite déts, H> included inV\{0}
such that:

d
Cy= ) {v eVv| Zh(i)v(z’) > 0}

heH,
d

int(Cy) = [ {v €V > h(iv(i) > o}
heH, i=1

Assume by contradiction that the intersectiof C<) Nint(C> ) is hon empty and let
c be a vector in this set. Observe that there existsQ-( such thac + ve C<NC»>
for everyv € V such that|v||.. < e. We deduce that the vector space generated by
C< N Cs containsV and we get a contradiction.
We deduce that the following intersection is empty whdre- H< U H>

d
N {v eVv| Zh(z‘)v(z‘) > o}

heH

Farkas’s Lemma [10] shows that there exists a non-zeroifumgt : H — Qx¢
suchthad, ¢ f(h)h = 0. Letusintroduce =3, .4y f(h)handb =3, 45 4. f(h)h.
Assume by contradiction that = 0. Sincea + b = 0 we deduce thab = 0. As f
is not the zero function, there exists € H such thatf(h) # 0. Note that either
h € H> orh € H\H>. In the first case we deduce that(Cx) is empty and in
the second case we deduce tha{C<) is empty. Since both cases are impossible we
get a contradiction. Thus # 0. For everyc € int(C>) we haver:1 a(i)c(i) > 0.
Since the sefc € Q¢ | Zle a(i)c(i) > 0} is closed we deduce that for every
c € int(C>) = C> the same inequality holds. Now let us considet int(C<). In
this caser:1 b(i)c(i) > 0. Sincea + b = 0 we geth:1 a(i)c(i) < 0. We deduce
that this inequality holds for everye C<. a

Remark 5.6.The previous Lemma 5.5 is wrong if we remove the finitely gatest
condition on the conic se®€< andC-. In fact let us consider the conic sdisx =
{x € Q%, | x(1) < v2x(2)} andC> = {x € Q%, | x(2) > v2x(2)}. Observe

thatC< N C> = {0}. Hence the vector space generated by the intersectionagystr
included inQ?. However there does not exist a vedioe Q?\ {0} satisfying the sepa-
ration property required by Lemma 5.5. This problem can l@me by introducing
the vector spaces &?. We do not introduce this extension to simplify the prestma

We can now provide a proof for Theorem 5.2. We consider twéoreb; , by € Z¢
and two periodic set®,, P C Z< such thatb; +P;)N (b +P3) = (). We introduce
the intersectioX = (b + lin(P1)) N (bs + lin(P3)). Observe that iX is empty the
theorem is proved. So we can assume that there exists a ‘eaidhis intersection.
Let us denote by; andV, the vector spaces generatedBy andP,. Lemma 5.4
shows thatank(V;) = dim(P;) and fromdim(b; + P;) = dim(P;) we deduce
thatdim(b; + P;) = rank(V,). As X is included inb + V whereV = V; N Vy,
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we deduce that iV is strictly included inV; for onej € {1,2} thendim(X) <
rank(V) < rank(V;) = dim(b; + P,) and the theorem is proved. So we can assume
thatV; = V, = V. Let us consider the conic sei = Q>oP; andCy = Q>oPs.
SinceP; andP; are asymptotically definable periodic sets, we deduceGhandC,

are finitely generated conic sets. Note thgt C, C V. We introduce the intersection
C=C;nCs.

Assume by contradiction that the vector space generated tsyequal toV. Let
us consider a vectar in the interior ofC. The characterization given by Lemma 3.5
shows that in this cadet(C) = int(C;) Nint(Cy). Sinceint(C;) = int(QxoP;) we
deduce that € (Q>oP1) N (Q>oP2). Lemma 4.5 shows thate Q>o(P; N P3). By
replacingc be a vector irfNs oc we can assume thate P, N Ps.

Let us prove that there exists € N such thatb + k;c € b; + P;. Fromb €
b; + lin(P;) we deduce that there exigts, p] € P; such thab = b; + p; — p}.
Since—pj is in the vector space generated Gyandc is in the interior ofC, there
existsn, € N large enough such thajc + (—p}) € C;. Hence there exists; € N
such thatiin)c — nip} € Py1. Thusninjc — p) € (nf — 1)p} + P1 C P;. Hence
b+ kic € by + Py withk; = nln’l.

Symmetrically we deduce that there exigtse N such thab+ ksc € by +Ps. We
have proved thab + (k1 + k2)c € (by + P1) N (b2 + P2) and we get a contradiction
since this intersection is supposed to be empty.

We deduce that the vector space generatad Iyystrictly included inV. Lemma 5.5
shows that there exists a vecloe V\{0} such that:

d
C, C {v €V | h(iv(i) > 0}

d
C, C {v €V | h(i)v(i) < 0}

By replacingh by a vector inN- ¢h we can assume that € Z¢. Now let us consider
x € X. Sincex—b; € C; we deduce thaz‘f:1 h(i)(x(i)—by(i)) > 0 and sincex —
b, € C, we deduce tha‘zzc.l:1 h(7)(x(7) — bz (7)) < 0. We introduce the integers =
% h(i)bi(i)andzy = 327, h(i)by(i). We have proved tha can be decomposed
into a finite union of sliceX = (J72, X where:

d
X, = {x €X | h(i)x(i) = z}

i=1

Let us prove thatlim(X,) < rank(V). If X, is empty the relation is immediate.
If X, is non empty let us considerc X, and observe thaX, C x + W where:

d
W= {v ev| Zh(i)v(i) = o}
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Note thath € V\W. We deduce thaW is strictly included inV and in particular
rank(W) < rank(V). Hencedim(X,) < rank(V).

FromX = |2, X. anddim(X.) < rank(V) for every z, we deduce that
dim(X) < rank(V) and the theorem is proved.

6 Presburger Invariants

Given a relationk overZ? and two setX,Y C Z? we introduce thdorward image
post z(X) and thebackward imagere (YY) defined by the following equalities:

{postR(X) = Uxex{y € 2% | (x,y) € R}
preg(Y) =Ujeyix e 7| (x,y) € R}

We say that a se&X C Z< is aforward invariantfor R if post,(X) € X and we
say that a se¥ C Z? is abackward invarianfor R if preg(Y) C Y. In the reminder
of this section we prove the following Theorem 6.1. All théeatresults or definitions
introduced in this section are not used in the sequel.

Theorem 6.1. Let R* be a reflexive and transitive almost semilinear relationrafé
andletX,Y C Z? be two Presburger sets such tHatn (X x Y) is empty. There exists
a partition of Z¢ into a Presburger forward invariant that contaidé and a Presburger
backward invariant that contain¥ .

We first prove the following lemma.

Lemma 6.2. The setostz(X) andprer (YY) are almost semilinear for every almost
semilinear relationk C Z? x Z? and for every Presburger se¥, Y C Z¢

Proof. Let us first prove thapostz(X) is an almost semilinear set. We consider a
Presburger se8 C Z<. Observe thaX x S is a Presburger relation. Sindeis an
almost semilinear relation we deduce tf&n (X x S) can be decomposed into a finite
unionUfZl(aj, b;)+ R; with k € N, (a;,b;) € Z¢ x Z? andR; is an asymptotically
definable periodic relation. We deduce thatt,(X) NS = Ule b; + P; where
P; = {v € Z¢ | 3(u,v) € R;}. SinceR; is a periodic relation we deduce thaf

is a periodic set. Moreover sinég-oR; is definable we deduce th@t; = {v € Q¢ |
J(u,v) € Q>oR,} is definable. Let us prove th@>oP; = C;. By construction we
haveP; C C,. SinceC; is conic we deduce th&)>,P; C C;. For the converse
inclusion letv € C;. There existax € Q% such that(u,v) € Q>oR;. Hence there
existsA € Qx> such thatfu,v) € AR;. Let us considen € N5, such that); € N
and observe thdtu, nv) € (nA\)R; C R; sinceR; is periodic. Thuswv € P; and
we have proved that € Q>oP;. HenceQ>(P; = C; is a definable conic set and we
have proved thatost  (X) is an almost semilinear set. Fragme (Y) = postp-1(Y)
with R~ = {(y,x) | (x,y) € R} we deduce thapre,(Y) is an almost semilinear
set. O
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Now, let us prove Theorem 6.1. We consider a reflexive anditig@ almost semi-
linear relationR*. We introduce the notion aofeparators A separatoris a couple
(X,Y) of Presburger sets such that the intersecfim (X x Y) is empty. Since
R* is reflexive, the intersectioK N'Y is empty. The Presburger $8t= Z4\ (X UY)
is called thedomainof (X,Y). We observe that a separatdX, Y) with an empty
domain is a partition ofZ¢ such thatX is a Presburger forward invariant and is
a Presburger backward invariant. In particular Theoremidbtained thanks to the
following Lemma 6.3 with an immediate induction.

Lemma 6.3. Let (X, Y() be a separator with a non-empty domdiy. There exists
a separator(X,Y) with a domainD such thatX, € X, Yy C Y anddim(D) <

Proof. We first observe that a coup(&, Y) of Presburger sets is a separator if and
only if post . (X) N preg- (Y) = 0 if and only if post 5. (X) N'Y = 0 if and only if
prep. (Y)NX = 0.

Since R* is an almost semilinear relation we deduce thadt . (Xo) is an al-
most semilinear set. AB is a Presburger set, we deduce thatt ;. (Xo) N Dy =
U;”’:l b; + P, whereb; € Z? andP; C Z? is an asymptotically definable periodic
set. We introduce the following Presburger set:

k

j=1

Observe thapost - (Xo) Dy C S. We deduce that the s&t = YU (Dy\S) is such
thatpost . (Xo) N'Y = 0. Hence(Xy, Y) is a separator.

Symmetrically, sinceé?* is an almost semilinear relation we deduce that,. (Y)
is an almost semilinear set. A%, is a Presburger set, we deduce that;. (Y)NDg =
Ui, e + Q; wherec, € Z¢ andQ; C Z? is an asymptotically definable periodic set.
We introduce the following Presburger set:

T= U c + lin(Ql)

=1
Observe thaprey- (Y) N Dy C T. We deduce that the s& = X, U (D(\T) is such
thatpre. (Y) N X = (). Hence(X,Y) is a separator.

Let us introduce the doma of (X,Y). We have the following equality where
ZjJ = (bJ + lin(Pj)) N (Cl + lin(Ql)):

D=Don( |J Z)
1<j<k
1<1<n
As (X,Y) is a separator we deduce thpabt . (X)Npreg- (Y) is empty. Asb,;+P; C
post p« (Xo) C postp.(X) andc; + Q; C prep. (Y) we deduce that the intersection

15
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(b; +P;)N(c; + Q) is empty. Theorem 5.2 shows th#itn(Z, ;) < max{dim(b; +
P;),dim(c;+Q)}. Sinceb; +P,; C Dy andc; + Q; C Dy we deduce thatim(b, +
P;) < dim(Dy) and dlm(cl + Ql) < dim(Dg). We have proved thatim(D) <
dim(Dy). O

7 Vector Addition Systems

In this section we introduce théector Addition System#heproduction relationsand a
well order over the set afinsof Vector Addition Systems.

A Vector Addition System (VAB)a finite subseA C Z<. A markingis a vector
m € N?. The semantics of vector addition systems is obtained bgduating for every
wordw = a; ...ay of vectorsa; € A the relation— over the set of markings defined
by x % y if there exists a wor¢p = my ... m; of markingsm; € N? such that
(x,y¥) = (mg,mg) andm; = m,_; + a; foreveryj € {1,...,k}. The wordp is
unique and it is called theun from x to y labeled byw. The markingx is called the
sourceof p and it is denoted byrc(p), and the marking is called thetargetof p and
it is denoted bytgt(p). The set ofunsis denoted by?.

The reachability relationis the relation denoted by over the set of markings
defined byx = y if there exists a wordy € A* such thatx = y. In the sequel we
often used the fact that = y impliesx + v — y + v for everyv € N,

The production relationof a markingm € N¢ (see Fig. 8) is the relatiof+,
overN? defined byr =, s if m 4+ r = m + s. The production relationof a run
p =myg...my is the relation™ , defined by the following composition:

Fig. 8. The production relation of a marking.

Example 7.1.The production relatior’, with m = 0 is the reachability relation.

The following Lemma 7.2 shows thé?}p seens as a subset 8t? is periodic for
every runp as a composition of periodic relations (see Fig. 9). Not¢ ith&ection 8
we prove that these periodic relations are asymptoticafindble.
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Lemma 7.2. The relation=,, is periodic.
Proof. Let us assume tha =, s; andry —, s2. Sincer; =, s; we deduce that

* . * *
r; +r9 —m S1 +re. Moreover, sinces — ., s we deduce thaty +s; —m S2 + S1.
Thereforer; + ry ~5m s1 + So. o

m + 11 + 2
m + ro o%m-i-m-ﬁ-m
+r1 m+s; m + sp } m + s1 + s2

Fig. 9. Production relations are periodic.

We introduce a well order over the set of runs based on theviollg Lemma 7.3

Lemma 7.3. The following inclusion holds for every ryn
(sre(p), tet(p))+ =, € =

Proof. Assume thap = my ... my with m; € N%, and let(r,s) be a couple in the

production relationi>p. Since this relation is defined as a composition, there £xist

a sequencév;)o<;<k+1 Of vectorsv; € N¢ satisfying the following relations with
vp =randvyi =s:
* *
Vo —7mg V1" Vi —m,; Vk+1

. . . a,;
We introduce the vectat; = m; — m;_; for everyj € {1,...,k}. Sincem,;_; —
aj .
m; we deduce that;_; +v; — m; + v;. Moreover, as; —»m; v;+1, there exists

awordw; € A* such thatm; + v; =, m; + v, 1. We deduce that the following
relation holds:

woaL W ... Wk
my+vg ———— my; + Vi+1

Therefore(mg, my) + (vo, vi+1) IS in the reachability relation. O

We introduce the ordek over the set of runs defined hy =< o’ if the following
inclusion holds:

(sre(p), tgt(p)+ = S (sre(p), tgt(p))+ =,

In the reminder of this section we prove the following theordll the other results or
definitions introduced in this section are not used in theiskq

Theorem 7.4. The order< is well.

17
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The order= is proved well thanks to theligmann’s LemmaWe first recall this
lemma. Let us consider an orderover a setS. We introduce the order* over the
set of words ovef defined byu CT* v whereu = s; ... s with s; € .S if there exists
a sequencét; ) <<, With t; € S ands; C t; and a sequend@u;)o<;j<x Of words
w; € S* suchthat = wotiw; . .. tpwy.

Lemma 7.5 (Higmann's Lemma). The ordered se{S*,C*) is well for every well
ordered se{.S,C).

We associate to every ryn= my ... my the worda(p) = (a1, my)... (ag, mg)
wherea; = m; — m;_;. Note thain(p) is a word over the alphabst= A x N¢. We
introduce the ordeE over this alphabet bya, m) C (a’, m’) if a = a’ andm < m’.
SinceA is a finite set and< is a well order ovelN“, we deduce that is a well order
overS. From the Higmann's lemma, the order is well over S*. We introduce the
well order< over the set of runs defined lay< o’ if a(p) °* a(p’), sre(p) < sre(p’)
andtgt(p) < tgt(p’). The following lemma provides a useful characterizatiothis
order.

Lemma 7.6. Letp = mg...my be a run and lep’ be another run. We have< p’
if and only if there exists a sequente;)o<,<x+1 Of vectors inN¢ such thaty’ =

/ / /g
Py - - - P Wherep’ is arun fromm; + v; tom; + vjq1.

Proof. We introduce the sequen¢®; )< ;<) defined bya; = m; —m;_;.

Assume first thap < p’.
Sincea(p) C* a(p’) we geta(p’) = wo(a, mj)ws ... (ag, m))w, wherew; € S*
andm’, > m;. We introduce the sequen¢e;)o<;<k+1 defined byvy = src(p’) —
ste(p), vi+1 = tgt(p’) —tgt(p) andv; = m’ —m; foreveryj € {1,...,k}. Observe
thatv; € N for everyj € {0,...,k + 1}. We deduce that’ can be decomposed into
p' = ppy - - p), wherep’, is the run fromm; + v; to m; + v, such that(p’)) = w;.

Conversely letv;)o<;<k+1 be a sequence of vectorsiitf such thap’ = pj, . .. p},
wherep’; is a run fromm; + v; tom; + v;1. We deduce that we have the following
equality wherem’; = m; + v; anda; € A:

a(p’) = alpy)(ay, my)a(p)) . .. (a), my)a(py)
Observe thad; = tgt(p)_;) —m) = (m; +v;) f.(mj,l +v;) and in particulan’;
a;. We deduce that(p) C* «(p’). Moreover, sincesrc(p) < src(p’) andtgt(p)
tgt(p’) we deduce that < p'.

mEVAl

Sinced is a well order, the following lemma shows thatis a well order. We have
proved Theorem 7.4.

Lemma 7.7. p < p’ impliesp < p'.

Proof. Assume thap = my...my. Lemma 7.6 shows that there exists a sequence
Vi)o<i<kt1 Of vectorsi such thab’ = pf, ... p,. wherey’, is a run fromm; + v;
i)o<j<ktr Of t nN‘“ hthap' = pj ... pj, wh P; f J J

tom; + v;1. Lemma 7.3 shows thétrc(p}), tgt(p}))+ i>p/j c5.
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Hence(v;,vjy1)+ i>p;gi>mj. We deduce thatvo, vii1)+ — C—, by composi-
tion. Since(sre(p’), tgt(p')) = (sre(p), tgt(p)) + (vo, visr1) We getp < p’ from the
previous inclusion. O

8 Asymptotically Definable Production Relations

In this section we prove that production relations are aggtigally definable (Theo-
rem 8.1). All the other results or definitions introducedia section are not used in the
sequel.

Theorem 8.1. Production relations are asymptotically definable.

The following lemma shows that asymptotically definableiquic relations are
stable by composition. In particular it is sufficient to peothat production relations
% m are asymptotically definable for every marking € N in order to deduce that
production relations™ , are asymptotically definable for every rgn

Lemma 8.2. We haveQs(R1 o R2) = (Q>0R1) o (Q>0R2) for every periodic rela-
tions overze.

Proof. We haveR; C QsoR; andRy C Qs>oR2. ThusR; o Ry C C whereC =
(Q>0R1) 0 (Q>0R2). AsC'is a conic set we géd>o(Ry o Rz) C C. For the converse
inclusion, let us consideix, z) € C. There existy € Q? such that(x,y) € Q>oR;
and(y, z) € Q>oRsz. There exists\1, Ay € Q>¢ such thaix,y) € \{R; and(y,z) €
A2 Ro. We introducen;, no € Ny such thatiy Ay € N andnaAs € N and we deduce
thatn(x,y) € Ry andn(y,z) € Ry with n = ning. Hencen(x,z) € Ry o Ro. We
deduce thatx, z) € Q>o(R1 o R2). O

Theorem 3.8 shows that the conic &, % is definable if and only if the fol-
lowing conic set is finitely generated for every vector spece Q¢ x Q¢:

(on i>m) nv

We introduce the periodic relatiof»m,v defined as the intersectioh,, NV. Let us
observe thatQ> i>m) NV is equal taQ>g i>m,V- So, we just have to prove that the

conic setQ> —m v is finitely generated for evemn € N and for every vector space
VcQixQr

We introduce the sef,, v of runsp such that(src(p), tgt(p)) — (m, m) is in
(N? x N) 0 V. Note that a couplér,s) € N¢ x N? satisfiesr ~p, 1 s if and only
if there exists a rup € 2,y such thakre(p) = m + r andtgt(p) = m + s. We
introduce the seQ., v of markingsq that occurs in at least one ryne 2y, v. In
general the se@, v is infinite. We consider the sét, v of i € {1,...,d} such that
{q(i) | a € Qm,v } is infinite. We observe that if € I,,, v there exists a sequence of
markings inQm,v such that theéth component is strictly increasing. We are going to
prove that there exists a sequence of marking®.ny such that every componentin
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Im v is strictly increasing. This property is proved by introthgrthe intraproductions.
An intraproductionfor (m, V) is a triple (r,x, s) such thatx € N?, (r,s) € (N x
N?) NV and such that:

r i>m b d i>m S
Since 5, is a periodic relation we deduce that the set of intrapraduostis stable
by addition. In particulam + nx occurs in at least one run ¢, v for every in-
traproduction(r, x,s) and for everyn € N. Hence, ifx(i) > 0theni € I, v. An
intraproductionfor (m, V') is said to beotal if x(i) > 0 for everyi € I, v.

Lemma 8.3. There exists a total intraproduction f¢m, V).

Proof. Since finite sums of intraproductions are intraproductiongs sufficient to
prove that for every € I, v there exists an intraproductién, x, s) for (m, V') such
thatx (i) > 0. We fixi € I.

Let us first prove that there exists< q’ in Qm, such thaiq(i) < q'(¢). Since
i € I there exists a sequen(g, )y Of markingsq,, € Qm,v such that(qy, (¢))nen
is strictly increasing. SincéN“, <) is well ordered, we can extract for this sequence a
subsequence that is non decreasingfolVe have proved that there exisis< q’ in

Qm,v such thaig(i) < q'(7).
Asq € Qum v thenq occurs in a run in2, . Hence there exista:, s) € (N? x
N?) NV such that:
m+r 5 q Sm+s

Symmetrically, ag)’ € Qv there existgr’,s’) € (N? x N¢) 0V such that:
m+r 5q Sm+s

Let us introducer = ' — q. We deduce:

—(m4r)+rSq +rfromm+r 5.
—q+(v+r) S (m+s)+ (v+r) fromq = m +s.
-~ (m+4r)+(v+s) > q+(v+s) fromm+r S q.
- qd+sS5 (m+s)+sfromq S m+s.

Sinceq'+r = q+ v +randg+v+s=q +s, we have proved the following
relations wher& = s + v +r:
r+r S5mnx oms+s

As (r+r1',s+s') € (N xNY)NV we deduce thatr+1', x, s+s’) is an intraproduction
for (m, V). Sincex(i) > 0 we are done. O

Let us introduce an additional elemexnt ¢ N and letN,, = N U {oco}. A vector
in N4 is called anextended markingnd the sef = {i € {1,...,d} | m(i) = oo}
is called the set ofelaxed componentsf an extended markingh. Given a finite set
I C{1,...,d} and amarkingn € N¢, we denote byn’ the extended marking defined
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by m!(i) = coif i € I andm? (i) = m(i) if i ¢ I. Given a wordw = a; ...ay, of
vectorsa; € A, we extend the relatio™> over the set of extended markings relaxed
over a setl by x % y if there exists a worgh = my ... m;, of extended markings
relaxed oved such thaix,y) = (mg, my) andm; (i) = m;_1 (i) + a; (i) for every
j€{1,...,k} and for everyi € {1,...,d}\I. The wordp is unique and it is called
therun from x to y labeled byuw.

We introduce the finite graptim,v = (Q, A, E) whereQ = {q/=Vv | q €
Qm,v } and wherel = {(p’=v, a,q'™") | p,q € Qm,vAq = p+a}. We introduce
the periodic relatiori?,y, 1 of coupled(r, s) € (N¢ x N¥)NV such that (i) = s(i) = 0
for everyi € {1,...,d}\Im,v and such that there exists a cycledi, v on the state
m’=v |abeled by a word, . ..a; wherea; € A such that + Z?Zl a; =s.

Lemma 8.4. The periodic relationR,, v is Presburger.

Proof. This is a classical result based on the fact that the Parildgérof a regular
language is Presburger. a

Lemma 8.5. The following equality holds:

-~ =~ *
Q>0Rm,v = Q>0 =m,v

Proof. Let us first prove the inclusiop. Let (r,s) such thatr =, v s. In this case
there exists a woraw € A* such thatm + r < m + s. Observe thatn + nr and
m + ns are inQu, v for everyn € N. Hencer(i) > 0 ors(i) > 0 impliesi € I, v

and we deduce thah/=v = m'm.v. Thereforew is the label of cycle irGy, 1 on

m’=.v_ We have proved thdk,s) € Ry v -

Now let us prove the inclusiofi. We considefr,s) € Ry, v. In this casdr,s) €
(N4 x N9) N V satisfiesr(i) = s(i) = 0 for everyi ¢ I, v and there exists a word
w = aj...a; Of vectorsa; € A that labels a cycle iy, v on m™.v and such
thatm +r + Zle a; = m + s. Let us consider a total intraproductior, x, s”) for
(m, V). Givenp € Nandj € {0,..., k} we introduce the following vectan,, ;:

my,; =m+r+px+a+---+a;

Let us first prove that there exigtse N such thaim,, ;(i) € N for everyi € I, v
andj € {0,...,k}. Leti € I, v andj € {0,...,k}, sincex(i) > 0, there exists
pi; € Nsuch thatm, (i) € N for everyp > p; ;. We deduce that there exigiss N
such thaim,, ;(i) € N for everyi € I, v andj € {0,...,k}.

Now we prove thain,, ;(i) € Nforeveryi € {1,...,d}\Im,v andj € {0,...,k}.
Letj € {0,...,k}. Sincew is the label of a cycle om’=.v, there exists an extended
markingq; relaxed ovely, v such that the following relation holds:

mImYV ai...aj; qJ
We deduce that for everye {1,...,d}\Im,v We havem(i) + a; (i) + - -- + a;(i) =
q; (7). Sincer (i) = 0 andx(i) = 0 we getm,, ;(i) € N.
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We have proved thah,, ; € N for everyj € {0,...,k}. Sincem,, ; —m,, ;1 =
a; we deduce thap, = m, ... m,; is a run. Note thain, o = m + px + r and
mp,, =m-+px+r+ Z§:1 a; = m + px + s. We have proved that the following
relation holds:
m+px+r1>m+px+s

In particular(r,s) is in the production relatior>,,, wherem’ = m + px. Since a
production relation is periodic we geh’ + nr = m’ + ns for everyn € N. As
(pr’, px, ps’) is an intraproduction fofm, V) we getm + pr’ = m’ = m + ps’. We
deduce the relatiofm + pr’) +nr = m’ 4 nr from (m+pr’) = m’, and the relation

m’ +ns = (m + ps’) +ns fromm’ = (m + ps’). We deduce that the following
relation holds for every, € N:

m + pr’ +nr = m + ps’ + ns

Hencep(r',s’) + N(r,s) Comy. Thus(r,s) € Qs¢ —m.v. From the inclusion
Rmyv € Qs0 —rm,v We get the inclusio®soRm,v € Q>0 —m,v- 0

Lemma 8.6. The conic seQ>P is finitely generated for every Presburger periodic
setP.

Proof. Let us consider a Presburger periodic BetSinceP is Presburger thel® =
U§:1 b; + P; whereb; € Z? andP; C Z% is a finitely generated periodic set. We
introduce the finitely generated conic €8t= Zle((@zobj + C;) whereC; is the
finitely generated conic s€l; = Q>(P;. SinceP C C andC is a conic set we deduce
the inclusionQ>oP C C. As C s finitely generated we deduce th@is closed. Hence
Q>oP C C. Forthe other inclusion lgi € P;. For everyn € Nwe haveb;+np € P.
Hence%bj + p € Q>oP for everyn € N.,. We deduce thgp € Q>P. Therefore
P; C Q>oP. We getC; C Q>oP. AsQ>ob; C Q>oP C Q>oP we have proved the
inclusionC C Qx(oP. Hence the previous inclusion is in fact an equality. a

Now, we can prove Theorem 8.1. Lemma 8.4 shows gty is a Presburger
periodic relation. Lemma 8.6 proves that the conic@eb Rm,v is finitely generated.
Lemma 8.5 shows thadsq —m, v is finitely generated. Hend@s>o —m) NV is @
finitely generated conic set for every vector spiice Q¢ x Q?. Theorem 3.8 shows
that the conic relatio@so —, is definable. Hencés, is an asymptotically definable
periodic relation.

9 Almost Semilinear Reachability Relations

In this section we prove the following Theorem 9.1. All théet results or definitions
introduced in this section are not used in the sequel.

Theorem 9.1. The reachability relation of a Vector Addition System is &m@st semi-
linear relation.
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We are interested in proving that is an almost semilinear relation. We first inspect

the intersection> N((m, n) + P) where(m,n) € N¢ x N? andP C N x N% is
a finitely generated periodic relation. We introduce theeordp over P defined by
p <p p if p’ € p+ P. SinceP is finitely generated we deduce that is a well
order overP (Dickson’s Lemma). We introduce the s€%, pn Of runsp such that
(sre(p),tgt(p)) € (m,n) + P. This set is well ordered by the relatiotp defined
by p <p ¢ if p < o/, (s1c(p), tgt(p)) — (m,m) <p (src(p),tet(p')) — (m,n). We
deduce thatnin<, (2m, pn) is finite.

Lemma 9.2. The following equality holds:

= N((m,n) + P) = U (sre(p), tgt(p)) + (=, NP)

peEmMIn< , (2m,pn)

Proof. Let us first proveD. Let p € (2, pn. Lemma 7.3 shows that the inclusion
(src(p), tet(p))+ —,C > holds. Sincesrc(p), tgt(p)) € (m,n) + P andP is peri-
odic we deduce the inclusian.

Let us proveC. Let (x',y’) in the intersection> N((m,n) + P). There exists a
runp’ € 2, pn such that’ = src(p’) andy’ = tgt(p’). Since=<p is a well order,
there existy € min<, (2m pn) Such thatp <p p'. We deduce thafx’,y’) is in
(sre(p), tgt(p))+ =, We get(x’,y’) € (src(p), tgt(p)) + (=, NP) and we have
proved the inclusiord. m|

Theorem 8.1 shows>, is an asymptotically definable periodic relation. Siriée
is a finitely generated periodic relation we deduce tRas asymptotically definable.
Lemma 4.5 shows that the class of asymptotically definabiedgie relations is stable
by finite intersections. We deduce that, NP is asymptotically definable. Thanks to

the previous lemma we have proved thatis almost semilinear and Theorem 9.1 is
proved.

10 Conclusion

The reachability problem for Vector Additions Systems dstssto decide for a triple
(m, A, n) wherem, n are two markings of a Vector Addition Systenif there exists

awordw € A* such thatm < n. The following algorithm decides this problem.

1 Reachability( m, A ,n)

2 k<+ 0
3 repeat forever
4 for each wordw € A* of lengthk

ifm-—>n
r et ur n “reachable”
for each Presburger formula of length &
i f ¢(m)and—¢(n) are true and
x>0ANy>0AY(x) Ny € x+ A A-)(y) unsat

© ® N o o
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r et ur n “unreachable”
k+k+1

The correctness is immediate since when the algorithmmnetiieachable” we deduce
that there exists a wor@ € A* such thatm —> n and when it returns “unreachable”
we deduce a Presburger formulethat denotes a sétsatisfyingm € I (sincey(m)

is true),n ¢ I (since—)(n) is true), and such that is a forward invariant (since
x>0Ay >0AYX) Ay € x+ A A —(y) is unsatisfiable). The termination is
guaranteed by the following Theorem 10.1.

Theorem 10.1. For every pair of marking$m, n) in the complement of the reachabil-
ity relation of a Vector Addition System, there exists aifiart of the set of markings

into a Presburger forward invariant that containa and a Presburger backward in-

variant that contains.

Proof. Let us consideX = {m} andY = {n} and letR* be the reachability relation
of the Vector addition system. Theorem 9.1 shows fiiats an almost semilinear rela-
tion. SinceR* is reflexive and transitive and such thia x Y) N R* = (, Theorem 6.1
shows that there exists a partition of the set of markings &Presburger forward in-
variant set that contai’€ and a Presburger backward invariant set that confdinsO

This algorithm does not require the classical KLMST decositmn. Note however
that the complexity of this algorithm is still open. In fatte complexity depends on
the minimal size of a words € A* such thatm % n if m = n, and the minimal
size of a Presburger formul&(x) denoting a forward invariardtsuch thatm € I and
n ¢ I otherwise. We left as an open question the problem of comgldiver and upper
bounds for these sizes. Note that the VAS exhibiting a la#g&érmann size) but finite
reachability set given in [8] does not directly provide arkéanann lower-bound for
these sizes since Presburger forward invariants can @@oaimate reachability sets.

As future work we are interested in providing complexity hds on formulas in
FO (Q, +, <,0, 1) denoting the definable conic s&is.g — .
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