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Vector Addition System Reachability Problem:
A Short Self-Contained Proof⋆

Jérôme Leroux1

LaBRI, Université de Bordeaux, CNRS
leroux@labri.fr

Abstract. The reachability problem for Vector Addition Systems (VASs) is a
central problem of net theory. The general problem is known to be decidable by
algorithms exclusively based on the classical Kosaraju-Lambert-Mayr-Sacerdote-
Tenney decomposition (KLMTS decomposition). Recently from this decomposi-
tion, we deduced that a final configuration is not reachable from an initial one if
and only if there exists a Presburger inductive invariant that contains the initial
configuration but not the final one. Since we can decide if a Preburger formula
denotes an inductive invariant, we deduce from this result that there exist check-
able certificates of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general VASreachability prob-
lem based on two semi-algorithms. A first one that tries to prove the reachability
by enumerating finite sequences of actions and a second one that tries to prove the
non-reachability by enumerating Presburger formulas. In this paper we provide
the first proof of the VAS reachability problem that is not based on the KLMST
decomposition. The proof is based on the notion of production relations, inspired
from Hauschildt, that directly proves the existence of Presburger inductive invari-
ants.

1 Introduction

Vector Addition Systems (VASs) or equivalently Petri Nets are one of the most popular
formal methods for the representation and the analysis of parallel processes [1]. Their
reachability problem is central since many computational problems (even outside the
realm of parallel processes) reduce to the reachability problem. Sacerdote and Tenney
provided in [9] a partial proof of decidability of this problem. The proof was completed
in 1981 by Mayr [7] and simplified by Kosaraju [4] from [9,7]. Ten years later [5],
Lambert provided a further simplified version based on [4]. This last proof still remains
difficult and the upper-bound complexity of the corresponding algorithm is just known
to be non-primitive recursive. Nowadays, the exact complexity of the reachability prob-
lem for VASs is still an open-problem. Even the existence of an elementary upper-bound
complexity is open. In fact, the known general reachabilityalgorithms are exclusively
based on the Kosaraju-Lambert-Mayr-Sacerdote-Tenney (KLMST) decomposition.

⋆ This version extends the POPL’2011 paper with additional figures and examples. Some classes
of sets get more intuitive names like the polytope conic sets, the polytope periodic sets, and
the Petri sets that are now called the definable conic sets, the asymptotically definable periodic
sets, and the almost semilinear sets.
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Recently [6] we proved thanks to the KLMST decomposition that Parikh images of
languages accepted by VASs are semi-pseudo-linear, a classthat extends the Presburger
sets. An application of this result was provided; we proved that a final configuration is
not reachable from an initial one if and only if there exists aforward inductive invariant
definable in the Presburger arithmetic that contains the initial configuration but not the
final one. Since we can decide if a Presburger formula denotesa forward inductive
invariant, we deduce that there exist checkable certificates of non-reachability in the
Presburger arithmetic. In particular, there exists a simple algorithm for deciding the
general VAS reachability problem based on two semi-algorithms. A first one that tries
to prove the reachability by enumerating finite sequences ofactions and a second one
that tries to prove the non-reachability by enumerating Presburger formulas.

In this paper we provide a new proof of the reachability problem that is not based on
the KLMST decomposition. The proof is based on theproduction relationsinspired by
Hauschildt [3] and it proves directly that reachability sets arealmost semilinear, a class
of sets introduced in this paper that extend the class of Presburger sets and contained
in the class of semi-pseudo-linear sets. In particular thispaper provides a more precise
characterization of the reachability sets of VASs.

Outline of the paper: Section 2 provides notations and classical definitions. Sec-
tion 3 and Section 4 introduce classes of sets used in the sequel : definable conic sets
andvector spacesin the first one andasymptotically definable periodicsets,Presburger
sets, andalmost semilinearsets in the second one. Section 5 and Section 6 show that
is sufficient to prove that the reachability relation of a Vector Addition system is an
almost semilinear relation in order to deduce the existenceof forward inductive invari-
ants definable in the Presburger arithmetic proving the non-reachability. In Section 7 we
introduce the class of Vector Addition Systems and the central notion of production re-
lations. We show in the next Section 8 that these relations are asymptotically definable
periodic. In Section 9 we prove that the reachability relation of a Vector Addition Sys-
tem is an almost semilinear relation. Finally in Section 10 we combine all the previous
results to deduce the decidability of the Vector Addition System reachability problem
based on Presburger inductive invariants.

2 Notations

We introduce in this section notations and classical definitions used in this paper.

We denote byN,N>0,Z,Q,Q≥0,Q>0 the set ofnatural numbers, positive inte-
gers, integers, rational numbers, non negative rational numbers, andpositive rational
numbers. Vectorsandsets of vectorsare denoted in bold face. Theith componentof
a vectorv ∈ Qd is denoted byv(i). We introduce||v||∞ = max1≤i≤d |v(i)| where
|v(i)| is theabsolute valueof v(i). The total order≤ overQ is extended component-
wise into an order≤ over the set of vectorsQd. The addition function+ is also ex-
tended component-wise overQd. Given two setsV1,V2 ⊆ Qd we denote byV1+V2

the set{v1 + v2 | (v1,v2) ∈ V1 × V2}, and we denote byV1 − V2 the set
{v1 − v2 | (v1,v2) ∈ V1 × V2}. In the same way givenT ⊆ Q andV ⊆ Qd

we letTV = {tv | (t,v) ∈ T ×V}. We also denote byv1 +V2 andV1 +v2 the sets
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{v1} + V2 andV1 + {v2}, and we denote bytV andTv the sets{t}V andT {v}.
In the sequel, an empty sum of sets included inQd denotes the set reduced to the zero
vector{0}.

A (binary) relationR overQd is a subsetR ⊆ Qd × Qd. Thecompositionof two
relationsR andS is the relation denoted byR◦S and defined as usual by the following
equality:

R ◦ S =
⋃

y∈Qd

{

(x, z) ∈ Qd ×Qd | (x,y) ∈ R ∧ (y, z) ∈ S
}

The reflexive and transitive closureof a relationR is denoted byR∗. In this paper,
notions introduced over the sets are transposed over the relations by identifyingQd×Qd

with Q2d.

An order⊑ over a setS is said to bewell if for every sequence(sn)n∈N of elements
sn ∈ S we can extract a sub-sequence that is non-decreasing for⊑, i.e. there exists a
strictly increasing sequence(nk)k∈N of natural numbers in(N,≤) such that(snk

)k∈N

is non decreasing for⊑. A minimal elementof an ordered set(S,⊑) is an elements ∈ S
such that for everyt ∈ T the relationt ⊑ s impliess = t. Given a setY ⊆ S we denote
by min⊑(Y ) theset of minimal elementsof the ordered set(Y,⊑). Let us recall that if
(S,⊑) is well ordered thenX = min⊑(Y ) is finite and for everyy ∈ Y there exists
x ∈ X such thatx ⊑ y.

Let us consider an order⊑ over a setS. We introduce the component-wise extension
of⊑ over the set of vectorsSd defined bys ⊑ t if s(i) ⊑ t(i) for everyi ∈ {1, . . . , d}.

Lemma 2.1 (Dickson’s Lemma).The ordered set(Sd,⊑) is well for every well or-
dered set(S,⊑).

Example 2.2.The set(N,≤) is well ordered. Hence(Nd,≤) is also well ordered. The
set(Z,≤) is not well ordered.

3 Definable Conic Sets

A conic setis a setC ⊆ Qd such that0 ∈ C, C+C ⊆ C and such thatQ≥0C ⊆ C.
A conic setC is said to befinitely generatedif there exists a finite sequencec1, . . . , ck
of vectorscj ∈ C such thatC = Q≥0c1 + · · ·+Q≥0ck.

Definition 3.1. A conic setC is said to bedefinableif it is definable inFO (Q,+,≤, 0).

In this section definable conic sets are geometrically characterized thanks to thevector
spacesand thetopological closure.

Example 3.2.Fig. 1 depicts examples of finitely generated conic sets and (non finitely
generated) definable conic sets. The conic setC = {(c1, c2) ∈ Q2

≥0 |
√
2c2 ≤ c1} is

not definable.
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Fig. 1. The finitely generated conic setQ≥0(1, 1) + Q≥0(1, 0) and the definable conic set
{(0, 0)} ∪ {(c1, c2) ∈ Q2

>0 | c2 ≤ c1}

A vector spaceis a setV ⊆ Qd such that0 ∈ V, V + V ⊆ V and such that
QV ⊆ V. Let X ⊆ Qd. The following set is a vector space called thevector space
generatedbyX.

V =







k
∑

j=1

λjxj | k ∈ N and(λj ,xj) ∈ Q×X







This vector space is the minimal for inclusion among the vector space that containsX.
Note that the vector spaceV generated by a conic setC satisfies the equalityV =
C − C. Let us recall that every vector spaceV is generated by a finite setX with at
mostd vectors. Therank rank(V) of a vector spaceV is the minimal natural number
r ∈ {0, . . . , d} such that there exists a finite setX with r vectors that generatesV. Note
thatrank(V) ≤ rank(W) for every pair of vector spacesV ⊆W. Moreover, ifV is
strictly included inW thenrank(V) < rank(W).

Example 3.3.Vector spacesV included inQ2 satisfyrank(V) ∈ {0, 1, 2}. Moreover
these vectors spaces can be classified as follows :rank(V) = 0 if and only ifV = {0},
rank(V) = 1 if and only if V = Qv with v ∈ Q2\{0}, andrank(V) = 2 if and only
if V = Q2.

The (topological) closureof a setX ⊆ Qd is the setX of vectorsr ∈ Qd such
that for everyǫ ∈ Q>0 there existsx ∈ X satisfying||r − x||∞ < ǫ. A setX is said
to beclosedif X = X. Note thatX is closed and this set is the minimal for inclusion
among the closed sets that containX. Let us recall that a vector spaceV is closed and
the closure of a conic set is a conic set. Since the classical topological interior of a conic
setC is empty when the vector space generated byC is not equal toQd (the conic set
is degenerated), we introduce the notion of interior ofC relatively to the vector space
V = C −C. More precisely, a vectorc ∈ C is said to be in theinterior of C if there
existsǫ ∈ Q>0 such thatc + v ∈ C for everyv ∈ C −C satisfying||v||∞ < ǫ. We
denote byint(C) the set ofinterior vectorsof C. Let us recall thatint(C) is non empty
for every conic setC, andC1 = C2 if and only if int(C1) = int(C2) for every conic
setsC1,C2.

Example 3.4.Let X = (1, 5)× (1, 5). ThenX = [1, 5]× [1, 5] (see Fig. 2).
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Fig. 2. SetsX = (1, 5)× (1, 5) andX = [1, 5]× [1, 5]

The following lemma characterizes the finitely generated cones.

Lemma 3.5 (Duality). LetV ⊆ Qd be a vector space. A conic setC ⊆ V is finitely
generated if and only if there exists a sequence(hj)1≤j≤k of vectorshj ∈ V\{0} such
that:

C =

k
⋂

j=1

{

v ∈ V |
d

∑

i=1

hj(i)v(i) ≥ 0

}

Moreover in this case the following equality holds if and only if V is the vector space
generated byC:

int(C) =

k
⋂

j=1

{

v ∈ V |
d

∑

i=1

hj(i)v(i) > 0

}

Proof. This is a classical result of duality [10]. ⊓⊔

h1

h2

Fig. 3. A picture of the duality lemma 3.5

Example 3.6.Let us introduce the whole vector spaceV = Q2 and the finitely gener-
ated conic setC = Q≥0(1, 1) + Q≥0(1, 0). Fig. 3 shows thatC =

⋂

j∈{1,2}{v ∈ V |
∑d

i=1 hj(i)v(i) ≥ 0} whereh1 = (0, 2) andh2 = (2,−2).

Lemma 3.7. The topological closure of a set definable inFO(Q,+,≤, 0) is a finite
union of finitely generated conic sets.
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Proof. Let X ⊆ Qd be a set definable inFO (Q,+,≤, 0). Since this logic admits
quantification elimination we deduce that there exists a quantifier free formula in this
logic that denotesX. Hence there exists a finite sequence(Aj)1≤j≤k of finite setsAj ⊆
Qd × {>,≥} such thatX =

⋃k
j=1 Xj where:

Xj =
⋂

(h,#)∈Aj

{

x ∈ Qd |
d

∑

i=1

h(i)x(i)#0

}

We can assume without loss of generality thatXj is non empty. Moreover ifk = 0 the
proof is immediate sinceX = ∅. So we can assume thatk ≥ 1. Let us introduce the
following setRj:

Rj =
⋂

(h,#)∈Aj

{

x ∈ Qd |
d

∑

i=1

h(i)x(i) ≥ 0

}

Lemma 3.5 shows thatRj is finitely generated. Thanks to Lemma 3.5, we deduce that
R =

⋃k
j=1 Rj is closed. We are going to prove thatX = R. SinceXj ⊆ Rj we get

X ⊆ R. As R is closed we deduce thatX ⊆ R. Let us prove the converse inclusion.
Let r ∈ R. There existsj ∈ {1, . . . , k} such thatr ∈ Rj . SinceXj is non empty, there
existsxj ∈ Xj . As rj ∈ Rj andxj ∈ Xj we deduce thatrj + Q>0xj ⊆ Xj . Hence
rj ∈ Xj and we have proved the other inclusionR ⊆ X. ThereforeX is a finite union
of finitely generated conic sets since it is equal toR. ⊓⊔
Theorem 3.8. A conic setC ⊆ Qd is definable if and only if the conic setC ∩V is
finitely generated for every vector spaceV ⊆ Qd.

Proof. Let us first consider a definable conic setC ⊆ Qd, letV be a vector space, and
let us prove thatX is finitely generated whereX = C ∩ V. SinceX is definable in
FO(Q,+,≤, 0), Lemma 3.7 shows thatX =

⋃k
j=1 Cj whereCj is a finitely generated

conic sets. Moreover, asX is non empty we deduce thatk ≥ 1. As X is a conic set
we deduce that

∑k
j=1 Cj ⊆ X. Moreover, as0 ∈ Cj for everyj, we deduce that

Cj ⊆
∑k

j=1 Cj for everyj. ThusX =
∑k

j=1 Cj and we have proved thatX is finitely
generated.

Conversely, we prove by induction overr that the conic setsC ⊆ Qd such that
rank(C − C) ≤ r and such that the conic setC ∩V is finitely generated for every
vector spaceV ⊆ Qd are definable. The caser = 0 is immediate since in this case
C = {0}. Let us assume the induction proved for an integerr ∈ N and let us consider
a conic setC ⊆ Qd such thatrank(C − C) ≤ r + 1 and such that the conic set
C ∩V is finitely generated for every vector spaceV ⊆ Qd. We introduce the vector
spaceW = C − C. SinceC = C ∩V with V = Qd, we deduce thatC is finitely
generated. Lemma 3.5 shows that there exists a finite sequence (hj)1≤j≤k of vectors
hj ∈W\{0} such that the following equality holds:

C =
k
⋂

j=1

{

x ∈W |
d

∑

i=1

hj(i)x(i) ≥ 0

}
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Sinceint(C) = int(C) we get the following equality:

int(C) =

k
⋂

j=1

{

x ∈W |
d

∑

i=1

hj(i)x(i) > 0

}

In particularint(C) is definable inFO (Q,+,≤, 0, 1). As int(C) ⊆ C ⊆ C we deduce
the following decomposition whereWj = {w ∈W |∑d

i=1 hj(i)w(i) = 0}:

C = int(C) ∪
k
⋃

j=1

(C ∩Wj)

Observe thathj ∈ W\Wj and in particularWj is strictly included inW. Thus
rank(Wj) < rank(W) ≤ r + 1. Note thatCj = C ∩Wj is a conic set such that
rank(Cj −Cj) ≤ rank(Wj) ≤ r and such thatCj ∩V is a finitely generated conic
set for every vector spaceV. Thus by inductionCj is definable inFO(Q,+,≤, 0, 1).
We deduce thatC is definable. We have proved the induction. ⊓⊔

Example 3.9.Observe that the conic setC = {(c1, c2) ∈ Q2
≥0 |

√
2c2 ≤ c1} is not

finitely generated. Let us considerV = Q2 and observe thatC ∩ V = C and since
C = C we deduce thatC ∩V is not finitely generated. Theorem 3.8 shows thatC is
not definable.

4 Presburger Sets And Almost Semilinear Sets

In this section we introduce thePresburgersets and thealmost semilinearsets.

A periodic setis a subsetP ⊆ Zd such that0 ∈ P and such thatP + P ⊆ P. A
periodic setP is said to befinitely generatedif there exists a finite sequencep1, . . . ,pk

of vectorspj ∈ P such thatP = Np1 + · · · + Npk (see Fig. 4). A subsetS ⊆ Zd is
called aPresburger setif it can be denoted by a formula in the Presburger arithmetic
FO(Z,+,≤, 0, 1). Let us recall [2] that a subsetS ⊆ Zd is Presburger if and only if it
is semilinear, i.e. a finite union of setsb + P whereb ∈ Zd andP ⊆ Zd is a finitely
generated periodic set. The class of almost semilinear setsis obtained by weakening the
finiteness property of the periodic setsP.

Definition 4.1. A periodic setP is said to beasymptotically definableif the conic set
Q≥0P is definable.

Remark 4.2.Every finitely generated periodic setP is asymptotically definable since
in this caseQ≥0P is a finitely generated conic set and in particular a definableconic
set.

Example 4.3.The periodic setP = {(p1, p2) ∈ N2 |
√
2p2 ≤ p1} is not asymptot-

ically definable sinceQ≥0P = {(c1, c2) ∈ N2 |
√
2c2 ≤ c1} is not definable (see

example 3.9).
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p(2)

p(1)

Fig. 4.The finitely generated periodic setP = N(1, 1) + N(2, 0)

p(2)

p(1)

p(1) + 1 ≤ 2p(2)

p(2) ≤ p(1)

Fig. 5. An asymptotically definable periodic set.

Example 4.4.The periodic setP = {p ∈ N2 | p(2) ≤ p(1) ≤ 2p(2) − 1} is rep-
resented in Figure 5. Observe thatQ≥0P = {0} ∪ {c ∈ Q2

>0 | p(2) ≤ p(1)} is a
definable conic set. ThusP is an asymptotically definable periodic set.

The following lemma shows that the class of asymptotically definable periodic sets
is stable by finite intersections.

Lemma 4.5. We have(Q≥0P1) ∩ (Q≥0P2) = Q≥0(P1 ∩P2) for every periodic sets
P1,P2 ⊆ Zd.

Proof. Observe thatP1 ⊆ Q≥0P1 andP2 ⊆ Q≥0P2. HenceP1 ∩ P2 ⊆ C where
C = (Q≥0P1) ∩ (Q≥0P2). AsC is a conic set we deduce thatQ≥0(P1 ∩ P2) ⊆ C.
For the converse inclusion. Letc ∈ C. Sincec ∈ Q≥0P1, there existsλ1 ∈ Q≥0

such thatc ∈ λ1P1. Symmetrically there existsλ2 ∈ Q≥0 such thatc ∈ λ2P2. Let
n1, n2 ∈ N>0 such thatn1λ1 ∈ N andn2λ2 ∈ N. Let n = n1n2 and observe that
nc ∈ n2(n1λ1)P1 ⊆ P1 sinceP1 is a periodic set. Symmetricallync ∈ P2. We have
proved thatnc ∈ P1∩P2. Thusc ∈ Q≥0(P1∩P2) and we get the other inclusion.⊓⊔

Definition 4.6. An almost semilinear setis a subsetX ⊆ Zd such that for every Pres-
burger setS ⊆ Zd the setX ∩ S is a finite union of setsb + P whereb ∈ Zd and
P ⊆ Zd is an asymptotically definable periodic set.
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Fig. 6.An asymptotically definable periodic set that is not almost semilinear.

Example 4.7.Let us consider the periodic setP = {(0, 0)} ∪ {(2n, 1) | n ∈ N} ∪
((1, 2)+N2) depicted in Fig.6. Observe thatQ≥0P is the definable conic set{(0, 0)}∪
Q≥0×Q>0. Note thatP is not almost semilinear sinceP∩ (N×{1}) = {(2n, 1) | n ∈
N} can not be decomposed as a finite union of setsb+P whereb ∈ Zd andP ⊆ Zd

is an asymptotically definable periodic set.

The class of almost semilinear sets is included in the class of Presburger sets. The
strict inclusion will be proved strict as a direct consequence of a stronger result proved
in this paper. In fact thereachability relation of a Vector Addition System is provedto
be almost semilinearand we know that in general such a relation is not Presburger.

5 Linearizations

The linearization of a periodic setP ⊆ Zd is the periodic setlin(P) defined by the
following equality:

lin(P) = (P−P) ∩Q≥0P

Lemma 5.1. The linearization of an asymptotically definable periodic set is finitely
generated.

Proof. Let V be the vector space generated byP and let us introduce the conic set
C = Q≥0P. Note thatQ≥0P ⊆ V and sinceV is closed we getC ⊆ V. As
Q≥0P is a definable conic set we deduce thatC is finitely generated. Hence there
existsc1, . . . , ck ∈ C such thatC = Q≥0c1 + · · · + Q≥0ck. As cj ∈ C ⊆ V =
Q≥0P−Q≥0P, by replacingcj by a vector inN>0cj we can assume thatcj ∈ P−P

for everyj ∈ {1, . . . , k}.
We introduce the following setR:

R =







r ∈ P−P | r =
k
∑

j=1

λjcj λj ∈ Q 0 ≤ λj < 1







We observe that every vectorr ∈ R satisfies||r||∞ ≤ s wheres =
∑k

j=1 ||cj ||∞.
HenceR ⊆ {−s, . . . , s}d and we deduce thatR is finite.

Let L be the periodic set generated by the finite setR ∪ {c1, . . . , ck}. Since this
finite set is included inlin(P) we deduce thatL ⊆ lin(P). Let us prove the converse
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inclusion. Letx ∈ lin(P). Sincex ∈ C, there exists a sequence(µj)1≤j≤k of rational
elementsµj ∈ Q≥0 such thatx =

∑k
j=1 µjcj . Let us introducenj ∈ N such that

λj = µj − nj satisfies0 ≤ λj < 1. Let r =
∑k

j=1 λjcj . As r = x −∑k
j=1 njcj we

getr ∈ P−P. Thusr ∈ R. Fromx = r+
∑k

j=1 njcj we getx ∈ L. We have proved
thatlin(P) is the finitely generated periodic setL. ⊓⊔

We observe that if the intersection(b1+P1)∩ (b2+P2) is empty whereb1,b2 ∈
Zd andP1,P2 ⊆ Zd are two asymptotically definable periodic sets then the intersection
(b1 + lin(P1)) ∩ (b2 + lin(P2)) may be non empty (see Example 5.3). In this section
we show that a dimension is strictly decreasing.

Let us first introduce our definition of dimension. Thedimensiondim(X) of a non-
empty setX ⊆ Zd is the minimal integerr ∈ {0, . . . , d} such that there existsk ∈ N>0,
a sequence(bj)1≤j≤k of vectorsbj ∈ Zd, and a sequence(Vj)1≤j≤k of vector spaces
Vj ⊆ Qd such thatrank(Vj) ≤ r and such thatX ⊆ ⋃k

j=1 bj +Vj . The dimension
of the empty set is defined bydim(∅) = −1.

In the reminder of this section we prove the following Theorem 5.2. All the other
results or definitions introduced in this section are not used in the sequel.

Theorem 5.2. Let b1,b2 ∈ Zd and letP1,P2 be two asymptotically definable peri-
odic sets such that the intersection(b1 + P1) ∩ (b2 + P2) is empty. The intersection
X = (b1 + lin(P1)) ∩ (b2 + lin(P2)) satisfies:

dim(X) < max{dim(b1 +P1), dim(b2 +P2)}
Example 5.3.Sets introduced in this example are depicted in Fig. 7. Let usintroduce
the asymptotically definable periodic setsP1 = {p ∈ N2 | p(2) ≤ p(1) ≤ 2p(2) − 1}
andP2 = N(1, 0) + N(3,−1). We considerb1 = (0, 0) andb2 = (7, 2). We observe
that the intersection ofb1 + P1 andb2 + P2 is empty. Note that the intersectionX
of b1 + lin(P1) andb2 + lin(P2) satisfiesX = {(7, 2), (10, 1), (13, 0)}+N(1, 0). In
particular we havedim(X) = 1 whereasdim(b1+lin(P1)) = dim(b2+lin(P2)) = 2.

Fig. 7. A figure for Theorem 5.2 and Example 5.3.

We first characterize the dimension of a periodic set.
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Lemma 5.4. LetV be the vector space generated by a periodic setP. Thenrank(V) =
dim(P).

Proof. Let P be a periodic set and let us first prove by induction overk ∈ N>0 that
for every sequence(Vj)1≤j≤k of vector spacesVj ⊆ Qd, the inclusionP ⊆ ⋃k

j=1 Vj

implies that there existsj ∈ {1, . . . , k} such thatP ⊆ Vj . The casek = 1 is im-
mediate. Assume the property proved for an integerk ∈ N>0 and let us assume that
P ⊆ ⋃k+1

j=1 Vj . If P ⊆ Vk+1 the property is proved. So we can assume that there

existsp ∈ P\Vk+1. Let us prove thatP ⊆ ⋃k
j=1 Vj . We considerx ∈ P. Observe

that if x 6∈ Vk+1 thenx ∈ ⋃k
j=1 Vj . So we can assume thatx ∈ Vk+1. We ob-

serve thatp + nx ∈ P for everyn ∈ N since the setP is periodic. We deduce that
there existsj ∈ {1, . . . , k + 1} such thatp + nx ∈ Vj . Naturally this integerj de-
pends onn. However, since{1, . . . , k + 1} is finite whereasN is infinite, there exists
j ∈ {1, . . . , k + 1} andn < n′ in N such thatp + nx andp + n′x are both inVj .
As Vj is a vector space, we deduce thatn′(p + nx) − n(p + n′x) is in Vj . Hence
p ∈ Vj . Asp 6∈ Vk+1 we deduce thatj 6= k + 1. AsVj is a vector space we deduce
that(p+ n′x) − (p+ nx) ∈ Vj . Hencex ∈ Vj . We have proved thatx ∈ ⋃k

j=1 Vj .

ThusP ⊆ ⋃k
j=1 Vj and by induction there existsj ∈ {1, . . . , k} such thatP ⊆ Vj .

We have proved the induction.

Now, let us prove the lemma. We consider a periodic setP and we letV be the
vector space generated by this set. SinceP ⊆ V we deduce thatdim(P) ≤ rank(V).
For the converse inclusion, sinceP is non empty we deduce thatP ⊆ ⋃k

j=1 bj +Vj

wherek ∈ N>0, bj ∈ Zd andVj ⊆ Qd is a vector space such thatrank(Vj) ≤
dim(P). Let us consider the setJ = {j ∈ {1, . . . , k} | bj ∈ Vj} and let us prove that
P ⊆ ⋃

j∈J Vj . Letp ∈ P andn ∈ N. Sincenp ∈ P there existsj ∈ {1, . . . , k} such
thatnp ∈ bj +Vj . Hence there existsj ∈ {1, . . . , k} andn < n′ in N such thatnp
andn′p are both inbj +Vj . AsVj is a vector space we deduce thatn′p− np ∈ Vj .
Thusp ∈ Vj . Moreover asbj ∈ np−Vj ⊆ Vj we deduce thatj ∈ J . We have prove
the inclusionP ⊆ ⋃

j∈J Vj . From the previous paragraph we deduce that there exists
j ∈ J such thatP ⊆ Vj . By minimality of the vector space generated byP we get
V ⊆ Vj . Hencerank(V) ≤ rank(Vj). Sincerank(Vj) ≤ dim(P) we have proved
the inequalityrank(V) ≤ dim(P). ⊓⊔

Next we prove a separation property.

Lemma 5.5. Let C≤ andC≥ be two finitely generated conic sets that generates the
same vector spaceV and such that the vector space generated byC≤ ∩C≥ is strictly
included inV. Then there exists a vectorh ∈ V\{0} such that for every# ∈ {≤,≥},
we have:

C# ⊆
{

v ∈ V |
d

∑

i=1

h(i)v(i)#0

}
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Proof. Lemma 3.5 shows that there exists two finite setsH≤,H≥ included inV\{0}
such that:

C# =
⋂

h∈H#

{

v ∈ V |
d

∑

i=1

h(i)v(i) ≥ 0

}

int(C#) =
⋂

h∈H#

{

v ∈ V |
d

∑

i=1

h(i)v(i) > 0

}

Assume by contradiction that the intersectionint(C≤) ∩ int(C≥) is non empty and let
c be a vector in this set. Observe that there existsǫ ∈ Q>0 such thatc+v ∈ C≤ ∩C≥

for everyv ∈ V such that||v||∞ < ǫ. We deduce that the vector space generated by
C≤ ∩C≥ containsV and we get a contradiction.

We deduce that the following intersection is empty whereH = H≤ ∪H≥

⋂

h∈H

{

v ∈ V |
d

∑

i=1

h(i)v(i) > 0

}

Farkas’s Lemma [10] shows that there exists a non-zero function f : H → Q≥0

such that
∑

h∈H f(h)h = 0. Let us introducea =
∑

h∈H≥
f(h)h andb =

∑

h∈H\H≥
f(h)h.

Assume by contradiction thata = 0. Sincea + b = 0 we deduce thatb = 0. As f
is not the zero function, there existsh ∈ H such thatf(h) 6= 0. Note that either
h ∈ H≥ or h ∈ H\H≥. In the first case we deduce thatint(C≥) is empty and in
the second case we deduce thatint(C≤) is empty. Since both cases are impossible we
get a contradiction. Thusa 66= 0. For everyc ∈ int(C≥) we have

∑d
i=1 a(i)c(i) ≥ 0.

Since the set{c ∈ Qd | ∑d
i=1 a(i)c(i) ≥ 0} is closed we deduce that for every

c ∈ int(C≥) = C≥ the same inequality holds. Now let us considerc ∈ int(C≤). In
this case

∑d
i=1 b(i)c(i) ≥ 0. Sincea + b = 0 we get

∑d
i=1 a(i)c(i) ≤ 0. We deduce

that this inequality holds for everyc ∈ C≤. ⊓⊔

Remark 5.6.The previous Lemma 5.5 is wrong if we remove the finitely generated
condition on the conic setsC≤ andC≥. In fact let us consider the conic setsC≤ =
{x ∈ Q2

≥0 | x(1) ≤
√
2x(2)} andC≥ = {x ∈ Q2

≥0 | x(2) ≥
√
2x(2)}. Observe

thatC≤ ∩ C≥ = {0}. Hence the vector space generated by the intersection is strictly
included inQ2. However there does not exist a vectorh ∈ Q2\{0} satisfying the sepa-
ration property required by Lemma 5.5. This problem can be overcome by introducing
the vector spaces ofRd. We do not introduce this extension to simplify the presentation.

We can now provide a proof for Theorem 5.2. We consider two vectorsb1,b2 ∈ Zd

and two periodic setsP1,P2 ⊆ Zd such that(b1+P1)∩ (b2+P2) = ∅. We introduce
the intersectionX = (b1 + lin(P1)) ∩ (b2 + lin(P2)). Observe that ifX is empty the
theorem is proved. So we can assume that there exists a vectorb in this intersection.
Let us denote byV1 andV2 the vector spaces generated byP1 andP2. Lemma 5.4
shows thatrank(Vj) = dim(Pj) and fromdim(bj + Pj) = dim(Pj) we deduce
thatdim(bj + Pj) = rank(Vj). As X is included inb + V whereV = V1 ∩ V2,
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we deduce that ifV is strictly included inVj for one j ∈ {1, 2} thendim(X) ≤
rank(V) < rank(Vj) = dim(bj +Pj) and the theorem is proved. So we can assume
thatV1 = V2 = V. Let us consider the conic setsC1 = Q≥0P1 andC2 = Q≥0P2.
SinceP1 andP2 are asymptotically definable periodic sets, we deduce thatC1 andC2

are finitely generated conic sets. Note thatC1,C2 ⊆ V. We introduce the intersection
C = C1 ∩C2.

Assume by contradiction that the vector space generated byC is equal toV. Let
us consider a vectorc in the interior ofC. The characterization given by Lemma 3.5
shows that in this caseint(C) = int(C1)∩ int(C2). Sinceint(Cj) = int(Q≥0Pj) we
deduce thatc ∈ (Q≥0P1) ∩ (Q≥0P2). Lemma 4.5 shows thatc ∈ Q≥0(P1 ∩P2). By
replacingc be a vector inN>0c we can assume thatc ∈ P1 ∩P2.

Let us prove that there existsk1 ∈ N such thatb + k1c ∈ b1 + P1. Fromb ∈
b1 + lin(P1) we deduce that there existsp1,p

′
1 ∈ P1 such thatb = b1 + p1 − p′

1.
Since−p′

1 is in the vector space generated byC andc is in the interior ofC, there
existsn1 ∈ N large enough such thatn1c+(−p′

1) ∈ C1. Hence there existsn′
1 ∈ N>0

such thatn1n
′
1c − n′

1p
′
1 ∈ P1. Thusn1n

′
1c − p′

1 ∈ (n′
1 − 1)p′

1 + P1 ⊆ P1. Hence
b+ k1c ∈ b1 +P1 with k1 = n1n

′
1.

Symmetrically we deduce that there existsk2 ∈ N such thatb+k2c ∈ b2+P2. We
have proved thatb+ (k1 + k2)c ∈ (b1 +P1) ∩ (b2 +P2) and we get a contradiction
since this intersection is supposed to be empty.

We deduce that the vector space generated byC is strictly included inV. Lemma 5.5
shows that there exists a vectorh ∈ V\{0} such that:

C1 ⊆
{

v ∈ V |
d

∑

i=1

h(i)v(i) ≥ 0

}

C2 ⊆
{

v ∈ V |
d

∑

i=1

h(i)v(i) ≤ 0

}

By replacingh by a vector inN>0h we can assume thath ∈ Zd. Now let us consider
x ∈ X. Sincex−b1 ∈ C1 we deduce that

∑d
i=1 h(i)(x(i)−b1(i)) ≥ 0 and sincex−

b2 ∈ C2 we deduce that
∑d

i=1 h(i)(x(i)−b2(i)) ≤ 0. We introduce the integersz1 =
∑d

i=1 h(i)b1(i) andz2 =
∑d

i=1 h(i)b2(i). We have proved thatX can be decomposed
into a finite union of slicesX =

⋃z2
z=z1

Xz where:

Xz =

{

x ∈ X |
d

∑

i=1

h(i)x(i) = z

}

Let us prove thatdim(Xz) < rank(V). If Xz is empty the relation is immediate.
If Xz is non empty let us considerx ∈ Xz and observe thatXz ⊆ x+W where:

W =

{

v ∈ V |
d

∑

i=1

h(i)v(i) = 0

}
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Note thath ∈ V\W. We deduce thatW is strictly included inV and in particular
rank(W) < rank(V). Hencedim(Xz) < rank(V).

From X =
⋃z2

z=z1
Xz and dim(Xz) < rank(V) for every z, we deduce that

dim(X) < rank(V) and the theorem is proved.

6 Presburger Invariants

Given a relationR overZd and two setsX,Y ⊆ Zd we introduce theforward image
postR(X) and thebackward imagepreR(Y) defined by the following equalities:

{

postR(X) =
⋃

x∈X{y ∈ Zd | (x,y) ∈ R}
preR(Y) =

⋃

y∈Y{x ∈ Zd | (x,y) ∈ R}

We say that a setX ⊆ Zd is a forward invariantfor R if postR(X) ⊆ X and we
say that a setY ⊆ Zd is abackward invariantfor R if preR(Y) ⊆ Y. In the reminder
of this section we prove the following Theorem 6.1. All the other results or definitions
introduced in this section are not used in the sequel.

Theorem 6.1. LetR∗ be a reflexive and transitive almost semilinear relation over Zd

and letX,Y ⊆ Zd be two Presburger sets such thatR∗∩(X×Y) is empty. There exists
a partition ofZd into a Presburger forward invariant that containsX and a Presburger
backward invariant that containsY.

We first prove the following lemma.

Lemma 6.2. The setspostR(X) andpreR(Y) are almost semilinear for every almost
semilinear relationR ⊆ Zd × Zd and for every Presburger setsX,Y ⊆ Zd

Proof. Let us first prove thatpostR(X) is an almost semilinear set. We consider a
Presburger setS ⊆ Zd. Observe thatX × S is a Presburger relation. SinceR is an
almost semilinear relation we deduce thatR∩ (X×S) can be decomposed into a finite
union

⋃k
j=1(aj ,bj)+Rj with k ∈ N, (aj ,bj) ∈ Zd×Zd andRj is an asymptotically

definable periodic relation. We deduce thatpostR(X) ∩ S =
⋃k

j=1 bj + Pj where
Pj = {v ∈ Zd | ∃(u,v) ∈ Rj}. SinceRj is a periodic relation we deduce thatPj

is a periodic set. Moreover sinceQ≥0Rj is definable we deduce thatCj = {v ∈ Qd |
∃(u,v) ∈ Q≥0Rj} is definable. Let us prove thatQ≥0Pj = Cj . By construction we
havePj ⊆ Cj . SinceCj is conic we deduce thatQ≥0Pj ⊆ Cj . For the converse
inclusion letv ∈ Cj . There existsu ∈ Qd such that(u,v) ∈ Q≥0Rj . Hence there
existsλ ∈ Q≥0 such that(u,v) ∈ λRj . Let us considern ∈ N>0 such thatnλj ∈ N

and observe that(nu, nv) ∈ (nλ)Rj ⊆ Rj sinceRj is periodic. Thusnv ∈ Pj and
we have proved thatv ∈ Q≥0Pj . HenceQ≥0Pj = Cj is a definable conic set and we
have proved thatpostR(X) is an almost semilinear set. FrompreR(Y) = postR−1(Y)
with R−1 = {(y,x) | (x,y) ∈ R} we deduce thatpreR(Y) is an almost semilinear
set. ⊓⊔
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Now, let us prove Theorem 6.1. We consider a reflexive and transitive almost semi-
linear relationR∗. We introduce the notion ofseparators. A separator is a couple
(X,Y) of Presburger sets such that the intersectionR∗ ∩ (X × Y) is empty. Since
R∗ is reflexive, the intersectionX∩Y is empty. The Presburger setD = Zd\(X∪Y)
is called thedomainof (X,Y). We observe that a separator(X,Y) with an empty
domain is a partition ofZd such thatX is a Presburger forward invariant andY is
a Presburger backward invariant. In particular Theorem 6.1is obtained thanks to the
following Lemma 6.3 with an immediate induction.

Lemma 6.3. Let (X0,Y0) be a separator with a non-empty domainD0. There exists
a separator(X,Y) with a domainD such thatX0 ⊆ X, Y0 ⊆ Y anddim(D) <
dim(D0).

Proof. We first observe that a couple(X,Y) of Presburger sets is a separator if and
only if postR∗(X) ∩ preR∗(Y) = ∅ if and only if postR∗(X) ∩Y = ∅ if and only if
preR∗(Y) ∩X = ∅.

SinceR∗ is an almost semilinear relation we deduce thatpostR∗(X0) is an al-
most semilinear set. AsD0 is a Presburger set, we deduce thatpostR∗(X0) ∩ D0 =
⋃k

j=1 bj + Pj wherebj ∈ Zd andPj ⊆ Zd is an asymptotically definable periodic
set. We introduce the following Presburger set:

S =
k
⋃

j=1

bj + lin(Pj)

Observe thatpostR∗(X0)∩D0 ⊆ S. We deduce that the setY = Y0∪ (D0\S) is such
thatpostR∗(X0) ∩Y = ∅. Hence(X0,Y) is a separator.

Symmetrically, sinceR∗ is an almost semilinear relation we deduce thatpreR∗(Y)
is an almost semilinear set. AsD0 is a Presburger set, we deduce thatpreR∗(Y)∩D0 =
⋃n

l=1 cl +Ql wherecl ∈ Zd andQl ⊆ Zd is an asymptotically definable periodic set.
We introduce the following Presburger set:

T =

n
⋃

l=1

cl + lin(Ql)

Observe thatpreR∗(Y) ∩D0 ⊆ T. We deduce that the setX = X0 ∪ (D0\T) is such
thatpreR∗(Y) ∩X = ∅. Hence(X,Y) is a separator.

Let us introduce the domainD of (X,Y). We have the following equality where
Zj,l = (bj + lin(Pj)) ∩ (cl + lin(Ql)):

D = D0 ∩ (
⋃

1≤j≤k
1≤l≤n

Zj,l)

As (X,Y) is a separator we deduce thatpostR∗(X)∩preR∗(Y) is empty. Asbj+Pj ⊆
postR∗(X0) ⊆ postR∗(X) andcl +Ql ⊆ preR∗(Y) we deduce that the intersection
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(bj +Pj)∩ (cl +Ql) is empty. Theorem 5.2 shows thatdim(Zj,l) < max{dim(bj +
Pj), dim(cl+Ql)}. Sincebj+Pj ⊆ D0 andcl+Ql ⊆ D0 we deduce thatdim(bj+
Pj) ≤ dim(D0) anddim(cl + Ql) ≤ dim(D0). We have proved thatdim(D) <
dim(D0). ⊓⊔

7 Vector Addition Systems

In this section we introduce theVector Addition Systems, theproduction relationsand a
well order over the set ofrunsof Vector Addition Systems.

A Vector Addition System (VAS)is a finite subsetA ⊆ Zd. A marking is a vector
m ∈ Nd. The semantics of vector addition systems is obtained by introducing for every
wordw = a1 . . . ak of vectorsaj ∈ A the relation

w−→ over the set of markings defined
by x

w−→ y if there exists a wordρ = m0 . . .mk of markingsmj ∈ Nd such that
(x,y) = (m0,mk) andmj = mj−1 + aj for everyj ∈ {1, . . . , k}. The wordρ is
unique and it is called therun from x to y labeled byw. The markingx is called the
sourceof ρ and it is denoted bysrc(ρ), and the markingy is called thetargetof ρ and
it is denoted bytgt(ρ). The set ofruns is denoted byΩ.

The reachability relationis the relation denoted by
∗−→ over the set of markings

defined byx
∗−→ y if there exists a wordw ∈ A∗ such thatx

w−→ y. In the sequel we
often used the fact thatx

w−→ y impliesx+ v
w−→ y + v for everyv ∈ Nd.

The production relationof a markingm ∈ Nd (see Fig. 8) is the relation
∗−→m

overNd defined byr
∗−→m s if m + r

∗−→ m + s. Theproduction relationof a run
ρ = m0 . . .mk is the relation

∗−→ρ defined by the following composition:

∗−→ρ=
∗−→m0

◦ · · · ◦ ∗−→mk

m

m+ r
m+ s

0

Fig. 8. The production relation of a markingm.

Example 7.1.The production relation
∗−→m with m = 0 is the reachability relation.

The following Lemma 7.2 shows that
∗−→ρ seens as a subset ofZ2d is periodic for

every runρ as a composition of periodic relations (see Fig. 9). Note that in Section 8
we prove that these periodic relations are asymptotically definable.
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Lemma 7.2. The relation
∗−→m is periodic.

Proof. Let us assume thatr1
∗−→m s1 andr2

∗−→m s2. Sincer1
∗−→m s1 we deduce that

r1 + r2
∗−→m s1 + r2. Moreover, sincer2

∗−→m s2 we deduce thatr2 + s1
∗−→m s2 + s1.

Thereforer1 + r2
∗−→m s1 + s2. ⊓⊔

m

m+ r1 m+ s1

0
m

m+ r2

m+ s2

0
m

m+ r1 + r2

m+ s1 + r2

m+ s1 + s2

0

Fig. 9. Production relations are periodic.

We introduce a well order over the set of runs based on the following Lemma 7.3

Lemma 7.3. The following inclusion holds for every runρ:

(src(ρ), tgt(ρ))+
∗−→ρ ⊆ ∗−→

Proof. Assume thatρ = m0 . . .mk with mj ∈ Nd, and let(r, s) be a couple in the
production relation

∗−→ρ. Since this relation is defined as a composition, there exists
a sequence(vj)0≤j≤k+1 of vectorsvj ∈ Nd satisfying the following relations with
v0 = r andvk+1 = s:

v0
∗−→m0

v1 · · ·vk
∗−→mk

vk+1

We introduce the vectoraj = mj −mj−1 for everyj ∈ {1, . . . , k}. Sincemj−1
aj−→

mj we deduce thatmj−1 +vj

aj−→mj +vj . Moreover, asvj
∗−→mj

vj+1, there exists

a wordwj ∈ A∗ such thatmj + vj

wj−−→ mj + vj+1. We deduce that the following
relation holds:

m0 + v0
w0a1w1...akwk−−−−−−−−−−→mk + vk+1

Therefore(m0,mk) + (v0,vk+1) is in the reachability relation. ⊓⊔

We introduce the order� over the set of runs defined byρ � ρ′ if the following
inclusion holds:

(src(ρ′), tgt(ρ′))+
∗−→ρ′ ⊆ (src(ρ), tgt(ρ))+

∗−→ρ

In the reminder of this section we prove the following theorem. All the other results or
definitions introduced in this section are not used in the sequel.

Theorem 7.4. The order� is well.
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The order� is proved well thanks to theHigmann’s Lemma. We first recall this
lemma. Let us consider an order⊑ over a setS. We introduce the order⊑∗ over the
set of words overS defined byu ⊑∗ v whereu = s1 . . . sk with sj ∈ S if there exists
a sequence(tj)1≤j≤k with tj ∈ S andsj ⊑ tj and a sequence(wj)0≤j≤k of words
wj ∈ S∗ such thatv = w0t1w1 . . . tkwk.

Lemma 7.5 (Higmann’s Lemma).The ordered set(S∗,⊑∗) is well for every well
ordered set(S,⊑).

We associate to every runρ = m0 . . .mk the wordα(ρ) = (a1,m1) . . . (ak,mk)
whereaj = mj −mj−1. Note thatα(ρ) is a word over the alphabetS = A×Nd. We
introduce the order⊑ over this alphabet by(a,m) ⊑ (a′,m′) if a = a′ andm ≤ m′.
SinceA is a finite set and≤ is a well order overNd, we deduce that⊑ is a well order
overS. From the Higmann’s lemma, the order⊑∗ is well overS∗. We introduce the
well order� over the set of runs defined byρ � ρ′ if α(ρ) ⊑∗ α(ρ′), src(ρ) ≤ src(ρ′)
andtgt(ρ) ≤ tgt(ρ′). The following lemma provides a useful characterization ofthis
order.

Lemma 7.6. Let ρ = m0 . . .mk be a run and letρ′ be another run. We haveρ � ρ′

if and only if there exists a sequence(vj)0≤j≤k+1 of vectors inNd such thatρ′ =
ρ′0 . . . ρ

′
k whereρ′j is a run frommj + vj tomj + vj+1.

Proof. We introduce the sequence(aj)1≤j≤k defined byaj = mj −mj−1.

Assume first thatρ� ρ′.
Sinceα(ρ) ⊑∗ α(ρ′) we getα(ρ′) = w0(a1,m

′
1)w1 . . . (ak,m

′
k)wk wherewj ∈ S∗

andm′
j ≥ mj . We introduce the sequence(vj)0≤j≤k+1 defined byv0 = src(ρ′) −

src(ρ), vk+1 = tgt(ρ′)− tgt(ρ) andvj = m′
j−mj for everyj ∈ {1, . . . , k}. Observe

thatvj ∈ Nd for everyj ∈ {0, . . . , k + 1}. We deduce thatρ′ can be decomposed into
ρ′ = ρ′0 . . . ρ

′
k whereρ′j is the run frommj + vj to mj + vj+1 such thatα(ρ′j) = wj .

Conversely let(vj)0≤j≤k+1 be a sequence of vectors inNd such thatρ′ = ρ′0 . . . ρ
′
k

whereρ′j is a run frommj + vj to mj + vj+1. We deduce that we have the following
equality wherem′

j = mj + vj anda′j ∈ A:

α(ρ′) = α(ρ′0)(a
′
1,m

′
1)α(ρ

′
1) . . . (a

′
k,m

′
k)α(ρ

′
k)

Observe thata′j = tgt(ρ′j−1)−m′
j = (mj+vj)− (mj−1+vj) and in particulara′j =

aj . We deduce thatα(ρ) ⊑∗ α(ρ′). Moreover, sincesrc(ρ) ≤ src(ρ′) andtgt(ρ) ≤
tgt(ρ′) we deduce thatρ� ρ′. ⊓⊔

Since� is a well order, the following lemma shows that� is a well order. We have
proved Theorem 7.4.

Lemma 7.7. ρ� ρ′ impliesρ � ρ′.

Proof. Assume thatρ = m0 . . .mk. Lemma 7.6 shows that there exists a sequence
(vj)0≤j≤k+1 of vectors inNd such thatρ′ = ρ′0 . . . ρ

′
k whereρ′j is a run frommj + vj

tomj + vj+1. Lemma 7.3 shows that(src(ρ′j), tgt(ρ
′
j))+

∗−→ρ′
j
⊆ ∗−→.
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Hence(vj ,vj+1)+
∗−→ρ′

j
⊆ ∗−→mj

. We deduce that(v0,vk+1)+
∗−→ρ′⊆ ∗−→ρ by composi-

tion. Since(src(ρ′), tgt(ρ′)) = (src(ρ), tgt(ρ)) + (v0,vk+1) we getρ � ρ′ from the
previous inclusion. ⊓⊔

8 Asymptotically Definable Production Relations

In this section we prove that production relations are asymptotically definable (Theo-
rem 8.1). All the other results or definitions introduced in the section are not used in the
sequel.

Theorem 8.1. Production relations are asymptotically definable.

The following lemma shows that asymptotically definable periodic relations are
stable by composition. In particular it is sufficient to prove that production relations
∗−→m are asymptotically definable for every markingm ∈ Nd in order to deduce that
production relations

∗−→ρ are asymptotically definable for every runρ.

Lemma 8.2. We haveQ≥0(R1 ◦ R2) = (Q≥0R1) ◦ (Q≥0R2) for every periodic rela-
tions overZd.

Proof. We haveR1 ⊆ Q≥0R1 andR2 ⊆ Q≥0R2. ThusR1 ◦ R2 ⊆ C whereC =
(Q≥0R1) ◦ (Q≥0R2). AsC is a conic set we getQ≥0(R1 ◦R2) ⊆ C. For the converse
inclusion, let us consider(x, z) ∈ C. There existsy ∈ Qd such that(x,y) ∈ Q≥0R1

and(y, z) ∈ Q≥0R2. There existsλ1, λ2 ∈ Q≥0 such that(x,y) ∈ λ1R1 and(y, z) ∈
λ2R2. We introducen1, n2 ∈ N>0 such thatn1λ1 ∈ N andn2λ2 ∈ N and we deduce
thatn(x,y) ∈ R1 andn(y, z) ∈ R2 with n = n1n2. Hencen(x, z) ∈ R1 ◦ R2. We
deduce that(x, z) ∈ Q≥0(R1 ◦R2). ⊓⊔

Theorem 3.8 shows that the conic setQ≥0
∗−→m is definable if and only if the fol-

lowing conic set is finitely generated for every vector spaceV ⊆ Qd ×Qd:

(Q≥0
∗−→m) ∩ V

We introduce the periodic relation
∗−→m,V defined as the intersection

∗−→m ∩V . Let us
observe that(Q≥0

∗−→m)∩V is equal toQ≥0
∗−→m,V . So, we just have to prove that the

conic setQ≥0
∗−→m,V is finitely generated for everym ∈ Nd and for every vector space

V ⊆ Qd ×Qd.

We introduce the setΩm,V of runsρ such that(src(ρ), tgt(ρ)) − (m,m) is in
(Nd × Nd) ∩ V . Note that a couple(r, s) ∈ Nd × Nd satisfiesr

∗−→m,V s if and only
if there exists a runρ ∈ Ωm,V such thatsrc(ρ) = m + r andtgt(ρ) = m + s. We
introduce the setQm,V of markingsq that occurs in at least one runρ ∈ Ωm,V . In
general the setQm,V is infinite. We consider the setIm,V of i ∈ {1, . . . , d} such that
{q(i) | q ∈ Qm,V } is infinite. We observe that ifi ∈ Im,V there exists a sequence of
markings inQm,V such that theith component is strictly increasing. We are going to
prove that there exists a sequence of markings inQm,V such that every component in
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Im,V is strictly increasing. This property is proved by introducing the intraproductions.
An intraproductionfor (m, V ) is a triple(r,x, s) such thatx ∈ Nd, (r, s) ∈ (Nd ×
Nd) ∩ V and such that:

r
∗−→m x

∗−→m s

Since
∗−→m is a periodic relation we deduce that the set of intraproductions is stable

by addition. In particularm + nx occurs in at least one run ofΩm,V for every in-
traproduction(r,x, s) and for everyn ∈ N. Hence, ifx(i) > 0 then i ∈ Im,V . An
intraproductionfor (m, V ) is said to betotal if x(i) > 0 for everyi ∈ Im,V .

Lemma 8.3. There exists a total intraproduction for(m, V ).

Proof. Since finite sums of intraproductions are intraproductions, it is sufficient to
prove that for everyi ∈ Im,V there exists an intraproduction(r,x, s) for (m, V ) such
thatx(i) > 0. We fix i ∈ I.

Let us first prove that there existsq ≤ q′ in Qm,V such thatq(i) < q′(i). Since
i ∈ I there exists a sequence(qn)n∈N of markingsqn ∈ Qm,V such that(qn(i))n∈N

is strictly increasing. Since(Nd,≤) is well ordered, we can extract for this sequence a
subsequence that is non decreasing for≤. We have proved that there existsq ≤ q′ in
Qm,V such thatq(i) < q′(i).

As q ∈ Qm,V thenq occurs in a run inΩm,V . Hence there exists(r, s) ∈ (Nd ×
Nd) ∩ V such that:

m+ r
∗−→ q

∗−→m+ s

Symmetrically, asq′ ∈ Qm,V there exists(r′, s′) ∈ (Nd × Nd) ∩ V such that:

m+ r′
∗−→ q′ ∗−→m+ s′

Let us introducev = q′ − q. We deduce:

– (m+ r′) + r
∗−→ q′ + r fromm+ r′

∗−→ q′.
– q+ (v + r)

∗−→ (m+ s) + (v + r) fromq
∗−→m+ s.

– (m+ r) + (v + s)
∗−→ q+ (v + s) fromm+ r

∗−→ q.
– q′ + s

∗−→ (m+ s′) + s from q′ ∗−→m+ s′.

Sinceq′ + r = q + v + r andq + v + s = q′ + s, we have proved the following
relations wherex = s+ v + r:

r+ r′
∗−→m x

∗−→m s + s′

As (r+r′, s+s′) ∈ (Nd×Nd)∩V we deduce that(r+r′,x, s+s′) is an intraproduction
for (m, V ). Sincex(i) > 0 we are done. ⊓⊔

Let us introduce an additional element∞ 6∈ N and letN∞ = N ∪ {∞}. A vector
in Nd

∞ is called anextended markingand the setI = {i ∈ {1, . . . , d} | m(i) = ∞}
is called the set ofrelaxed componentsof an extended markingm. Given a finite set
I ⊆ {1, . . . , d} and a markingm ∈ Nd, we denote bymI the extended marking defined
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by mI(i) = ∞ if i ∈ I andmI(i) = m(i) if i 6∈ I. Given a wordw = a1 . . . ak of
vectorsaj ∈ A, we extend the relation

w−→ over the set of extended markings relaxed
over a setI by x

w−→ y if there exists a wordρ = m0 . . .mk of extended markings
relaxed overI such that(x,y) = (m0,mk) andmj(i) = mj−1(i) + aj(i) for every
j ∈ {1, . . . , k} and for everyi ∈ {1, . . . , d}\I. The wordρ is unique and it is called
therun fromx to y labeled byw.

We introduce the finite graphGm,V = (Q,A, E) whereQ = {qIm,V | q ∈
Qm,V } and whereE = {(pIm,V , a,qIm,V ) | p,q ∈ Qm,V ∧q = p+a}. We introduce
the periodic relationRm,V of couples(r, s) ∈ (Nd×Nd)∩V such thatr(i) = s(i) = 0
for everyi ∈ {1, . . . , d}\Im,V and such that there exists a cycle inGm,V on the state
mIm,V labeled by a worda1 . . . ak whereaj ∈ A such thatr+

∑k
j=1 aj = s.

Lemma 8.4. The periodic relationRm,V is Presburger.

Proof. This is a classical result based on the fact that the Parikh image of a regular
language is Presburger. ⊓⊔

Lemma 8.5. The following equality holds:

Q≥0Rm,V = Q≥0
∗−→m,V

Proof. Let us first prove the inclusion⊇. Let (r, s) such thatr
∗−→m,V s. In this case

there exists a wordw ∈ A∗ such thatm + r
w−→ m + s. Observe thatm + nr and

m + ns are inQm,V for everyn ∈ N. Hencer(i) > 0 or s(i) > 0 impliesi ∈ Im,V

and we deduce thatmIm,V
w−→ mIm,V . Thereforew is the label of cycle inGm,V on

mIm,V . We have proved that(r, s) ∈ Rm,V .

Now let us prove the inclusion⊆. We consider(r, s) ∈ Rm,V . In this case(r, s) ∈
(Nd × Nd) ∩ V satisfiesr(i) = s(i) = 0 for everyi 6∈ Im,V and there exists a word
w = a1 . . . ak of vectorsaj ∈ A that labels a cycle inGm,V on mIm,V and such
thatm + r +

∑k
j=1 aj = m + s. Let us consider a total intraproduction(r′,x, s′) for

(m, V ). Givenp ∈ N andj ∈ {0, . . . , k} we introduce the following vectormp,j :

mp,j = m+ r+ px+ a1 + · · ·+ aj

Let us first prove that there existsp ∈ N such thatmp,j(i) ∈ N for everyi ∈ Im,V

andj ∈ {0, . . . , k}. Let i ∈ Im,V andj ∈ {0, . . . , k}, sincex(i) > 0, there exists
pi,j ∈ N such thatmp,j(i) ∈ N for everyp ≥ pi,j . We deduce that there existsp ∈ N

such thatmp,j(i) ∈ N for everyi ∈ Im,V andj ∈ {0, . . . , k}.
Now we prove thatmp,j(i) ∈ N for everyi ∈ {1, . . . , d}\Im,V andj ∈ {0, . . . , k}.

Let j ∈ {0, . . . , k}. Sincew is the label of a cycle onmIm,V , there exists an extended
markingqj relaxed overIm,V such that the following relation holds:

mIm,V
a1...aj−−−−→ qj

We deduce that for everyi ∈ {1, . . . , d}\Im,V we havem(i) + a1(i) + · · ·+ aj(i) =
qj(i). Sincer(i) = 0 andx(i) = 0 we getmp,j(i) ∈ N.
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We have proved thatmp,j ∈ Nd for everyj ∈ {0, . . . , k}. Sincemp,j −mp,j−1 =
aj we deduce thatρp = mp,0 . . .mp,k is a run. Note thatmp,0 = m + px + r and
mp,k = m + px + r +

∑k
j=1 aj = m + px + s. We have proved that the following

relation holds:
m+ px+ r

w−→m+ px+ s

In particular(r, s) is in the production relation
∗−→m′ wherem′ = m + px. Since a

production relation is periodic we getm′ + nr
∗−→ m′ + ns for everyn ∈ N. As

(pr′, px, ps′) is an intraproduction for(m, V ) we getm+ pr′
∗−→m′ ∗−→m+ ps′. We

deduce the relation(m+pr′)+nr
∗−→m′+nr from (m+pr′)

∗−→m′, and the relation
m′ + ns

∗−→ (m + ps′) + ns from m′ ∗−→ (m + ps′). We deduce that the following
relation holds for everyn ∈ N:

m+ pr′ + nr
∗−→m+ ps′ + ns

Hencep(r′, s′) + N(r, s) ⊆ ∗−→m,V . Thus (r, s) ∈ Q≥0
∗−→m,V . From the inclusion

Rm,V ⊆ Q≥0
∗−→m,V we get the inclusionQ≥0Rm,V ⊆ Q≥0

∗−→m,V . ⊓⊔

Lemma 8.6. The conic setQ≥0P is finitely generated for every Presburger periodic
setP.

Proof. Let us consider a Presburger periodic setP. SinceP is Presburger thenP =
⋃k

j=1 bj + Pj wherebj ∈ Zd andPj ⊆ Zd is a finitely generated periodic set. We

introduce the finitely generated conic setC =
∑k

j=1(Q≥0bj + Cj) whereCj is the
finitely generated conic setCj = Q≥0Pj . SinceP ⊆ C andC is a conic set we deduce
the inclusionQ≥0P ⊆ C. AsC is finitely generated we deduce thatC is closed. Hence
Q≥0P ⊆ C. For the other inclusion letp ∈ Pj . For everyn ∈ N we havebj+np ∈ P.
Hence1

n
bj + p ∈ Q≥0P for everyn ∈ N>0. We deduce thatp ∈ Q≥0P. Therefore

Pj ⊆ Q≥0P. We getCj ⊆ Q≥0P. AsQ≥0bj ⊆ Q≥0P ⊆ Q≥0P we have proved the
inclusionC ⊆ Q≥0P. Hence the previous inclusion is in fact an equality. ⊓⊔

Now, we can prove Theorem 8.1. Lemma 8.4 shows thatRm,V is a Presburger
periodic relation. Lemma 8.6 proves that the conic setQ≥0Rm,V is finitely generated.

Lemma 8.5 shows thatQ≥0
∗−→m,V is finitely generated. Hence(Q≥0

∗−→m) ∩ V is a
finitely generated conic set for every vector spaceV ⊆ Qd × Qd. Theorem 3.8 shows
that the conic relationQ≥0

∗−→m is definable. Hence
∗−→m is an asymptotically definable

periodic relation.

9 Almost Semilinear Reachability Relations

In this section we prove the following Theorem 9.1. All the other results or definitions
introduced in this section are not used in the sequel.

Theorem 9.1. The reachability relation of a Vector Addition System is an almost semi-
linear relation.
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We are interested in proving that
∗−→ is an almost semilinear relation. We first inspect

the intersection
∗−→ ∩((m,n) + P ) where(m,n) ∈ Nd × Nd andP ⊆ Nd × Nd is

a finitely generated periodic relation. We introduce the order≤P overP defined by
p ≤P p′ if p′ ∈ p + P . SinceP is finitely generated we deduce that≤P is a well
order overP (Dickson’s Lemma). We introduce the setΩm,P,n of runsρ such that
(src(ρ), tgt(ρ)) ∈ (m,n) + P . This set is well ordered by the relation�P defined
by ρ �P ρ′ if ρ � ρ′, (src(ρ), tgt(ρ)) − (m,n) ≤P (src(ρ′), tgt(ρ′)) − (m,n). We
deduce thatmin�P

(Ωm,P,n) is finite.

Lemma 9.2. The following equality holds:

∗−→ ∩((m,n) + P ) =
⋃

ρ∈min�P
(Ωm,P,n)

(src(ρ), tgt(ρ)) + (
∗−→ρ ∩P )

Proof. Let us first prove⊇. Let ρ ∈ Ωm,P,n. Lemma 7.3 shows that the inclusion
(src(ρ), tgt(ρ))+

∗−→ρ⊆ ∗−→ holds. Since(src(ρ), tgt(ρ)) ∈ (m,n) + P andP is peri-
odic we deduce the inclusion⊇.

Let us prove⊆. Let (x′,y′) in the intersection
∗−→ ∩((m,n) + P ). There exists a

run ρ′ ∈ Ωm,P,n such thatx′ = src(ρ′) andy′ = tgt(ρ′). Since�P is a well order,
there existsρ ∈ min�P

(Ωm,P,n) such thatρ �P ρ′. We deduce that(x′,y′) is in
(src(ρ), tgt(ρ))+

∗−→ρ. We get(x′,y′) ∈ (src(ρ), tgt(ρ)) + (
∗−→ρ ∩P ) and we have

proved the inclusion⊆. ⊓⊔

Theorem 8.1 shows
∗−→ρ is an asymptotically definable periodic relation. SinceP

is a finitely generated periodic relation we deduce thatP is asymptotically definable.
Lemma 4.5 shows that the class of asymptotically definable periodic relations is stable
by finite intersections. We deduce that

∗−→ρ ∩P is asymptotically definable. Thanks to
the previous lemma we have proved that

∗−→ is almost semilinear and Theorem 9.1 is
proved.

10 Conclusion

The reachability problem for Vector Additions Systems consists to decide for a triple
(m,A,n) wherem,n are two markings of a Vector Addition SystemA if there exists
a wordw ∈ A∗ such thatm

w−→ n. The following algorithm decides this problem.

1 Reachability( m , A , n )
2 k ← 0
3 repeat forever
4 for each wordw ∈ A∗ of lengthk
5 ifm

w−→ n

6 return ‘‘reachable’’
7 for each Presburger formulaψ of length k
8 if ψ(m) and¬ψ(n) are true and
9 x ≥ 0 ∧ y ≥ 0 ∧ ψ(x) ∧ y ∈ x+A ∧ ¬ψ(y) unsat
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10 return ‘‘unreachable’’
11 k ← k + 1

The correctness is immediate since when the algorithm returns “reachable” we deduce
that there exists a wordw ∈ A∗ such thatm

w−→ n and when it returns “unreachable”
we deduce a Presburger formulaψ that denotes a setI satisfyingm ∈ I (sinceψ(m)
is true),n 6∈ I (since¬ψ(n) is true), and such thatI is a forward invariant (since
x ≥ 0 ∧ y ≥ 0 ∧ ψ(x) ∧ y ∈ x + A ∧ ¬ψ(y) is unsatisfiable). The termination is
guaranteed by the following Theorem 10.1.

Theorem 10.1. For every pair of markings(m,n) in the complement of the reachabil-
ity relation of a Vector Addition System, there exists a partition of the set of markings
into a Presburger forward invariant that containsm and a Presburger backward in-
variant that containsn.

Proof. Let us considerX = {m} andY = {n} and letR∗ be the reachability relation
of the Vector addition system. Theorem 9.1 shows thatR∗ is an almost semilinear rela-
tion. SinceR∗ is reflexive and transitive and such that(X×Y)∩R∗ = ∅, Theorem 6.1
shows that there exists a partition of the set of markings into a Presburger forward in-
variant set that containsX and a Presburger backward invariant set that containsY. ⊓⊔

This algorithm does not require the classical KLMST decomposition. Note however
that the complexity of this algorithm is still open. In fact,the complexity depends on
the minimal size of a wordw ∈ A∗ such thatm

w−→ n if m
∗−→ n, and the minimal

size of a Presburger formulaψ(x) denoting a forward invariantI such thatm ∈ I and
n 6∈ I otherwise. We left as an open question the problem of computing lower and upper
bounds for these sizes. Note that the VAS exhibiting a large (Ackermann size) but finite
reachability set given in [8] does not directly provide an Ackermann lower-bound for
these sizes since Presburger forward invariants can over-approximate reachability sets.

As future work we are interested in providing complexity bounds on formulas in
FO(Q,+,≤, 0, 1) denoting the definable conic setsQ≥0

∗−→m.
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