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Abstract. Potential extreme ultraviolet and soft X-ray radiation sources have been
identified, using the flexible atomic code (FAC), as emission peaks arising from 4d
- 4f and 4p - 4d transitions in Pd-like to Rb-like ions of hafnium through actinium.
The effects of configuration interaction are investigated and for increasing nuclear
charge, these strong emitters are seen to separate and move to shorter wavelength.
Each source is characterized using the unresolved transition array model. They are
proposed to complement the currently used nitrogen and argon sources in the “water
window”, and as possible successors to tin in next generation lithography.

PACS numbers: 31.10.4+2z, 32.30.Jc, 32.70.-n, 32.80.Aa
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1. Introduction

The success of extreme ultraviolet lithography (EUVL) hinges on the ability to identify
powerful radiation sources at 13.5 nm, a wavelength at which molybdenum / silicon
mirrors are highly reflective [1-4]. To date, both tin and xenon laser produced plasmas
(LPPs) and discharge plasmas are the sources of choice at this wavelength: Sn®* -
Sn!3* emission due to 4d - 4f and 4p - 4d transitions and Xe!®" emission due to 4d - 5p
transitions [1, 4-8]. Many recent research efforts have concentrated on investigating next
generation lithographic sources at shorter wavelengths e.g. gadolinium and terbium at
6.75 nm [9-13]. In [14], extreme ultraviolet (EUV) and soft X-ray (SXR) sources were
identified at numerous wavelengths with the prospect of being used in the event of a
highly reflective mirror becoming available at any of these wavelengths.

Moving to shorter wavelengths, further into the SXR region, we enter what is known
as the “water window” (2.3—4.4 nm), where live biological sampling is desirable [15, 16].
Current sources in this region are strong quasi-monochromatic emission at A = 2.879 nm
and A = 2.478 nm wavelengths arising from 1s®> - 1s 2p in N°" and 1s - 2p in NOF
respectively, and broadband emission between A = 2 —4 nm from argon gas targets [15].
Quasi-monochromatic sources are suitable for biological imaging using diffractive optics
while broadband emission sources can be used for contact microscopy. The development
of compact, high repetition rate, table top SXR sources using these gas puff targets,
which have the advantage of being debris free, provide much needed laboratory in
situ alternatives to free electron lasers and synchrotrons and can be used in numerous
experiments, e.g. microscopy, spectroscopy and metrology.

It is proposed that the sources identified in this work would be generated in
laser produced plasmas (LPPs), where a solid target is irradiated with an intense
laser pulse. This however leads to the production of debris which can cause major
degradation of expensive EUV / SXR mirrors. Different techniques to minimize debris
have been proposed [2] such as mixed composition targets [17, 18] and liquid tin mirrors
as collectors [19]. Indeed it may be possible to extend these approaches into the SXR
region, e.g. the liquid tin mirror being developed for 13.5 nm could be a prototype for
elements at other wavelengths.

The recording of the 4d - 4f emission in cesium through lutetium showed that these
relatively narrow regions of resonance-like emission became more complex and moved
to shorter wavelength with increasing nuclear charge Z [20,21]. In order to interpret
such complicated spectra, Mandelbaum et al [22] employed the unresolved transition
array (UTA) approach developed by Bauche-Arnoult, Bauche and Klapisch [23-26] and
concluded that interactions between the 4p® 4d”V~! 4f and 4p® 4dV*! configurations are
responsible for narrowing the transition arrays and their superposition in adjacent ion
stages. In this work we adopt the UTA approach to characterize the emission arising
from 4d - 4f and 4p - 4d transitions in Pd-like to Rb-like ions of hafnium through actinium
(Z = 72 —89). Of these elements tungsten and gold have received most attention to
date owing to their use in the fusion community [27-31]. Tungsten is currently being
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used in the walls of the divertor in many magnetic confinement fusion devices, such as
tokamaks, to reduce tile erosion [29,32,33]. However even small quantities of tungsten
contaminating the core plasma (> 107° [34]) can seriously limit the energy confinement,
in a fusion reactor. Knowledge of the W emission radiated from each ion stage in
the plasma core is therefore essential to eradicate this degradation. Gold is used for
indirectly driven inertial confinement fusion (ICF), where laser radiation heats the inside
of a Au hohlraum producing a plasma which emits intense x-rays. Therefore knowledge
of Au radiative opacity is crucial to the success of ICF [30, 31].

Recent experiments have employed the LPP technique using metal targets to
generate EUV/SXR radiation. For example a bulk rhenium target was used to develop
new SXR microscopy applications in the ”carbon window” (A ~ 4.5 — 5 nm) [35]. Also
a solid gold-based LPP source was utilized in the design of an EUV source and optics
setup to achieve high energy density and spatial resolution in a compact setup [36].
In [37] the emitted X-ray spectra of different target materials were recorded over the
wavelength range of 0.8 —18 nm. Low-Z elements (Cu, Ti, Fe, and Al) resulted in intense
line emission, while continuum-like emission was detected from higher-Z materials (Mo
and Ag). Therefore it is possible to optimize the brilliance of the LPP source for a
specific x-ray emission range and a particular application of interest.

The outline of this paper is as follows: In section 2, 180 theoretical 4d - 4f
and 4p - 4d unresolved transition array (UTA) spectra are presented, for ions with
configurations 4p°® 4d¥ - 4p% 4dV -1 4f and 4p® 4dV - 4p® 4dV*!, N = 1..10. The effects
of configuration interaction (CI), and overall trends in the position and intensity of UTA
peaks from hafnium to actinium are discussed. In section 3 UTA statistics, namely, mean
wavelength 5\9 4 and spectral width AX 4 for the above ions are calculated which allows
us to characterize these possible EUV / SXR sources. The gradual separation of the 4d
- 4f UTA from the 4p - 4d UTA is highlighted. Finally in section 4 we conclude with a
summary of this work.

2. Unresolved Transition Arrays of Ions with Z =72 — 89

As noted in [14] the strongest lines occurring in the EUV result from 4d - 4f and 4p
- 4d transitions in ion stages with open 4d subshells. Calculations were performed
with the flexible atomic code (FAC) [38,39], a complete software package developed
for the computation of various atomic collisional and radiative processes to model
spectral emission from astrophysical plasmas. Since its introduction however it has
been successfully applied in numerous additional fields e.g. magnetic fusion and
laser produced plasmas. FAC combines the strengths of existing atomic codes e.g.
ATOM [40], HULLAC [41] and SZ [42,43]; it uses a fully relativistic approach based on
the Dirac equation, and implements efficient methods for distorted wave approximation,
thus allowing its application to ions with large values of nuclear charge. The following
basis set was used: 4p® 4d", 4p® 4d™-! nl and 4p® 4dV*! where n< 8, 1< 3 and
1 < N < 10. Figures 1 - 3 show Pd-like through Rb-like spectra of hafnium through
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actinium including CI. 4d - 4f transitions are shown in black, 4p - 4d transitions are
shown in orange (gray) and all other transitions are shown in yellow (light gray). It was
noted in [14] that for a given element, the emission from 4d - 4f and 4p - 4d becomes
stronger and more concentrated within a particular wavelength range when configuration
interaction is included. It is well known that CI redistributes transitions providing a
more accurate description of experimental spectra [44]. However as Z increases there
was little discernable difference between the spectra excluding CI and including CI. This
point will be further developed under the UTA framework in section 3. Figure 4 displays
the maximum peak emission (in terms of gA values) for (a) 4d - 4f transitions and (b)
4p - 4d transitions for each element as a function of wavelength. As was observed
for the lanthanides [14,20-22], both 4d - 4f and 4p - 4d emission moves to shorter
wavelength on increasing Z. The dependence of peak transition energies on atomic
number Z is presented in Figure 4 (c¢). This shows that on increasing Z, the 4d - 4f
emission peak and the 4p - 4d emission peak clearly separate. However, the fact that
the maximum gA value remains relatively comparable for each transition type over the
range of Z = 72 — 89, implies that these elements could be potential radiation sources
over the wavelength range A = 2.5 — 6 nm. This point is further quantified with the aid
of UTA statistical analysis in the following section.

3. Unresolved Transition Array Statistics of Ions with Z =72 — 89

In order to quantify the emission from the 4d - 4f and 4p - 4d transitions in these ions, we
adopted the unresolved transition array (UTA) approach developed by Bauche-Arnoult,
Bauche and Klapisch [23-26]. UTAs were introduced originally to aid interpretation of
low resolution soft X-ray spectra emitted by hot plasmas. They are currently widely used
to approximate complex atomic spectra in plasma opacity and emissivity calculations
which reduces computation times in large-scale radiation hydrodynamic simulations
of plasma dynamics. In the UTA model, the discrete line spectra are replaced by
a continuous function (usually Gaussian) such that each configuration-configuration
transition array is characterized by the average quantities such as total intensity, average
transition energy and variance. The average and variance of the transition energies (F
and o2 respectively) can be expressed as the gA-weighted sums
Z< 9 AjiEij
=2t (1)
2 giAji
J<]
and
by 9 A(E — Ey)?
2 §i<y
o = ) (2>
> gid;i

VEAS]

where Aj; is the Einstein coefficient for spontaneous emission from level j to level ¢,
and g; is the statistical weight of the upper level. The mean wavelength A\, 4 and the
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spectral width A)g4 of the transition array can be defined as follows

Aga = 10°/E, (3)
AXga = V8In2 x 10/ £, (4)

where £ and o are expressed in em™! and j\g 4 and A)g, in A.

Before applying the above UTA analysis, it is worthwhile to demonstrate the
accuracy of the FAC code and the validity of its use in the current work. As an
example, the 4p°® 4d - 4p® 4d? and 4p°® 4d - 4p® 4f transition wavelengths and UTA
statistics of the Rb-like tungsten ion, W37* are presented in Table 1. This is a suitable
choice owing to recent interest in it by members of the fusion community. As such
wavelengths from a number of sources are available and it can be seen that the results
of the current theoretical work compare favorably with experimentally recorded values.
The 4p® 4d - 4p® 4d? and 4p® 4d - 4p® 4f transitions were first identified by Radtke et
al [29] using an electron-beam ion trap at a wavelength uncertainty of +0.05A. Later
Utter et al [45] improved on this by recording at a higher spectral resolution with
wavelength uncertainties of between +0.004 and £+0.02A. In the work of Radtke et al
[29], ab initio theoretical calculations were carried out using the multiconfigurational
relativistic HULLAC code [46,47] and the difference between measured and calculated
wavelengths was found to be as much as 1A. The current calculations employ the FAC
code which has an accuracy of 10 - 30 mA at 10A [48]. The wavelengths calculated
with the FAC code are in closer agreement with experimental values, where the largest
difference is found to be 0.6A. Also presented in Table 1 is the UTA analysis for W37+
where (i) denotes the results of Radtke et al [29] obtained using the HULLAC code,
and (ii) refers to results obtained by application of 1- 4 to the FAC data produced
in the current work. Agreement is good with a maximum difference of 0.16A in the
spectral width of the mixed CI transition array (4p°® 4d - [4p® 4d? + 4pS 4f]). This
can be attributed to the use of a larger basis set in the current work, as described in
Section 2. As was the approach in [12], this basis set was chosen for consistency when
surveying such a large number of ions. Inclusion of various configurations will continue
as and when more detailed experimental energy levels, transition wavelengths and line
strengths of these ions become available for comparison.

The above discussion indicates that the use of the FAC code is appropriate for
producing the 180 theoretical ionic spectra considered here. It also shows that these
spectra can be adequately described using the UTA approach. The 4d - 4f and 4p -
4d UTAs were extracted from the CI spectra and the above statistical analysis was
applied to each separately. The results are displayed in Figure 5, excluding CI (left)
and including CI (right), and Tables 2 and 3. Figure 5 shows the dependence of mean
wavelength (\,4) on ion stage for each element with Z = 72 — 89 (4d - 4f in black
and 4p - 4d in red). A number of observations can be made from these results: (i) CI
effects are more dramatic in lower Z elements, (ii) CI concentrates the 4p - 4d UTA at
a particular wavelength for this series of ions, for example, in hafnium which is plotted
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in Figure 5 (¢) non-CI and (d) CIL. For the 4p - 4d UTA, A\ 4 varies from 5.29 - 5.86 nm
in the non-CI case compared to 5.17 - 4.82 nm in the CI case. For the 4d - 4f UTA,
5\9,4 varies from 6.43 - 5.09 nm in the non-CI case compared to 6.26 - 5.06 nm in the
CI case. (iii) CI effects the 4p - 4d UTA positioning more than the 4d - 4f in hafnium.
This can be observed for many of the lower Z elements in this study. Gradually the
effects of CI are diminished as can be seen by comparing Figure 5 (a) and (b). Finally
by actinium we see very little variation between CI and non-CI results. For the 4p - 4d
UTA, A 4 varies from 2.79 - 2.98 nm in the non-CI case compared to 2.77 - 2.54 nm in
the CI case. For the 4d - 4f UTA, j\gA varies from 4.27 - 3.40 nm in the non-CI case
compared to 3.88 - 3.39 nm in the CI case. These results are summarized for the CI
case only in Tables 2 and 3. The mean wavelength A\,4 and spectral width A),4 for
4d - 4f and 4p - 4d UTAs calculated from the CI spectra are presented. From these
values and the results presented in Figure 4, it is possible to identify strong emitters for
almost all wavelengths between approximately A = 2.5 — 6 nm. Indeed in some cases
it is possible that a target of mixed composition may give broad band emission across

this wavelength range encompassing the “water window” and soft X-ray region.

4. Conclusion

Possible extreme ultraviolet and soft X-ray radiation sources were identified, using the
FAC relativistic code, as emission peaks arising from 4d - 4f and 4p - 4d transitions
in Pd-like to Rb-like ions of hafnium through actinium. For increasing nuclear charge,
these strong emitters are seen to separate and move to shorter wavelength. The emission
was comparable from each source and was characterized using the unresolved transition
array model. The laser produced plasma technique may be employed in future work to
generate these radiation sources which find application in numerous exciting fields, e.g.
microscopy, spectroscopy and lithography.
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Figure 1. (Color online) Pd-like through Rb-like spectra of hafnium through iridium
computed with the FAC code including CI. Black denotes 4d - 4f transitions, orange
(gray) denotes 4p - 4d transitions and yellow (light gray) denotes all transitions.
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Figure 2. (Color online) Pd-like through Rb-like spectra of platinum through bismuth
computed with the FAC code including CI. Black denotes 4d - 4f transitions, orange
(gray) denotes 4p - 4d transitions and yellow (light gray) denotes all transitions.
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Figure 3. (Color online) Pd-like through Rb-like spectra of polonium through

actinium computed with the FAC code including CI. Black denotes 4d - 4f transitions,
orange (gray) denotes 4p - 4d transitions and yellow (light gray) denotes all transitions.
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Figure 4. (Color online) Maximum peak emission from (a) 4d - 4f and (b) 4p - 4d
UTAs (including CI) in elements with Z = 72 —89. (c¢) Dependence of UTA transition
energies on atomic number Z, 4d - 4f (black open circles), 4p - 4d (red crosses).
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Figure 5. (Color online) Dependence of mean wavelength (Ag4) on ion stage for
elements with Z = 72 — 89 (4d - 4f UTA black dot, 4p - 4d UTA red cross): (a)
tantalum through radium non-CI, (b) tantalum through radium CI, (c¢) hafnium non-
CI, (d) hafnium CI, (e) actinium non-CI and (f) actinium CI.
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Table 1. Transition wavelengths and UTA statistics of Rb-like tungsten, W37+,
(a) Transition wavelengths: In column (i) Aegp and Ay, respectively, denote the
experimental and theoretical transition wavelengths obtained by Radtke et al [29].
The theoretical values were calculated using the HULLAC code. In column (ii) A
denotes theoretical wavelengths calculated in the present work using the FAC code. In
column (iii) Aegyp refers to transition wavelengths recorded experimentally by Utter et
al [45] and presented by Kramida and Shirai in [49]. (b) UTA statistics: Calculated
mean wavelength 5\9 4 and spectral width Alg4 for the unresolved transition arrays.
Column (i) denotes values from Radtke et al [29] and column (ii) denotes values
obtained by applying 1- 4 to the FAC data produced in the current work. Wavelengths
throughout the table are given in A.

(a) (i) (i)

(iii)

Transition Aexp  Aih Ath Aexp
4p® 4d *Dyp - 4p°(°PY ) 4d°(°F2) (1/2,2)g,, 49.52 49.06  49.32 49.641
4p® 4d 2Dy, - 4p° 4f (0,5/2) ¢ 56.86 56.04 56.46 56.880
4p® 4d Dy - 4p°(°P§y) 4d°(°F4) (3/2,4)3,, 57.74 56.72  57.16 57.755
4p® 4d *Dy/p - 4p°(°P§ ) 4d°(°F3) (3/2,3)5,, 64.82 63.87 64.40 64.825
(b) ) )
Unresolved transition array AgA Adga  Aga Adga
4p8 4d - 4p® 4d? 49.18 14.28 49.23 14.22
4p8 4d - 4p% 4f 60.93 5.15 60.96 5.18
Mixed 49.00 13.16 49.01 13.00
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